Math 1553 Worksheet §2.6, 2.7, 2.9, 3.1, 3.2

Solutions

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×10 matrix with 2 pivots in its RREF, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

TRUE FALSE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ is onto.

TRUE FALSE
c) If $\{a, b, c\}$ is a basis of a linear space V, then $\{a, a+b, b+c\}$ is a basis of V as well.

TRUE FALSE

Solution.

a) True. $\operatorname{rank}(A)$ is the same as number of pivots in $A . \operatorname{dim}(\operatorname{Nul} A)$ is the same as the number of free variables. Moreover by the Rank Theorem, $\operatorname{rank}(A)+$ $\operatorname{dim}(\operatorname{Nul} A)=10$, so $\operatorname{dim}(\operatorname{Nul} A)=10-2=8$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. Because a and b are independent, $a+b$ and a are linearly independent, and furthermore a and b are in $\operatorname{Span}\{a, a+b\}$. Next, c is independent from $\{a, b\}$, so $b+c$ is independent from $\{a, a+b\}$, meaning that $\{a, a+b, b+c\}$ is independent by the increasing span criterion. Since $a, a+b, b+c$ are all clearly in $\operatorname{Span}\{a, b, c\}$, by the basis theorem $\{a, a+b, b+c\}$ also form a span for $\operatorname{Span}\{a, b, c\}=V$. Alternatively, we could notice that $a, b, c \in \operatorname{Span}\{a, a+$ $b, b+c\}$, and since $V=\operatorname{Span}\{a, b, c\}$ it is a three-dimensional space spanned by the set of three elements $\{a, a+b, b+c\}$, those three elements must form a basis, by the basis theorem.
2. Write a matrix A so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

Solution.

We'd like to design an A with the prescribed column space Span $\left\{\binom{1}{4}\right\}$ and null space $\operatorname{Span}\left\{\binom{3}{-1}\right\}$.
We start with analyzing the null space. We can write parametric form of the null space:

$$
\binom{x_{1}}{x_{2}}=t\binom{3}{-1} \quad \text { is the same as }\binom{x_{1}}{x_{2}}=\binom{-3 x_{2}}{x_{2}}
$$

Then this implies the RREF of A must be $\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$.
Now we need to combine the information that column space is Span $\left\{\binom{1}{4}\right\}$. That means the second row must be 4 multiple of the first row. Therefore the second row must be (412). We conclude,

$$
A=\left(\begin{array}{cc}
1 & 3 \\
4 & 12
\end{array}\right)
$$

Note any nonzero scalar multiple of the above matrix is also a solution.
3. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.
c) Is T one-to-one? Is T onto? Justify your answer.

Solution.

a) The domain is \mathbf{R}^{4}; the codomain is \mathbf{R}^{3}. The vector $0=T(0)$ is contained in the range, as is

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

b) Yes. The range of T is the column span of A, and from the RREF of A we know A only has two pivots, so its column span is a 2-dimensional subspace of \mathbf{R}^{3}. Since $\operatorname{dim}\left(\mathbf{R}^{3}\right)=3$, the range is not equal to \mathbf{R}^{3}.
c) T is neither one-to-one nor onto. T is not onto since range (T), namely column span of A, is strictly smaller than codomain. T is not one-to-one, since there are infinitely many solutions to $A x=0$, which is infinite-to-one.
4. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the transformation is not one-to-one, find two vectors with the same image.
a) Counterclockwise rotation by 32° in \mathbf{R}^{2}.
b) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(z, x)$.
c) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(0, x)$.
d) The matrix transformation with standard matrix $A=\left(\begin{array}{cc}1 & 6 \\ -1 & 2 \\ 2 & -1\end{array}\right)$.

Solution.

a) This is both one-to-one and onto. If v is any vector in \mathbf{R}^{2}, then there is one and only one vector w such that $T(w)=v$, namely, the vector that is rotated -32° from v.
b) This is onto. If (a, b) is any vector in the codomain \mathbf{R}^{2}, then $(a, b)=T(b, 0, a)$, so (a, b) is in the range. It is not one-to-one though: indeed, $T(0,0,0)=$ $(0,0)=T(0,1,0)$. Alternatively, we could have observed that T is a matrix transformation and examined its matrix $A: T(x)=A x$ for

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Since A has a pivot in every row but not every column, T is onto but not one-to-one.
c) This is not onto. There is no (x, y, z) such that $T(x, y, z)=(1,0)$. It is not one-to-one: for instance, $T(0,0,0)=(0,0)=T(0,1,0)$.
d) The transformation T with matrix A is onto if and only if A has a pivot in every row, and it is one-to-one if and only if A has a pivot in every column. So we row reduce:

$$
A=\left(\begin{array}{cc}
1 & 6 \\
-1 & 2 \\
2 & -1
\end{array}\right) \quad \text { мnn } \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) .
$$

This has a pivot in every column, so T is one-to-one. It does not have a pivot in every row, so it is not onto. To find a specific vector b in \mathbf{R}^{3} which is not in the image of T, we have to find a $b=\left(b_{1}, b_{2}, b_{3}\right)$ such that the matrix equation $A x=b$ is inconsistent. We row reduce again:

$$
(A \mid b)=\left(\begin{array}{rr|r}
1 & 6 & b_{1} \\
-1 & 2 & b_{2} \\
2 & -1 & b_{3}
\end{array}\right) \quad \stackrel{\text { rref }}{\text { run }}\left(\begin{array}{cc|c}
1 & 0 & \text { don't care } \\
0 & 1 & \text { don't care } \\
0 & 0 & -3 b_{1}+13 b_{2}+8 b_{3}
\end{array}\right) .
$$

Hence any b_{1}, b_{2}, b_{3} for which $-3 b_{1}+13 b_{2}+8 b_{3} \neq 0$ will make the equation $A x=b$ inconsistent. For instance, $b=(1,0,0)$ is not in the range of T.

