Math 1553 Worksheet §2.6, 2.7, 2.9, 3.1, 3.2

1. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×10 matrix with 2 pivots in its RREF, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

TRUE FALSE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ is onto.

TRUE FALSE
c) If $\{a, b, c\}$ is a basis of a linear space V, then $\{a, a+b, b+c\}$ is a basis of V as well.

TRUE FALSE
2. Write a matrix A so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

3. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.
c) Is T one-to-one? Is T onto? Justify your answer.
4. Which of the following transformations T are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the transformation is not one-to-one, find two vectors with the same image.
a) Counterclockwise rotation by 32° in \mathbf{R}^{2}.
b) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(z, x)$.
c) The transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T(x, y, z)=(0, x)$.
d) The matrix transformation with standard matrix $A=\left(\begin{array}{cc}1 & 6 \\ -1 & 2 \\ 2 & -1\end{array}\right)$.

