Math 1553 Worksheet: Fundamentals and §1.1

Solutions

1. In this problem, we will discuss when you can solve a linear system and when you cannot, by using some examples. Moreover, we explore whether this is related to the number of equations and variables.
(1) If a linear system has 3 equations and 2 unknown variables, is it possible to find a solution? If your answer is yes, give an example. If your answer is maybe, give an example of a consistent system and an example of an inconsistent system.
(2) If a linear system has 2 equations and 3 unknown variables, is it possible to find a solution? If your answer is yes, give an example. If your answer is maybe, give an example of a consistent system and an example of an inconsistent system.
(3) If a linear system has 2 equations and 2 unknown variables, must it have a solution? Please explain.

Solution.

(1) Maybe.
'Yes': when one equation is a multiple of another. For example, the linear system

$$
\begin{array}{r}
2 x+4 y=0 \\
x+2 y=0 \\
y=1
\end{array}
$$

has the solution $x=-2, y=1$
'No': when these equations form a triangle in \mathbf{R}^{2} (In other words, they are contradicting with each other). For example, the linear system

$$
\begin{aligned}
x & =0 \\
x+y & =0 \\
y & =1
\end{aligned}
$$

has the solution $x=-2, y=1$
(2) Maybe.
'Yes': For example, the linear system

$$
\begin{aligned}
& x+y=0 \\
& x+y+z=0
\end{aligned}
$$

has many solutions. $x=y=z=0$ is a solution.
'No': For example, the linear system

$$
\begin{aligned}
& x+y+z=1 \\
& x+y+z=0
\end{aligned}
$$

has no solution.
(3) No. Sometimes such a system will have a solution, sometimes it will not. $x=0$
$x+y=0$ has a solution. But another linear system $\begin{aligned} & x+y=1 \\ & x+y=0\end{aligned}$ does not.
2. Consider the following three planes, where we use (x, y, z) to denote points in \mathbf{R}^{3} :

$$
\begin{array}{rr}
2 x+4 y+4 z= & 1 \\
2 x+5 y+2 z= & -1 \\
y+3 z= & 8
\end{array}
$$

Do all three of the planes intersect? If so, do they intersect at a single point, a line, or a plane?

Solution.

Subtracting the first equation from the second gives us

$$
\begin{aligned}
2 x+4 y+4 z & =1 \\
y-2 z & =-2 \\
y+3 z & =8 .
\end{aligned}
$$

Next, subtracting the second equation from the third gives us

$$
\begin{aligned}
2 x+4 y+4 z & =1 \\
y-2 z & =-2 \\
5 z & =10
\end{aligned}
$$

so $z=2$. We can back-substitute to find y and then x. The second equation is $y-2 z=-2$, so $y-2(2)=-2$, thus $y=2$. The first equation is $2 x+4(2)+4(2)=1$, so $2 x=-15$, thus $x=-15 / 2$. We have found that the planes intersect at the point

$$
\left(-\frac{15}{2}, 2,2\right) .
$$

An alternative method would have been to use augmented matrices to isolate z and then back-substitute:

$$
\left(\begin{array}{rrr|r}
2 & 4 & 4 & 1 \\
2 & 5 & 2 & -1 \\
0 & 1 & 3 & 8
\end{array}\right) \xrightarrow{R_{2}=R_{2}-R_{1}}\left(\begin{array}{rrr|r}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 1 & 3 & 8
\end{array}\right) \xrightarrow{R_{3}=R_{3}-R_{2}}\left(\begin{array}{rrr|r}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 0 & 5 & 10
\end{array}\right)
$$

The last line is $5 z=10$, so $z=2$. From here, back-substitution would give us $y=2$ and then $x=-\frac{15}{2}$, just like before.
3. Find all values of h so that the lines $x+h y=-5$ and $2 x-8 y=6$ do not intersect. For all such h, draw the lines $x+h y=-5$ and $2 x-8 y=6$ to verify that they do not intersect.

Solution.

We can use basic algebra, row operations, or geometric intuition.
Using basic algebra: Let's see what happens when the lines do intersect. In that case, there is a point (x, y) where

$$
\begin{aligned}
x+h y & =-5 \\
2 x-8 y & =6 .
\end{aligned}
$$

Subtracting twice the first equation from the second equation gives us

$$
x+\begin{array}{r}
h y=-5 \\
(-8-2 h) y=16 .
\end{array}
$$

If $-8-2 h=0$ (so $h=-4$), then the second line is $0 \cdot y=16$, which is impossible. In other words, if $h=-4$ then we cannot find a solution to the system of two equations, so the two lines do not intersect.

On the other hand, if $h \neq-4$, then we can solve for y above:

$$
(-8-2 h) y=16 \quad y=\frac{16}{-8-2 h} \quad y=\frac{8}{-4-h}
$$

We can now substitute this value of y into the first equation to find x at the point of intersection:

$$
x+h y=-5 \quad x+h \cdot \frac{8}{-4-h}=-5 \quad x=-5-\frac{8 h}{-4-h} .
$$

Therefore, the lines fail to intersect if and only if $h=-4$.

Using intuition from geometry in \mathbf{R}^{2} : Two non-identical lines in \mathbf{R}^{2} will fail to intersect, if and only if they are parallel. The second line is $y=\frac{1}{4} x-\frac{3}{4}$, so its slope is $\frac{1}{4}$.

If $h \neq 0$, then the first line is $y=-\frac{1}{h} x-\frac{5}{h}$, so the lines are parallel when $-\frac{1}{h}=\frac{1}{4}$, which means $h=-4$. In this case, the lines are $y=\frac{1}{4} x+\frac{5}{4}$ and $y=\frac{1}{4} x-\frac{3}{4}$, so they are parallel non-intersecting lines.
(If $h=0$ then the first line is vertical and the two lines intersect when $x=-5$).

Using row operations: The problem could be done using augmented matrices, which will soon become our main method for solving systems of equations.

$$
\left(\begin{array}{cc|c}
1 & h & -5 \\
2 & -8 & 6
\end{array}\right) \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left(\begin{array}{cc|c}
1 & h & -5 \\
0 & -8-2 h & 16
\end{array}\right) .
$$

If $-8-2 h=0$ (so $h=-4$), then the second equation is $0=16$, so our system has no solutions. In other words, the lines do not intersect.

If $h \neq-4$, then the second equation is $(-8-2 h) y=16$, so

$$
y=\frac{16}{-8-2 h}=\frac{8}{-4-h} \quad \text { and } \quad x=-5-h y=-5-\frac{8 h}{-4-h},
$$

and the lines intersect at (x, y). Therefore, our answer is $h=-4$.

Here are the two lines for $h=-4$, and we can see they are different parallel lines.

If we vary h away from -4 , then the blue and orange lines will have different slopes and will inevitably intersect. For example,

4. The picture below represents the temperatures at four interior nodes of a mesh.

Let T_{1}, \ldots, T_{4} be the temperatures at nodes 1 through 4 . Suppose that the temperature at each node is the average of the four nearest nodes. For example,

$$
T_{1}=\frac{10+20+T_{2}+T_{4}}{4}
$$

(1) Write a system of four linear equations whose solution would give the temperatures T_{1}, \ldots, T_{4}.
(2) Write an augmented matrix that represents that system of equations.

Solution.

(1) We already have the first equation from above.

$$
\begin{array}{lll}
T_{2}=\frac{T_{1}+20+40+T_{3}}{4}, & \text { or } & -T_{1}+4 T_{2}-T_{3}=60 \\
T_{3}=\frac{T_{4}+T_{2}+40+30}{4}, & \text { or } & -T_{2}+4 T_{3}-T_{4}=70 \\
T_{4}=\frac{10+T_{1}+T_{3}+30}{4}, & \text { or } & -T_{1}-T_{3}+4 T_{4}=40
\end{array}
$$

(2) To put this in matrix form, we arrange the above equations to keep everything in order:

$$
\begin{aligned}
4 T_{1}-T_{2}-T_{4} & =30 \\
-T_{1}+4 T_{2}-T_{3} & =60 \\
-T_{2}+4 T_{3}-T_{4} & =70 \\
-T_{1}-T_{3}+4 T_{4} & =40
\end{aligned}
$$

This gives the augmented matrix

$$
\left(\begin{array}{rrrr|r}
4 & -1 & 0 & -1 & 30 \\
-1 & 4 & -1 & 0 & 60 \\
0 & -1 & 4 & -1 & 70 \\
-1 & 0 & -1 & 4 & 40
\end{array}\right)
$$

