Math 1553 Worksheet §6.1, §6.2

Solutions

1. True/False
(1) If u is in subspace W, and u is also in W^{\perp}, then $u=0$.
(2) If y is in subspace W, the orthogonal projection of y onto W is y.
(3) If x is orthogonal to v and w, then x is also orthogonal to $v-w$.

Solution.

(1) TRUE: $u \cdot u=\|u\|^{1 / 2}=0$ only when $u=0$.
(2) TRUE: y is decomposed into the elements that form a basis for W, so they could be used to give a unique representation for y.
(3) TRUE: $v-w$ is on the same plane spanned by v and w.
2. Give examples
(1) two linearly independent vectors that are orthogonal to $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
(2) a subspace of \mathbf{R}^{3}, S, such that $\operatorname{dim}\left(S^{\perp}\right)=2$.

Solution.

(1) Two linearly independent vectors orthogonal to the first vector can be found, for example, by setting

$$
u=\left(\begin{array}{l}
1 \\
0 \\
a
\end{array}\right), v=\left(\begin{array}{l}
0 \\
1 \\
b
\end{array}\right)
$$

Taking dot products and solving for a and b gives the vectors we need. Students will likely get the answer by inspection in a way that takes advantage of the second element being zero, but you can ask how we might approach a more general problem.
(2) A few examples:

- The column space of $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- The span of any vector in \mathbb{R}^{3}.
- The null space of a 3×3 matrix that has two pivots.

3. a) Compute dot product of every pair of two vectors from $u=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 1\end{array}\right), v=$

$$
\left(\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right) \text { and } w=\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
-1
\end{array}\right)
$$

b) What are the eigenvalues and eigenvectors of the 3×3 matrix $A=v v^{T}$?
c) What is the column space and null space of the matrix $A=v v^{T}$?

Solution.

a) If we compute the dot products, we find $u \cdot v=u \cdot w=v \cdot w=0$. They are mutually orthogonal to each other. In fact, these three vectors form an orthogonal basis for \mathbf{R}^{3}.
b) Notice $A v=v v^{T} v=v\left(v^{T} v\right)=v$ gives us an eigenvalue $\lambda_{1}=1$, eigenvector v. Similarly $A u=v v^{T} u=v\left(v^{T} u\right)=0$ and $A w=v v^{T} w=v\left(v^{T} w\right)=0$ gives us eigenvalue $\lambda_{2}=\lambda_{3}=0$, eigenvectors u, w. Since A is 3×3, there is no other eigenvalues.
c) One way to do this is to compute explicitly

$$
A=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then one can compute $\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\right\}$, and $\operatorname{Nul} A=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$.
Another way to do this without computing A, is by looking at the geometry through eigenvectors. This matrix A preserves any vector in the space $V=\operatorname{Span}\{v\}$. Moreover A projects vecors in $V^{\perp}=\operatorname{Span}\{u, w\}$ to the 0 vector. So the geometry suggests, A is a projection matrix which has $\operatorname{Nul} A=V^{\perp}=$ $\operatorname{Span}\{u, w\}$, and $\operatorname{Col} A=V=\operatorname{Span}\{v\}$.

