Math 1553 Worksheet §6.1, §6.2

1. True/False
(1) If u is in subspace W, and u is also in W^{\perp}, then $u=0$.
(2) If y is in subspace W, the orthogonal projection of y onto W is y.
(3) If x is orthogonal to v and w, then x is also orthogonal to $v-w$.
2. Give examples
(1) two linearly independent vectors that are orthogonal to $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
(2) a subspace of \mathbf{R}^{3}, S, such that $\operatorname{dim}\left(S^{\perp}\right)=2$.
3. a) Compute dot product of every pair of two vectors from $u=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 1\end{array}\right), v=$

$$
\left(\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right) \text { and } w=\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
-1
\end{array}\right)
$$

b) What are the eigenvalues and eigenvectors of the 3×3 matrix $A=v v^{T}$?
c) What is the column space and null space of the matrix $A=v v^{T}$?

