Math 1553 Worksheet §§2.4, 2.5

Solutions

1. Find the set of solutions to $x_{1}-3 x_{2}+5 x_{3}=0$. Next, find the set of solutions to $x_{1}-3 x_{2}+5 x_{3}=3$. In each case, write your solution in parametric vector form. How do the solution sets compare geometrically?

Solution.

The homogeneous system $x_{1}-3 x_{2}+5 x_{3}=0$ corresponds to the augmented matrix $\left(\begin{array}{lll}1 & -3 & 5 \mid 0\end{array}\right)$, which has two free variables x_{2} and x_{3}.

$$
\begin{gathered}
x_{1}=3 x_{2}-5 x_{3} \quad x_{2}=x_{2} \text { (free) } \quad x_{3}=x_{3} \text { (free). } \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{2} \\
x_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

The solution set for $x_{1}-3 x_{2}+5 x_{3}=0$ is the plane spanned by $\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$.

The nonhomogeneous system $x_{1}-3 x_{2}+5 x_{3}=3$ corresponds to the augmented matrix $\left(\begin{array}{lll|l}1 & -3 & 5 & 3\end{array}\right)$ which has two free variables x_{2} and x_{3}.

$$
x_{1}=3+3 x_{2}-5 x_{3} \quad x_{2}=x_{2} \quad x_{3}=x_{3} .
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3+3 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
3 x_{2} \\
x_{2} \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right) .
$$

This solution set (red) is the translation by $\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ of the plane (green) spanned by $\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$.

Here is the link to a 3D picture you can play with https://www. geogebra.org/ calculator/j57ttsnb
2. If the statement is always true, circle TRUE. Otherwise, circle FALSE. Justify your answer.
a) Suppose $A=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$ and $A\left(\begin{array}{c}-3 \\ 2 \\ 7\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Then v_{1}, v_{2}, v_{3} are linearly dependent? If true, write a linear dependence relation for the vectors.
TRUE FALSE
b) If $A x=b$ is consistent, then $A x=5 b$ is consistent. TRUE FALSE
c) In the following, A is an $m \times n$ matrix.
(1) TRUE FALSE If A has linearly dependent columns, then $m<n$.
(2) TRUE FALSE If A has linearly independent columns, then $A x=b$ always have at least one solution for any b in \mathbf{R}^{m}.
(3) TRUE FALSE If b is a vector in \mathbf{R}^{m} and $A x=b$ has a exactly one solution, then $m \geq n$.

Solution.

a) TRUE. By definition of matrix multiplication, $-3 v_{1}+2 v_{2}+7 v_{3}=0$, so $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent and the equation gives a linear dependence relation.
b) TRUE. Let v be a solution to $A x=b$, so $A v=b$. Then $A(5 v)=5 A v=5 b$.
c) (1) FALSE For example $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
(Note that even though this part was false, there is a very similar-sounding statement that is true: if $m<n, A$ must have linearly dependent columns.)
(2) FALSE For example $A=\binom{1}{0}, b=\binom{0}{1}$. There is no solution for $A x=b$. (Note, however: if A has linearly independent columns, then the system $A x=0$ has no free variables, so $A x=b$ is either inconsistent or has a unique solution.)
(3) True If $A x=b$ has a unique solution, then since it is a translation of the solution set to $A x=0$, this means that $A x=0$ has only the trivial solution (no free variables). Thus, A has a pivot in every column, which is impossible if $m<n$ (i.e. impossible if A has more columns than rows), so $m \geq n$.
3. Let $A=\left(\begin{array}{ll}1 & -1 \\ 4 & -4\end{array}\right)$. Draw the span of the columns of A, and draw the set of solutions to $A x=0$. Clearly label each.

Solution.

The blue line is the span of columns of A : Span $\left\{\binom{1}{4}\right\}$. If you draw the two column vectors, you will see they both fall on the line $x_{2}=4 x_{1}$.

The red dashed line is the span of solutions of $A x=0: \operatorname{Span}\left\{\binom{1}{1}\right\}$. To see this is the case, you can row reduce the augmented matrix to RREF, which is $\left(\begin{array}{rr|r}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$. That implies the solution set is the line $x_{2}=x_{1}$.
4. Write an augmented matrix corresponding to a system of two linear equations in the three variables x_{1}, x_{2}, x_{3}, so that the solution set is the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$.

Solution.

We are asked to come up with a system whose solution set is the prescribed span, rather than being handed a system and discovering its solution set.

Since the span of any vector includes the origin, the zero vector is a solution, so the system is homogeneous.

Note that the span of $\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ is all vectors of the form $t\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ where t is real.

It consists of all $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ so that $x_{1}=-4 x_{2}, x_{2}=x_{2}, x_{3}=0$.
The equation $x_{1}=-4 x_{2}$ gives $x_{1}+4 x_{2}=0$, so one line in the matrix can be $\left(\begin{array}{lll|l}1 & 4 & 0 & 0\end{array}\right)$.
The equation $x_{3}=0$ translates to $\left(\begin{array}{lll|l}0 & 0 & 1 \mid 0\end{array}\right)$. Note that this leaves x_{2} free, as desired.

This gives us the augmented matrix

$$
\left.\begin{array}{|lll|l|}
\hline 1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

(Multiple examples are possible. For example do an arbitrary row operation on the above matrix, that will also work.)

