Math 1553 Worksheet §§2.4, 2.5

1. Find the set of solutions to $x_1 - 3x_2 + 5x_3 = 0$. Next, find the set of solutions to $x_1 - 3x_2 + 5x_3 = 3$. In each case, write your solution in parametric vector form. How do the solution sets compare geometrically?

- **2.** If the statement is always true, circle TRUE. Otherwise, circle FALSE. Justify your answer.
 - **a)** Suppose $A = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ and $A \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Then v_1, v_2, v_3 are linearly dependence relation for the vectors

dependent? If true, write a linear dependence relation for the vectors. TRUE FALSE

b) If Ax = b is consistent, then Ax = 5b is consistent. **TRUE FALSE**

c) In the following, *A* is an $m \times n$ matrix.

- (1) **TRUE** FALSE If *A* has linearly dependent columns, then m < n.
- (2) **TRUE** FALSE If *A* has linearly independent columns, then Ax = b always have at least one solution for any *b* in \mathbb{R}^m .
- (3) **TRUE** FALSE If *b* is a vector in \mathbb{R}^m and Ax = b has a exactly one solution, then $m \ge n$.

3. Let $A = \begin{pmatrix} 1 & -1 \\ 4 & -4 \end{pmatrix}$. Draw the span of the columns of *A*, and draw the set of solutions to Ax = 0. Clearly label each.

4. Write an augmented matrix corresponding to a system of two linear equations in the three variables x_1, x_2, x_3 , so that the solution set is the span of $\begin{pmatrix} -4 \\ 1 \\ 0 \end{pmatrix}$.