Math 1553 Worksheet §3.3, 3.4, and intro to 3.5

Solutions

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}

Solution.

Only (c) and (d).
a) $A-B$ is nonsense. In order for $A-B$ to be defined, A and B need to have the same number or rows and same number of columns.
b) $A B$ is undefined since the number of columns of A does not equal the number of rows of B.
c) A^{T} is 5×3 and B is 3×2, so $A^{T} B$ is a 5×2 matrix.
d) B^{T} is 2×3 and A is 3×5, so $B^{T} A$ is a 2×5 matrix.
e) A^{2} is nonsense (can't multiply 3×5 with another 3×5).
2. A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
a) Take any vector x in \mathbf{R}^{m}, then $A B x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
b) Take any vector x in \mathbf{R}^{n}, then $B A x$ must be in:
$\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)$
c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of $B A$ could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent

Solution.

Recall, $A B$ can be computed as A multiplying every column of B. That is $A B=$ $\left(\begin{array}{llll}A b_{1} & A b_{2} & \cdots & A b_{m}\end{array}\right)$ where $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{m}\end{array}\right)$.
a) $\operatorname{Col}(A)$. Denote $w:=B x$, which is a vector in $\mathbf{R}^{n} . A B x=A(B x)$ is multiplying A with w which will end up with "linear combination of columns of A ". So $A B x$ is in $\operatorname{Col}(A)$.
b) $\operatorname{Col}(B)$. Similarly, $B A x=B(A x)$ is multiplying B with $A x$, a vector in R^{m}, which will end up with "linear combination of columns of B ". So $B A x$ is in $\operatorname{Col}(B)$.
c) dependent. Since $m>n$ means A matrix can have at most n pivots. So $\operatorname{dim}(\operatorname{Col}(A)) \leq n$. Notice from first question we know $\operatorname{Col}(A B) \subset \operatorname{Col}(A)$ which has dimension at most n. That means $A B$ can have at most n pivots. But $A B$ is $m \times m$ matrix, then columns of $A B$ must be dependent.
d) independent, dependent. Both are possible. Since $m>n$ means B matrix can have at most n pivots. then $\operatorname{Col}(B A) \subset \operatorname{Col}(B)$ means $B A$ can have at most n pivots. Since $B A$ is $n \times n$ matrix, then the columns of $B A$ will be linearly independent when there are n pivots or linearly dependent when there are less than n pivots. Here are two examples.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text {, then } B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

e) dependent. From the second example above, $B A$ has dependent columns, we know "dependent" is one possible answer. Now to see if "independent" is also possible, we need to find out if $B A$ could have n pivots.

Since $A x=0$ has nontrivial solution say x^{*}, then x^{*} is also a nontrivial solution of $B A x=0$. That means $B A$ has free variables, and it can not have n pivots. So columns of $B A$ must be linearly dependent.
To summarize what we are actually study here, there are several relations between these subspaces.

$$
\begin{aligned}
& \operatorname{Col}(A B) \subset \operatorname{Col}(A) ; \\
& \operatorname{Col}(B A) \subset \operatorname{Col}(B) ; \\
& \operatorname{Nul}(A) \subset \operatorname{Nul}(B A) ; \\
& \operatorname{Nul}(B) \subset \operatorname{Nul}(A B) ;
\end{aligned}
$$

3. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the z-coordinate
$U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by 90°
$V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the x-direction by a factor of 2 .
Let A, B, C be the matrices for T, U, V, respectively.
a) Compute A, B, and C.
b) Compute the matrix for $V \circ U \circ T$.
c) Compute the matrix for $U \circ V \circ T$.
d) Describe U^{-1} and V^{-1}, and compute their matrices.

If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $\left(U^{-1} \circ U\right)\binom{x}{y}=$ $\binom{x}{y}$. Now, do the same for V.

Solution.

a) We plug in the unit coordinate vectors:

$$
\left.\begin{array}{rl}
T\left(e_{1}\right)=\binom{1}{0} \quad T\left(e_{2}\right)=\binom{0}{1} & T\left(e_{3}\right)=\binom{0}{0}
\end{array}\right] \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

b) $C B A=\left(\begin{array}{ccc}0 & 2 & 0 \\ -1 & 0 & 0\end{array}\right)$.
c) $B C A=\left(\begin{array}{ccc}0 & 1 & 0 \\ -2 & 0 & 0\end{array}\right)$.
d) Intuitively, if we wish to "undo" U, we can imagine that we have rotated a vector $\binom{x}{y}$ by 90° clockwise and we want to return the vector back to its original position of $\binom{x}{y}$. To do this, we need to rotate it 90° counterclockwise. Therefore, U^{-1} is counterclockwise rotation by 90°.

Similarly, to undo the transformation V that scales the x-direction by 2 , we need to scale the x-direction by $1 / 2$, so V^{-1} scales the x-direction by a factor of $1 / 2$.

Their matrices are, respectively,

$$
B^{-1}=\frac{1}{0 \cdot 0-(-1) \cdot 1}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and

$$
C^{-1}=\frac{1}{2 \cdot 1-0 \cdot 0}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right) .
$$

4. On your computer, go to the Interactive Transformation Challenge! Complete the Zoom, Reflect, and Scale challenges. If you complete a challenge in the optimal number of steps, the interactive demo will congratulate you. See if you can complete each of these challenges in the optimal number of steps.
