1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}
2. A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
a) Take any vector x in \mathbf{R}^{m}, then $A B x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

b) Take any vector x in \mathbf{R}^{n}, then $B A x$ must be in:

$$
\operatorname{Col}(A), \quad \operatorname{Nul}(A), \quad \operatorname{Col}(B), \quad \operatorname{Nul}(B)
$$

c) If $m>n$, then columns of $A B$ could be linearly independent, dependent
d) If $m>n$, then columns of $B A$ could be linearly independent, dependent
e) If $m>n$ and $A x=0$ has nontrivial solutions, then columns of $B A$ could be linearly independent, dependent
3. Consider the following linear transformations:
$T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2} \quad T$ projects onto the $x y$-plane, forgetting the z-coordinate
$U: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad U$ rotates clockwise by 90°
$V: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2} \quad V$ scales the x-direction by a factor of 2.
Let A, B, C be the matrices for T, U, V, respectively.
a) Compute A, B, and C.
b) Compute the matrix for $V \circ U \circ T$.
c) Compute the matrix for $U \circ V \circ T$.
d) Describe U^{-1} and V^{-1}, and compute their matrices. If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $\left(U^{-1} \circ U\right)\binom{x}{y}=$ $\binom{x}{y}$. Now, do the same for V.
4. On your computer, go to the Interactive Transformation Challenge! Complete the Zoom, Reflect, and Scale challenges. If you complete a challenge in the optimal number of steps, the interactive demo will congratulate you. See if you can complete each of these challenges in the optimal number of steps.

