Math 1553 Worksheet §3.3, 3.4, and intro to 3.5

- If *A* is a 3 × 5 matrix and *B* is a 3 × 2 matrix, which of the following are defined?
 a) *A*−*B*
 - **b)** AB
 - c) $A^T B$
 - **d)** $B^T A$
 - **e)** *A*²
- **2.** A is $m \times n$ matrix, B is $n \times m$ matrix. Select proper answers from the box. Multiple answers are possible
 - **a)** Take any vector x in \mathbf{R}^m , then ABx must be in:

Col(A), Nul(A), Col(B), Nul(B)

b) Take any vector x in \mathbb{R}^n , then *BAx must be* in: $\boxed{\operatorname{Col}(A), \operatorname{Nul}(A), \operatorname{Col}(B), \operatorname{Nul}(B)}$

c) If m > n, then columns of AB could be linearly *independent*, *dependent*

d) If m > n, then columns of *BA* could be linearly *independent*, *dependent*

e) If m > n and Ax = 0 has nontrivial solutions, then columns of BA could be linearly *independent*, *dependent*

3. Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ *T* projects onto the *xy*-plane, forgetting the *z*-coordinate $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ *U* rotates clockwise by 90° $V: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ *V* scales the *x*-direction by a factor of 2.

Let *A*, *B*, *C* be the matrices for *T*, *U*, *V*, respectively. **a)** Compute *A*, *B*, and *C*.

b) Compute the matrix for $V \circ U \circ T$.

c) Compute the matrix for $U \circ V \circ T$.

d) Describe U^{-1} and V^{-1} , and compute their matrices.

If you have not yet seen inverse matrices in lecture, describe geometrically the transformation U^{-1} that would "undo" U in the sense that $(U^{-1} \circ U) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$. Now, do the same for V.

4. On your computer, go to the Interactive Transformation Challenge! Complete the Zoom, Reflect, and Scale challenges. If you complete a challenge in the optimal number of steps, the interactive demo will congratulate you. See if you can complete each of these challenges in the optimal number of steps.