Math 1553 Worksheet §§3.5-4.1

Solutions

1. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) If A and B are $n \times n$ matrices and both are invertible, then the inverse of $A B$ is $A^{-1} B^{-1}$.
b) If A is an $n \times n$ matrix and the equation $A x=b$ has at least one solution for each b in \mathbf{R}^{n}, then the solution is unique for each b in \mathbf{R}^{n}.
c) If A is an $n \times n$ matrix and the equation $A x=b$ has at most one solution for each b in \mathbf{R}^{n}, then the solution must be unique for each b in \mathbf{R}^{n}.
d) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible and $(A+B)^{-1}=$ $A^{-1}+B^{-1}$.
e) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, then $A x=0$ has a unique solution.
f) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{3} and codomain \mathbf{R}^{2}.
g) Suppose A is an $n \times n$ matrix and every vector in \mathbf{R}^{n} can be written as a linear combination of the columns of A. Then A must be invertible.

Solution.

a) False. $(A B)^{-1}=B^{-1} A^{-1}$.
b) True. The first part says the transformation $T(x)=A x$ is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying A is invertible, and there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
c) True. The first part says the transformation $T(x)=A x$ is one-to-one (namely not multiple-to-one). Since A is $n \times n$, then it has n pivots. Then there is no free variable. Therefore, the equation $A x=b$ has exactly one solution for each b in \mathbf{R}^{n}.
d) False. $A+B$ might not be invertible in the first place. For example, if $A=I_{2}$ and $B=-I_{2}$ then $A+B=0$ which is not invertible. Even in the case when $A+B$ is invertible, it still might not be true that $(A+B)^{-1}=A^{-1}+B^{-1}$. For example, $\left(I_{2}+I_{2}\right)^{-1}=\left(2 I_{2}\right)^{-1}=\frac{1}{2} I_{2}$, whereas $\left(I_{2}\right)^{-1}+\left(I_{2}\right)^{-1}=I_{2}+I_{2}=2 I_{2}$.
e) True. According to the Invertible Matrix Theorem, the product $A B$ is invertible. This implies A is invertible, with inverse $B(A B)^{-1}$:

$$
A \cdot B(A B)^{-1}=(A B)(A B)^{-1}=I_{n}
$$

f) False. In order for $B x$ to make sense, x must be in \mathbf{R}^{2}, and so $B x$ is in \mathbf{R}^{4} and $A(B x)$ is in \mathbf{R}^{3}. Therefore, the domain of Z is \mathbf{R}^{2} and the codomain of Z is \mathbf{R}^{3}.
g) True. If the columns of A span \mathbf{R}^{n}, then A is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT:

If the columns of A span \mathbf{R}^{n}, then A has n pivots, so A has a pivot in each row and column, hence its matrix transformation $T(x)=A x$ is one-to-one and onto and thus invertible. Therefore, A is invertible.
2. a) Given A is a 3×3 invertible matrix, describe how to find A^{-1} using row reduction.
b) Given A, B are both 3×3 matrix, not necessarily invertible, Describe how to find all possible 3×3 matrix X that satisfies $A X=B$.
c) What is the relation between the previous two parts of the question.

Solution.

a) Since A is invertible, we can find inverse by row reduction $(A \mid I) \rightarrow\left(I \mid A^{-1}\right)$.
b) Let's write down notation for columns of B and X explicitly, $B:=\left[b_{1}, b_{2}, b_{3}\right]$ and $X:=\left[X_{1}, X_{2}, X_{3}\right]$. Since $A X=\left[A X_{1}, A X_{2}, A X_{3}\right]$, then solving $A X=B$ is the same as solving three linear systems

$$
A X_{i}=b_{i}, \quad i=1,2,3
$$

we can do row reduction simultaneously by

$$
(A \mid B) \rightarrow \operatorname{RREF}:(\widehat{A} \mid \widehat{B})
$$

After we obtain RREF, we can write down parametric form for X_{i} by looking at $\left(\widehat{A} \mid \widehat{B}_{i}\right)$ where \widehat{B}_{i} is i-th column of \widehat{B}.
c) Part b) is a more general question of part a). Imagine in part b), we change B into 3×3 identity matrix I, then the question become find all X, that satisfies $A X=I$. Since in part a) finding A^{-1} solves $A X=I$ with the condition that A is invertible, which is a more restrictive subproblem of part b).
3. Suppose A is an invertible 3×3 matrix with the following equations hold. Find A.

$$
A^{-1} e_{1}=\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right), \quad A^{-1} e_{2}=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right), \quad A^{-1} e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Solution.

The columns of A^{-1} are

$$
\left(A^{-1} e_{1} A^{-1} e_{2} A^{-1} e_{3}\right), \quad \text { so } \quad A^{-1}=\left(\begin{array}{ccc}
4 & 3 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

To get A, we just find $\left(A^{-1}\right)^{-1}$. Row-reducing $\left[A^{-1} \mid I\right]$ eventually gives us

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{2}{5} & -\frac{3}{5} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right), \quad \text { so } \quad A=\left(\begin{array}{ccc}
\frac{2}{5} & -\frac{3}{5} & 0 \\
-\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation clockwise by 60°. Let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation satisfying $U(1,0)=(-2,1)$ and $U(0,1)=(1,0)$.
a) Find the standard matrix for the T and U, and compute the determinant of each matrix.
b) Find the standard matrix for the composition $U \circ T$ using matrix multiplication. Compute the determinant.
c) Find the standard matrix for the composition $T \circ U$ using matrix multiplication. Compute the determinant.
d) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60° ?
e) What is the relation between the determinants of these matrices?

Solution.

To reduce confusion on notation, we are going to use T, U to denote standard matrices for linear transformation T, U.
a) The matrix for T is $\left(\begin{array}{cc}\cos \left(-60^{\circ}\right) & -\sin \left(-60^{\circ}\right) \\ \sin \left(-60^{\circ}\right) & \cos \left(-60^{\circ}\right)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$. Its determinant is $\frac{1}{2} * \frac{1}{2}-\frac{\sqrt{3}}{2} *\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}=1$. (Alternatively we could use the fact that the determinant for a rotation matrix is always 1.)
The matrix for U is $\left(U\left(e_{1}\right) \quad U\left(e_{2}\right)\right)=\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$. Its determinant is $-2 * 0-$ $1 * 1=-1$.
b) The matrix for $U \circ T$ is

$$
\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-1-\frac{\sqrt{3}}{2} & \frac{1}{2}-\sqrt{3} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) .
$$

Its determinant is -1 , as $\operatorname{det}(U T)=\operatorname{det}(U) \operatorname{det}(T)$
c) The matrix for $T \circ U$ is

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1+\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2}+\sqrt{3} & -\frac{\sqrt{3}}{2}
\end{array}\right) .
$$

Its determinant is -1 also, as $\operatorname{det}(T U)=\operatorname{det}(T) \operatorname{det}(U)$
d) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.
e) $\operatorname{det}(U T)$ and $\operatorname{det}(T U)$ are the same, since the determinant of the product of two matrices is commutative, unlike the product itself. Specifically, $\operatorname{det}(U T)=$ $\operatorname{det}(T U)=\operatorname{det}(T) \times \operatorname{det}(U)$.

