Probability Comprehensive Exam
Fall 2019

Student Number:

Instructions: Complete 5 of the 10 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8 9 10

Write only on the front side of the solution pages. A student will pass the exam if 3 problems are worked “almost perfectly” and some progress is made on a fourth problem.
1. First question.
 Show that a random variable X such that
 \[\mathbb{E}[e^{\lambda X}] \leq e^{2|\lambda|^3} \text{ for any } \lambda \in [-1, 1] \]
 satisfies $X = 0$ almost surely.

2. Assume $(X_n)_{n \geq 1}$ are iid (independent and identically distributed) random variables on some space $(\Omega, \mathcal{F}, \mathbb{P})$ with common Gumbel cumulative function given by
 \[F(x) = e^{-e^{-x}}, x \in \mathbb{R}. \]
 Show that
 \[\lim_{n \to \infty} \sup_n (-X_n - \ln(\ln(n))) = 0. \]

3. Let $(a_i)_{i \geq 1}$ be a sequence of positive integers such that $a_i \in \lbrack 1.01^{i-1}, 1.01^i \rbrack$ for all $i \geq 1$. Further, let $(S_n)_{n \geq 0}$ be a random walk on \mathbb{Z}, with $S_0 = 0$ and with $S_n = \sum_{i=1}^n X_i$, where $(X_i)_{i \geq 1}$ are mutually independent random variables, with $\mathbb{E}[X_i] = 0$ for all $i \geq 1$, and $|X_i| = a_i$, $i \geq 1$, everywhere on the probability space. Prove that the random walk (S_n) is not recurrent.

4. 1. If X is a random variable such that for two constants $a, b \in \mathbb{R}$, we have $a \leq X \leq b$, show that $\text{var}(X) \leq (b - a)^2/4$ and give an example of such a random variable where equality is attained.
 2. Assume that X is a random variable such that $\mathbb{P}(X \leq a) = 1/2$ and $\mathbb{P}(X \geq b) = 1/2$ for some real numbers a, b, $a < b$. Show that $\text{var}(X) \geq (b - a)^2/4$ and give an example of such a random variable where equality is attained.

5. Let $(S_n)_{n \geq 1}$ be a simple random walk on \mathbb{Z} (with $S_0 = 0$). Compute the probability mass function of the maximum of the random walk on the interval $[2n, 4n]$, i.e. compute the pmf of the variable $\xi := \max_{2n \leq i \leq 4n} S_i$. Represent the pmf as a (polynomial) function of binomial coefficients.

6. Assume $(X_n)_{n \geq 1}$ is a sequence of iid positive random variables. Show that
 \[\frac{X_1 + X_2^2 + \cdots + X_n^n}{n} \xrightarrow{n \to \infty} 1 \text{ if and only if } X_1 = 1 \text{ almost surely.} \]
7. (Modified Polya’s urn) Consider the following discrete time process. Before time one, we have one white and one black ball in the urn. At time \(k \) (\(k \geq 1 \)), we pick a ball from the urn uniformly at random with replacement, and add to the urn a ball of the color opposite to the color of the ball we have picked. Thus, at each step the number of balls in the urn increases by one. Let \(X_n \) be the proportion of white balls in the urn right after the \(n \)-th step. Show that \((X_n) \) converges to \(1/2 \) almost surely.

8. Let \(b_1, b_2, \ldots \) be a sequence of mutually independent Bernoulli(1/2) random variables, and let \(m \) be a fixed positive integer. Define a process \((X_i)_{i \geq 0} \) as follows. Set \(X_0 = 1 \), and define \(X_i \) recursively as

\[
X_i = \begin{cases}
X_{i-1} + \frac{1}{m}(2b_i - 1), & \text{if } X_{i-1} \geq 1/m; \\
0, & \text{otherwise}.
\end{cases}
\]

Show that \((X_n) \) converges to zero almost everywhere.

9. Let \(m \geq 2 \) be a positive integer, and let \(b_1, b_2, \ldots \) be mutually independent Bernoulli(1/2) variables. Consider the following Markov chain \((X^n) \) in \(\mathbb{R}^m \). Let \(X^0 \) be a fixed 0/1-vector in \(\mathbb{R}^m \). Next, given \(X^{i-1} = (x_1^{i-1}, x_2^{i-1}, \ldots, x_m^{i-1}) \), we set \(X^i = (x_1^i, x_2^i, \ldots, x_m^i) \) to be the 0/1-vector such that

\[
\sum_{j=1}^{m} 2^{n-j} x_j^i - \sum_{j=1}^{m} 2^{n-j} x_j^{i-1} = \begin{cases}
b_i(1 - 2^m), & \text{if } x_1^{i-1} = x_2^{i-1} = \cdots = x_m^{i-1} = 1; \\
b_i, & \text{otherwise}.
\end{cases}
\]

(Above, “\(i-1 \)” and “\(i \)” are upper indices, not powers)

1) Prove that the Markov chain \((X^n) \) converges in distribution to the uniform distribution on the set \(\{0, 1\}^m \).

2) Recall that the mixing time \(t_{mix} \) is defined as the smallest integer such that for all \(n \geq t_{mix} \) the total variation distance between the distribution of \(X^n \) and the stationary distribution is at most 1/4. Show that the mixing time \(t_{mix} \) of \((X^n) \) satisfies \(c2^{2m} \leq t_{mix} \leq C2^{2m} \) for some universal constants \(c, C > 0 \). You should not use as a blackbox “known” estimates on mixing times, please outline the proof.

10. On a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) assume we have three random variables \(X, Y, Z \) independent and uniform on \([0, 1]\). Compute \(\mathbb{E}[\min\{X, Y, Z\}] \).