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This set of notes is taken and rewritten from the book Introduction to Probability and Statistics for Engineers
and Scientists by Sheldon M. Ross. The audience is mainly non-mathematicians, so the notes are written in
a quantitative but not absolutely mathematically rigorous way. It is important to know:

1. The intuition of each concept or result. (Mathematics is largely about formalizing intuition.)

2. How to do computations. (Mathematical formulation allows us to solve seemingly hard problems.)

1 Random variables
1.1 Basic notions in probability
1.1.1 Random variable

Definition. A random variable (r.v.) X is an “experiment” whose outcome is uncertain.

Example. X is the outcome of a coin flip:

X =
{

1 “heads” w.p. 1/2
0 “tails” w.p. 1/2

where “w.p.” means “with probability”. We can also write

P{X = 1} = 1/2, P{X = 0} = 1/2.

Example. Let X be the number of “heads” we get in two coin flips:

X =


0 w.p. 1/4
1 w.p. 1/2
2 w.p. 1/4

P{X = 0} = 1/4, P{X = 1} = 1/2, P{X = 2} = 1/4

Example. X is the outcome of a race among three cars (denoted by 1, 2, 3):

X =



(1, 2, 3) w.p. p1

(1, 3, 2) w.p. p2

(2, 1, 3) w.p. p3

(2, 3, 1) w.p. p4

(3, 1, 2) w.p. p5

(3, 2, 1) w.p. p6

P{X = (1, 2, 3)} = p1, P{X = (1, 3, 2)} = p2, . . .

Here we may not know p1, . . . , p6, but p1 + p2 + · · ·+ p6 = 1.

Remark. Any discrete random variable can be specified in either of these two ways.

1.1.2 Distribution

Recall that a random variable is simply an experiment. A closely related notion is a “distribution” or “law”.

Definition. A (probability) distribution is the law that describes an experiment. More formally, it gives the
probabilities of occurrence of different possible outcomes for the experiment.

Example. Roll a die (i.e., dice) which gives 1, 2, 3, 4, 5, or 6 at random. Let X be the number we see, and
let Y = 7−X.
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• Are X and Y the same random variable? Of course not, and they are never equal.

• Do X and Y follow the same distribution (or law)? Yes, because either of them is equal to 1, 2, 3, 4, 5,
or 6 with probability 1/6 each.

Remark. Suppose X and Y follow the same distribution.

• It is possible that P{X = Y } = 1: For example, define both of them to be the number we see when
rolling a die.

• It is possible that P{X = Y } = 0 or P{X 6= Y } = 1: The above example.

• It is possible that X and Y are independent: For example, let X and Y be the numbers we see
respectively when rolling two dice.

1.1.3 Sample space

Definition. A sample space S is the set of all possible outcomes of an experiment, i.e., the set of all possible
values a random variable can take.

Example. X is the outcome of a coin flip:
S = {0, 1}

Example. X is the number of “heads” we get in two coin flips:

S = {0, 1, 2}

Example. X is the outcome of a race among three cars:

S = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

Fact. We always have X ∈ S by definition, so

P{X ∈ S} = 1.

1.1.4 Event

Definition. There are two ways to understand the concept “event”:

1. An event is a subset E of the sample space S.

2. An event is literally “what happens in the experiment”, i.e., X ∈ E.

Example. Let X be the number of “heads” we get in two coin flips. The event that we have at most one
“heads”, i.e., X ≤ 1, can be written as

1. E = {0, 1} ⊂ {0, 1, 2};

2. {X ≤ 1} = {X ∈ E}.

The probability of the event is

P(E) = P{X ∈ E} = P{X ≤ 1} = 1/4 + 1/2 = 3/4.

(The notation P(E) is used here for brevity, but later in the course we mainly use the more intuitive notation
P{X ∈ E}.)

Example. X is the outcome of a race among three cars. The event that car 1 wins the race can be written as

1. E = {(1, 2, 3), (1, 3, 2)};

2. X ∈ E.

4



We have
P(E) = P{X ∈ E} = P{X = (1, 2, 3)}+ P{X = (1, 3, 2)} = p1 + p2.

Fact. We always have
0 ≤ P(E) = P{X ∈ E} ≤ 1.

1.1.5 Review of set algebra

Given events E and F understood as subsets of S, we have:

• Union E ∪ F (either event occurs)

• Intersection E ∩ F ≡ EF (both events occur)

• Complement Ec = S \ E (one and only one of the two events occurs)

• Inclusion E ⊂ F (if E occurs, then F must occur)

Useful laws:

• DeMorgan’s law (E ∪ F )c = Ec ∩ F c, (E ∩ F )c = Ec ∪ F c

• Distributive law (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G), (E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G)

Venn diagram is useful:

Figure 1: title

1.1.6 Probability of an event

Some simple facts:

• P(∅) = 0 where ∅ denotes the empty set

• P(S) = 1

• P(E) ∈ [0, 1] for E ⊂ S

• P(Ec) = 1− P(E)

• If E ⊂ F , then P(E) ≤ P(F ).

• If E1, . . . , En are mutually exclusive, i.e., Ei ∩ Ej = ∅ for i 6= j, then P(
⋃n
i=1Ei) =

∑n
i=1 P(Ei).

• For any E1, . . . , En, we have P(
⋃n
i=1Ei) ≤

∑n
i=1 P(Ei). This is called the union bound.

• P(E ∪ F ) = P(E) + P(F )− P(E ∩ F )
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• P(E ∪ F ∪G) = P(E) + P(F ) + P(G)− P(E ∩ F )− P(E ∩G)− P(F ∩G) + P(E ∩ F ∩G)

• The odds of an event E is the ratio
P(E)
P(Ec) = P(E)

1− P(E) .

1.1.7 Examples

Example. Draw a card at random from a standard 52-card deck. The random variable can be denoted by
Z = (X,Y ), where X is the rank and Y is the suit. The sample space is

S = {(x, y) : x = 1, . . . , 13, y = C,D,H, S}.

The events “Z is a jack, queen, or king” and “Z is a red 9, 10, or jack” can be formally described by

E = {(x, y) : x = 11, 12, 13, y = C,D,H, S}, F = {(x, y) : x = 9, 10, 11, y = D,H}

respectively. Then E ∩ F denotes the event “Z is a red jack”, and E ∪ F denotes the event “Z is a jack,
queen, king, red 9, or red 10”. We have

P(E ∩ F ) = 2
52 = 1

26 , P(E ∪ F ) = 12 + 4
52 = 4

13 .

Example. For events E,F ⊂ S, suppose that P(E ∪ F ) = 0.76 and P(E ∪ F c) = 0.87. What is P(E)?

Let a = {E \ F}, b = {F \ E}, c = {E ∩ F}, and d = Ec ∩ F c. Then P(E ∪ F ) = a + c + b = 0.76,
P(E ∪ F c) = a+ c+ d = 0.87, and S = a+ b+ c+ d = 1. Therefore, we can solve these equations to obtain
P(E) = a+ c = 0.63.
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1.2 Discrete random variables
In the previous section, we specify distributions and random variables using a case-by-case method. In
general, how can we describe a distribution more formally?

Definition. The probability mass function (mass or PMF) f of a discrete random variable X taking values
in S is defined by

f(x) = P{X = x}

for x ∈ S. That is, f(x) is the probability that X is equal to x.

Definition. The cumulative distribution function (distribution function or CDF) F of a real-valued random
variable X is defined by

F (x) = P{X ≤ x}

for x ∈ R. That is, F (x) is the probability that X takes a value less than or equal to x.

We also say that f and F are the PMF and the CDF of the distribution of X, respectively.

Fact. It holds that
P{X ∈ S} =

∑
x∈S

f(x) = 1.

If X is integer-valued, then

F (x) =
∑
y≤x

f(y), f(x) = F (x)− F (x− 1).

If X takes values in {x1, x2, . . . } ⊂ R where xi−1 < xi, then

F (xi) =
i∑

j=1
f(xj), f(xi) = F (xi)− F (xi−1).

Fact. We have

• P{X ∈ E} =
∑
x∈E f(x) for any event E ⊂ S;

• P{a < X ≤ b} = F (b)− F (a) if X is real-valued.

Example. For the random variable X given by the above picture, we have

P{X ≤ 2} = 1
2 + 1

3 = 5
6 .
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1.3 Continuous random variables
If X is a continuous random variable, the CDF of X can still be defined in the same way.

Fact. The CDF F of a real-valued random variable X is nondecreasing and satisfies limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.

Example. Let X be a number chosen uniformly at random from the interval [0, 1]. Then the CDF F of X
is given by F (x) = 0 if x < 0, F (x) = x if x ∈ [0, 1], and F (x) = 1 if x > 1.

Example. Let the CDF F of X be defined by F (x) = 0 if x ≤ 0 and F (x) = 1− e−x2 if x > 0. From this
definition, we can compute, for example,

P{1 < X ≤ 2} = P{X ≤ 2} − P{X ≤ 1} = e−1 − e−4.

Fact. For a continuous random variable X, we have

• P{X = x} = 0;

• F (x) = P{X ≤ x} = P{X < x};

• P{a ≤ X ≤ b} = P{a < X < b}.

What is the analogy of PMF for a continuous random variable X?

Definition. The probability density function (density or PDF) of a continuous real-valued random variable
X is the function f such that

P{X ∈ E} =
∫
E

f(x) dx for any E ⊂ R.

We also say that f is the PDF of the distribution of X.

Fact. It holds that
P{X ∈ R} =

∫
R
f(x) dx = 1.

Moreover, we have

F (x) = P{X ≤ x} =
∫ x

−∞
f(y) dy, f(x) = F ′(x) if F is differentiable.

Fact. We have

• P{X = a} =
∫ a
a
f(x) dx = 0;

• P{a ≤ X ≤ b} =
∫ b
a
f(x) dx = F (b)− F (a).
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Intuition: f(x) dx is the probability that X is in an infinitesimal neighborhood of x. Moreover, we have:

Example. Let X be a number chosen uniformly at random from the interval [0, 1]. Then the PDF f of X is
given by f(x) = 1 if x ∈ [0, 1] and f(x) = 0 otherwise.

Example. Let the CDF F of X be defined by F (x) = 0 if x ≤ 0 and F (x) = 1− e−x2 if x > 0. Then the
PDF f of X is given by f(x) = 2xe−x2 for x > 0 and f(x) = 0 for x ≤ 0.

Example. Let X be a random variable with PDF f(x) = c x2 for x ∈ [0, 1] and f(x) = 0 otherwise. What is
c? What is P{X ≤ 0.5}?

We have
1 =

∫ 1

0
f(x) dx =

∫ 1

0
c x2 dx = c

3x
3∣∣1

0 = c

3 ,

so c = 3. Moreover,

P{X ≤ 0.5} =
∫ 0.5

0
3x2 dx = x3∣∣0.5

0 = 0.125.

1.4 Expectation
Example. Let X be the number of “heads” we see when flipping two fair coins. What is the “expected
value” of X? Intuitively, it should be

0 · 1
4 + 1 · 1

2 + 2 · 1
4 = 1.

Definition. Let X be a discrete random variable taking values in S. The expectation of X is

E[X] :=
∑
x∈S

x · P{X = x} =
∑
x∈S

x · f(x).

(The sum can be finite or infinite.)

Definition. Let X be a continuous random variable taking values in R. The expectation of X is

E[X] :=
∫ ∞
−∞

xf(x) dx.

The expectation of X is also called the expected value or the mean of X.

Example. If X is uniformly distributed in [0, 1], then f(x) = 1 if x ∈ [0, 1] and f(x) = 0 if x /∈ [0, 1]. Thus,

E[X] =
∫ 1

0
x dx = 0.5.
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Example. Let X be a random variable and E be an event. If I is the indicator random variable for the
event E, i.e.,

I = 1{X ∈ E} =
{

1 if X ∈ E,
0 if X /∈ E,

then
E[I] = 1 · P{X ∈ E}+ 0 · P{X /∈ E} = P{X ∈ E}.

1.5 Function of a random variable
Fact. If X is a random variable, then g(X) is also a random variable for any function g. Its expectation is
denoted by E[g(X)].

Example. Let X be the number of “heads” we see when flipping two fair coins. Then we have

E[X2] = 0 · 1
4 + 1 · 1

2 + 4 · 1
4 = 3

2 .

Example. Let X be uniformly distributed in [0, 1]. Then we have

E[X3] =
∫ 1

0
x3 dx = 1

4 .

Fact. Let X be a real-valued random variable taking values in S, and let g : R→ R be a function.

• If X is discrete with PMF f , then

E[g(X)] =
∑
x

g(x) · f(x).

• If X is continuous with PDF f , then

E[g(X)] =
∫ ∞
−∞

g(x) · f(x) dx.

(These formulas are supposed to be very intuitive. It takes little effort to recall them once you understand
what they are saying.)

Fact. The following properties are called the linearity of the expectation:

• If X is a random variable and a and b are constants, then E[b] = b and E[aX + b] = aE[X] + b.

• If further g and h are real-valued functions, then E[a f(X) + b g(X)] = aE[f(X)] + bE[g(X)].

For example, if X is discrete, the first formula above holds since∑
x∈S

(ax+ b) · f(x) = a
∑
x∈S

x · f(x) + b
∑
x∈S

f(x).

If X is continuous, we can simply replace the sums with integrals.

1.6 Mean, variance, and moments
Definition. For a real-valued random variable X and any integer k ≥ 1, the quantity E[Xk] is called the
k-th moment X. In particular, the first moment µ := E[X] is called the mean of X.

Definition. The quantity Var(X) = E[(X − µ)2] is called the variance of X. Its square root
√

Var(X) is
called the standard deviation of X.
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Fact. It holds that

Var(X) = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + E[µ2] = E[X2]− µ2.

The following form is easier to remember:

Var(X) = E[X2]− (E[X])2.

Fact. For constants a, b ∈ R, we have

Var(aX + b) = E
[(
aX + b− (aE[X] + b)

)2] = a2 E[(X − µ)2] = a2 Var(X).

Example. Let X be the number of “heads” we see when flipping two fair coins. What is Var(X)?

1. E[(X − µ)2] = (0− 1)2 · 1
4 + (1− 1)2 · 1

2 + (2− 1)2 · 1
4 = 1

2 ;

2. E[X2]− (E[X])2 = 3
2 − 12 = 1

2 .

Example. Let X be uniformly distributed in [0, 1]. What is Var(X)?

1. E[(X − µ)2] =
∫ 1

0 (x− 1/2)2 dx =
∫ 1/2
−1/2 x

2 dx = 1/12;

2. E[X2]− (E[X])2 =
∫ 1

0 x
2 dx− (1/2)2 = 1/3− 1/4 = 1/12.

1.7 Moment-generating function
Definition. For a random variable X, the moment-generating function (MGF) M(t) is defined by

M(t) = E[etX ].

If X is discrete,
M(t) =

∑
x

etxp(x).

If X is continuous,
M(t) =

∫ ∞
−∞

etxf(x) dx.

Fact. M(t) is called the MGF because:

• M ′(t) = d
dtE[etX ] = E[ ddtetX ] = E[XetX ], so

M ′(0) = E[X].

• M ′′(t) = d
dtE[XetX ] = E[X d

dte
tX ] = E[X2etX ], so

M ′′(0) = E[X2].

• In general, the nth derivative of M(t) evaluated at t = 0 is equal to the nth moment of X. That is,

M (n)(0) = E[Xn], n ≥ 0.

Fact. The MGF M(t) of a random variable X determines the distribution of X. Every distribution has its
unique MGF.
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2 Special distributions
2.1 Bernoulli distribution
We say that X is a Bernoulli random variable with parameter p ∈ [0, 1] and write X ∼ Ber(p) if

P{X = 1} = p, P{X = 0} = 1− p.

That is, X is whether a trial is a “success” if the probability of “success” is p.

• Sample space: {0, 1};

• Mean: E[X] = 1 · p+ 0 · (1− p) = p;

• Variance: Var(X) = E[(X − p)2] = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

2.2 Binomial distribution
We say that X is a binomial random variable with parameters n ≥ 1 and p ∈ [0, 1] and write X ∼ Bin(n, p) if
X is the number of successes in n independent trials, each with success probability p. In other words, X has
PMF

f(i) = P{X = i} =
(
n

i

)
pi(1− p)n−i, i = 0, 1, 2, . . . , n.

(In case you have not seen this notation before, we have, for example,
(9

3
)

= 9·8·7
3·2·1 .)

In R, for example, we can obtain the PMF f(i) of Bin(5, 1/6) at i = 0, 1, . . . , 5 as follows:
dbinom(0:5, 5, 1/6)

## [1] 0.4018775720 0.4018775720 0.1607510288 0.0321502058 0.0032150206
## [6] 0.0001286008

Although we have not properly defined “independence” of random variables, it is true that, if X1, . . . , Xn are
independent Ber(p) random variables, then X =

∑n
i=1Xi is a Bin(n, p) random variable. Using facts about

a sum of independent random variables (to be proved later), we can derive the following.

• Sample space: {0, 1, 2, . . . , n};

12



• Mean: E[X] =
∑n
i=1 E[Xi] = np;

• Variance: Var(X) =
∑n
i=1 Var(Xi) = np(1− p).

Example. Roll five dice. The probability that we see exactly two dice showing the number 6 is(
5
2

)
(1/6)2(5/6)3.

Example. A system consists of 5 components, each of which will function with probability p independently.
The system will be able to operate if at least a half of its components function. The probability that the
system is able to operate is equal to(

5
3

)
p3(1− p)2 +

(
5
4

)
p4(1− p) + p5.

2.3 Poisson distribution
We say that X is a Poisson random variable with parameter λ > 0 and write X ∼ Poi(λ) if

P{X = i} = e−λ
λi

i! , i = 0, 1, 2, . . . ,

where e ≈ 2.7183 is Euler’s number.

• Sample space: {0, 1, 2, . . . };

• MGF:
M(t) = E[etX ] =

∞∑
i=0

etie−λ
λi

i! = e−λ
∞∑
i=0

(λet)i
i! = e−λeλe

t

= eλ(et−1),

and thus
M ′(t) = λeteλ(et−1), M ′′(t) = (λet)2eλ(et−1) + λeteλ(et−1);

• Mean: E[X] = M ′(0) = λ;

• Variance: Var(X) = E[X2]− (E[X])2 = M ′′(0)− λ2 = λ2 + λ− λ2 = λ.

Example. Suppose that the number of accidents occurring weekly on a particular stretch of a highway
follows a Poisson distribution with mean equal to 3. What is the probability that there is at least one accident
this week?

13



Let X be the number of accidents. As X ∼ Poi(3), we have

P{X ≥ 1} = 1− P{X = 0} = 1− e−3 30

0! = 1− e−3.

Remark. For n “large” and p “small”, the distributions Bin(n, p) and Poi(np) are “close” to each other.

Using R, we can compare the PMFs of Bin(1000, 1/100) and Poi(10) at values 0, 1, . . . , 30 (with the former
denoted by blue crosses and the latter by red circles):
x <- c(0:30)
p = dbinom(x, 1000, 1/100)
q = dpois(x, 10)
plot(x, p, type="p", col="blue", pch=4)
lines(x, q, type="p", col="red")
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Example. Suppose that each item produced by a certain machine is defective with probability 0.1 indepen-
dently. What is the probability that there is at most 1 defective item in a sample of 10 items?

The number of defective items follows the Bin(10, 0.1) distribution, so(
10
0

)
0.10 · 0.910 +

(
10
1

)
0.11 · 0.99 ≈ 0.7361.

How about the Poisson approximation, i.e., Poi(1)? We have

e−1 10

0! + e−1 11

1! ≈ 0.7358.
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2.4 Uniform distribution
Depending on the type of the sample space S, the uniform distribution, denoted by Unif(S), can be defined
as follows.

• Discrete: A uniform random variable on a finite set S takes each value in S equally likely.

• Continuous: A uniform random variable on an interval S = [a, b] has PDF f(x) = 1/(b−a) for x ∈ [a, b]
and f(x) = 0 otherwise.

– Sample space: [a, b];

– Mean: E[X] = (a+ b)/2;

– Variance: Var(X) =
∫ b
a

(x− a+b
2 )2 1

b−a dx = (b−a)2

12 .

• 2D continuous: A uniform random variable on a region S ⊂ R2 has PDF f(x, y) = 1/area(S) for
(x, y) ∈ S and f(x, y) = 0 otherwise.

2.5 Normal distribution
We say thatX is a normal (or Gaussian) random variable with mean µ and variance σ2 and writeX ∼ N (µ, σ2)
if it has PDF

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 .

• The sample space of X is R.

• The mean of X is E[X] = µ, because

E[X − µ] = 1√
2πσ

∫ ∞
−∞

(x− µ)e−
(x−µ)2

2σ2 dx

= σ√
2π

∫ ∞
−∞

ye−y
2/2 dy

= − σ√
2π
e−y

2/2
∣∣∣∞
−∞

= 0.

• Let us check
∫∞
−∞

1√
2π e
−x2/2 dx = 1. To this end, let s =

∫∞
−∞ e−x

2/2 dx and then

s2 =
(∫ ∞
−∞

e−x
2/2 dx

)(∫ ∞
−∞

e−y
2/2 dy

)
=
∫ ∞
−∞

∫ ∞
−∞

e−
1
2 (x2+y2) dx dy.

By a change of variables x = r sin θ and y = r cos θ to the polar coordinates, we obtain

s2 =
∫ 2π

0

∫ ∞
0

e−
1
2 r

2
r dr dθ = −2πe− 1

2 r
2
∣∣∣∞
0

= 2π.

The claim follows.

• The variance of X is Var(X) = σ2, because

E[(X − µ)2] = 1√
2πσ

∫ ∞
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx

= σ2
√

2π

∫ ∞
−∞

y2e−y
2/2 dy

= σ2
√

2π

(
− ye−y

2/2
∣∣∣∞
−∞

+
∫ ∞
−∞

e−y
2/2 dy

)
= σ2

∫ ∞
−∞

1√
2π
e−y

2/2 dy = σ2.
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• The MGF of X is M(t) = eµt+σ
2t2/2, because

M(t) =
∫ ∞
−∞

etx√
2πσ

e−
(x−µ)2

2σ2 dx

=
∫ ∞
−∞

1√
2πσ

exp
(
− x2 − 2µx+ µ2 − 2σ2tx

2σ2

)
dx

=
∫ ∞
−∞

1√
2πσ

exp
(
−
(
x− (µ+ σ2t)

)2 − 2µσ2t− σ4t2

2σ2

)
dx

= exp
(

2µσ2t+ σ4t2

2σ2

)∫ ∞
−∞

1√
2πσ

exp
(
−
(
x− (µ+ σ2t)

)2
2σ2

)
dx

= exp
(
µt+ σ2t2/2

)
.

2.5.1 Standard normal distribution

If X ∼ N (µ, σ2) and a and b are constants, then

a+ bX ∼ N (a+ bµ, b2σ2).

Hence, if X ∼ N (µ, σ2), then
Z = X − µ

σ
∼ N (0, 1).

The random variable Z is said to have a standard normal distribution. The above process of translation and
scaling is called standardization of the random variable X, which means making the random variable to have
mean 0 and variance 1.

We use Φ(x) to denote the CDF of the standard normal distribution. There is no simple closed formula for
Φ(x), but its value can be accessed in R as follows:
pnorm(1.5, 0, 1)

## [1] 0.9331928

By symmetry, for any x ∈ R, we have

Φ(−x) = P{Z ≤ −x} = P{Z ≥ x} = 1− Φ(x).

Example. If X ∼ N (3, 16), then

P{2 < X < 7} = P
{2− 3

4 <
X − 3

4 <
7− 3

4

}
= Φ(1)− Φ(−1/4) = Φ(1)− 1 + Φ(1/4).
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2.5.2 Quantile

The inverse Φ−1 of the CDF Φ is called the quantile function of N (0, 1). For p ∈ (0, 1), we have

P{Z ≤ Φ−1(p)} = p.

We call Φ−1(p) the quantile of order p or the (100p)th percentile.

Moreover, for α ∈ (0, 1), define zα = Φ−1(1− α) so that

Φ(zα) = P{Z ≤ zα} = 1− α.

We have:
z0.05 ≈ 1.645, z0.025 ≈ 1.96, z0.01 ≈ 2.33;

P{Z ≤ 1.645} ≈ 95%, P{Z ≤ 1.96} ≈ 97.5%, P{Z ≤ 2.33} ≈ 99%.

In other words, 1.645 is the 95th percentile, 1.96 is the 97.5th percentile, and 2.33 is the 99th percentile. The
value of zα can be accessed in R as follows:
qnorm(1-0.067, 0, 1)

## [1] 1.498513
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There are many other special distributions, for example:

• Discrete: Rademacher distribution, geometric distribution, negative binomial distribution, and hyperge-
ometric distribution;

• Continuous: chi-squared distribution, t-distribution, F -distribution, Beta distribution, Gamma distribu-
tion, Cauchy distribution, Laplace distribution, and Pareto distribution.

Wikipedia has a page dedicated to every commonly used distribution, so it is a great place to look up the
PMF or PDF, CDF, mean, variance, MGF, and other properties of a distribution. In general, it is important
to choose an appropriate distribution when fitting data.

3 Joint random variables
3.1 Definitions
Definition. Let X and Y be random variables taking values in sample spaces S and T respectively. Then
the pair (X,Y ) is called a joint random variable taking values in the sample space denoted by S × T . A joint
random variable with three or more components can be defined similarly.

Example. Recall the example of randomly selecting a card from a standard 52-card deck. Let X be the
rank of the card and Y be its suit, which take values in

S = {1, 2, 3, . . . , 13}, T = {C,D,H, S}

respectively. The joint random variable (X,Y ) is the card, and S × T is the entire deck.

Definition. If discrete random variables X and Y take values in S and T respectively, the joint PMF of
(X,Y ) is given by

f(x, y) = P{X = x, Y = y}
for x ∈ S and y ∈ T .

Definition. The joint CDF of a pair of real-valued random variables (X,Y ) is given by

F (x, y) = P{X ≤ x, Y ≤ y}
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for x, y ∈ R.

Example. Let B be the number of boys and G be the number of girls in a family chosen at random from
a community. The joint random variable (B,G) can be described by the following contingency table, each
entry of which specifies the value of P{B = i, G = j}:

For example, we can read from the table that 15 percent of families have no children, 20 percent have 1, 35
percent have 2, and 30 percent have 3.

Definition. If X and Y are real-valued continuous random variables, then the joint PDF of (X,Y ) is the
function f(x, y) such that

P{(X,Y ) ∈ B} =
∫∫

(x,y)∈B
f(x, y) dx dy.

Fact. In particular, for B = (−∞, a]× (−∞, b], we have

F (a, b) = P{X ≤ a, Y ≤ b} =
∫ b

−∞

∫ a

−∞
f(x, y) dx dy,

and
f(a, b) = ∂2

∂a ∂b
F (a, b).

Intuition: f(x, y) dx dy is the probability that (X,Y ) is in an infinitesimal neighborhood of (x, y).

Example. Suppose that X and Y are continuous with joint PDF

f(x, y) = 2e−xe−2y, x > 0, y > 0,

and f(x, y) = 0 otherwise.
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Recall that P{(X,Y ) ∈ B} =
∫∫

(x,y)∈B f(x, y) dx dy, so we have

P{X > 1, Y < 1} =
∫ 1

0

∫ ∞
1

2e−xe−2y dx dy = e−1(1− e−2),

P{X < a} =
∫ ∞

0

∫ a

0
2e−xe−2y dx dy = 1− e−a,

P{X < Y } =
∫ ∞

0

∫ y

0
2e−xe−2y dx dy = 1/3.

3.2 Marginal distribution
Definition. When X is a component of a joint random variable (X,Y ), we refer to the distribution of X as
the marginal distribution of X.

The CDF F of (X,Y ) is called the joint CDF of (X,Y ), and the CDF FX of X is called the marginal CDF
of X. Similarly, we can define the marginal CDF FY .

The joint PMF f and the marginal PMFs fX and fY are defined analogously.

Fact. The marginal CDF of X in the joint random variable (X,Y ) is given by

FX(x) = P{X ≤ x} = P{X ≤ x, Y <∞} = F (x,∞).

Similarly, the marginal CDF of Y is given by FY (y) = F (∞, y).

Fact. If X and Y are discrete random variables taking values in S and T respectively, then the marginal
PMF of X is

fX(x) = P{X = x} =
∑
y∈T

P{X = x, Y = y} =
∑
y∈T

f(x, y)
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for any x ∈ S. Similarly, fY (y) =
∑
x∈S f(x, y).

Such a procedure of obtaining a marginal random variable X from a joint random variable (X,Y ) is called
marginalization.

Example. Revisit the above table.

Fact. If X and Y are continuous real-valued random variables, then the marginal PDF of X is

fX(x) =
∫ ∞
−∞

f(x, y) dy

for any x ∈ R. Similarly, fY (y) =
∫∞
−∞ f(x, y) dx.

Example. Revisit (X,Y ) with joint PDF

f(x, y) = 2e−xe−2y, x > 0, y > 0,

and f(x, y) = 0 otherwise. Then the marginal PDFs of X and Y are respectively

fX(x) =
∫ ∞

0
2e−xe−2y dy = e−x,

fY (y) =
∫ ∞

0
2e−xe−2y dx = 2e−2y.

where x, y > 0.

3.3 Independence
3.3.1 Independence of events

Definition. Two events E and F are independent if

P(E ∩ F ) = P(E) · P(F ).

Otherwise, the two events are said to be dependent.

Fact. If E and F are independent, then the following pairs of events are also independent: (1) E and F c; (2)
Ec and F ; (3) Ec and F c.

Example. Randomly select a card from a standard 52-card deck. Let E be the event that the card is an ace,
and let F be the event that the card is a heart. Intuitively, these two events should be independent. Indeed,
we have P(E) = 1/13, P(F ) = 1/4, and P(E ∩ F ) = 1/52 = P(E) · P(F ).

Definition. Three events E, F , and G are mutually independent if all the following conditions hold:

P(E ∩ F ∩G) = P(E) · P(F ) · P(G),

P(E ∩ F ) = P(E) · P(F ), P(E ∩G) = P(E) · P(G), P(F ∩G) = P(F ) · P(G).

Example. Roll two dice, and denote the two numbers we see by X and Y respectively.

• Consider the events E = {X + Y = 7}, F = {X = 3}, and G = {Y = 4}. Then

P(E) = P(F ) = P(G) = 1/6, P(E ∩ F ) = P(E ∩G) = P(F ∩G) = 1/36.

Therefore, the events E, F , and G are pairwise independent. However, we have

P(E ∩ F ∩G) = 1/36,

so the three events are not mutually independent.
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• Consider the events E = {X + Y = 8}, F = {X = 1}, and G = {Y = 0}. Although

P(E ∩ F ∩G) = 0 = P(E) · P(F ) · P(G),

we have
P(E ∩ F ) = 0 6= (5/36) · (1/6) = P(E) · P(F ),

so the events E, F , and G are not mutually independent.

3.3.2 Independence of random variables

Definition. Two random variables X and Y taking values in S and T respectively are independent if for
any events E ⊂ S and F ⊂ T ,

P{X ∈ E, Y ∈ F} = P{X ∈ E} · P{Y ∈ F}.

Remark. What does “independence” mean in words?

1. Two events are independent if the probability that both of them happen is equal to the probability that
the first happens times the probability that the second happens.

2. Two random variables are independent if any two events involving the two random variables respectively
are independent.

Example. Randomly select a card from a standard 52-card deck. Let X and Y denote the rank and the suit
of the card respectively. Then X and Y are independent.

It is usually difficult to prove independence using the above definition. The following two characterizations of
independence are helpful sometimes.

Fact. Two random variables X and Y taking values in S and T respectively are independent if and only if

f(x, y) = fX(x) · fY (y) for all x ∈ S, y ∈ T,

or
F (x, y) = FX(x) · FY (y) for all x ∈ S, y ∈ T.

(This is true regardless of whether X and Y are discrete or continuous.)

Example. Randomly select a card from a standard 52-card deck. Let X be the rank of the card, and let Y
be its suit. Then the joint PMF of (X,Y ) is

f(x, y) = 1
52 = 1

13 ·
1
4 = fX(x) · fY (y),

so X and Y are independent.

Example. Revisit (X,Y ) with joint PDF

f(x, y) = 2e−xe−2y, x > 0, y > 0,

and f(x, y) = 0 otherwise. We have shown that

fX(x) = e−x, fY (y) = 2e−2y,

where x, y > 0. Hence we immediately conclude that X and Y are independent.

Fact. Let X1, . . . , Xn be n random variables taking values in S1, . . . , Sn respectively. Denote their joint PMF
or PDF by f(x1, . . . , xn), and denote their respective PMFs or PDFs by f1(x1), . . . , fn(xn). Then X1, . . . , Xn

are independent if and only if

f(x1, . . . , xn) = f1(x1) · · · fn(xn) for all x1 ∈ S1, . . . , xn ∈ Sn.
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3.4 Conditional probability
3.4.1 Definition and examples

Example. Roll two dice. Let E be the event that the sum of the two numbers is 8, and let F be the event
that the first number is 3. What is the probability of E given that F occurs?

• F = {(3, 1), (3, 2), (3, 4), (3, 4), (3, 5), (3, 6)}

• E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

• E ∩ F = {(3, 5)}

So the probability is 1/6.

The sample space is the set of all 36 possible outcomes, so

1
6 = 1/36

6/36 = P(E ∩ F )
P(F ) .

Definition. “The probability of E given that F occurs” is called a conditional probability, and is denoted by

P(E |F ) = P(E ∩ F )
P(F ) .

If we are talking about random variables X and Y , then we write

P{X ∈ E |Y ∈ F} = P{X ∈ E, Y ∈ F}
P{Y ∈ F}

.

Fact. We have 0 ≤ P(E |F ) ≤ 1 and P(F |F ) = 1. If E1, . . . , En are disjoint, then P(E1 ∪ · · · ∪ En |F ) =
P(E1 |F ) + · · ·+ P(En |F ).

Example. Flip two fair coins.

1. If one coin is revealed and it turns out to be “heads”, what is the probability that both are “heads”?

2. If we know that at least one coin is “heads”, what is the probability that both are “heads”?

In case 1, the probability is 1/2. In case 2, the situation seems basically the same, but it is not. Let E be the
event of having two “heads”, and let F be the event of having at least one “heads”. Then

P(E |F ) = P(E ∩ F )
P(F ) = 1/4

3/4 = 1
3 .

The problem is that natural language is not precise. In terms of mathematical formulas, we can let X
represent the coin that is revealed and let Y represent the other coin. Then the two probabilities of interest
are respectively

P{X = 1, Y = 1 |X = 1}, P{X = 1, Y = 1 |X + Y ≥ 1},

which are obviously different.

3.4.2 Law of total probability

Let E and F be events. Since P(E) = P(E ∩ F ) + P(E ∩ F c), we have

P(E) = P(E |F ) · P(F ) + P(E |F c) · P(F c).

When considering random variables X and Y , this may be written as

P{X ∈ E} = P{X ∈ E |Y ∈ F} · P{Y ∈ F}+ P{X ∈ E |Y ∈ F c} · P{Y ∈ F c}.
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Example. In answering a multiple-choice question, a student knows the answer with probability p, and
guesses randomly with probability 1 − p. If there are m choices for the question, what is the conditional
probability that the students knows the answer given that the question is answered correctly?

Let E be the event that the student knows the answer, and let F be the event that the student answers the
question correctly. Then

P(F ) = P(F |E) · P(E) + P(F |Ec) · P(Ec) = p+ 1− p
m

and so
P(E |F ) = P(E ∩ F )

P(F ) = p

p+ (1− p)/m = mp

mp− p+ 1 .

The above identity is a special case of the law of total probability:

Fact. Let F1, . . . , Fn form a partition of the sample space S, that is, F1 ∪ · · · ∪Fn = S and F1 ∩ · · · ∩Fn = ∅.
Let E ⊂ S be an event. Then we have

P(E) =
n∑
i=1
P(E ∩ Fi) =

n∑
i=1
P(E |Fi) · P(Fi).

3.4.3 Bayes’ theorem

Let E and F be events. Let X and Y be random variables. Since

P(E ∩ F ) = P(E |F ) · P(F ) = P(F |E) · P(E),

we have
P(E |F ) = P(F |E) · P(E)

P(F ) .

This is known as Bayes’ theorem, rule, law, or formula. When considering random variables X and Y , this
may be written as

P{X ∈ E |Y ∈ F} = P{Y ∈ F |X ∈ E} · P{X ∈ E}
P{Y ∈ F}

.

Example. (Monty Hall problem) On a game show, you are given the choice of three doors: Behind one door
is a car; behind the others, goats. You pick a door, say No. 2, and the host, who knows what is behind each
door, opens another door, say No. 3, which has a goat. The host then says to you, “Do you want to pick door
No. 1 instead?” Is it to your advantage to switch your choice? What is the probability that the car is behind
the door you picked at the beginning?

Is the answer 1/2? No. Without all the complication, the car is placed at random behind one of the three
doors, so the probability that it is behind the door you picked has to be 1/3.

How to interpret this via conditional probability?

• Wrong: Conditional on that a goat is behind No. 3, the probability that the car is behind No. 1 is 1/2.
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• Correct: Suppose that you picked No. 2. Let X be the random location of the car, and let Y be the
random door that the host opened. Then

P{X = 2 |Y = 3} = P{Y = 3 |X = 2} · P{X = 2}
P{Y = 3} = (1/2) · (1/3)

1/2 = 1
3 .

Example. A plane is missing and it is equally likely to have gone down in one of three possible regions. Let
1− αi be the probability the plane can be found upon a search of the ith region when the plane is in fact in
that region, i = 1, 2, 3. What is the conditional probability that the plane is in the ith region, i = 1, 2, 3,
given that a search of region 1 is unsuccessful?

Let X be the region the plane is in. Let Y be the indicator that the search in region 1 is successful (i.e.,
Y = 1, successful; Y = 0, unsuccessful). Then

P{Y = 0} =
3∑
i=1

P{Y = 0 |X = i} · P{X = i} = α1

3 + 1
3 + 1

3 = α1

3 + 2
3 ,

so
P{X = 1 |Y = 0} = P{Y = 0 |X = 1} · P{X = 1}

P{Y = 0} = α1/3
α1/3 + 2/3 = α1

α1 + 2 ,

P{X = 2 |Y = 0} = P{Y = 0 |X = 2} · P{X = 2}
P{Y = 0} = 1/3

α1/3 + 2/3 = 1
α1 + 2 ,

and same for i = 3.

3.5 Conditional distribution
Recall that for discrete random variables X and Y , the conditional probability of X = x given that Y = y is

P{X = x |Y = y} = P{X = x, Y = y}
P{Y = y}

.

This motivates the following definition.

Definition. For random variables X and Y , the conditional PMF or PDF of X given that Y = y is defined
by

fX|Y (x|y) = f(x, y)
fY (y) .

The distribution of X conditional on Y = y is given by this PMF or PDF, and the conditional CDF also
follows.

Definition. For real-valued random variables X and Y , the conditional CDF of X given that Y = y is

FX|Y (x|y) = P{X ≤ x |Y = y}.

Fact. If X and Y are continuous, then

FX|Y (x|y) =
∫ x

−∞
fX|Y (x|y) dx.

Example. The joint PDF of x and y is

f(x, y) = 12
5 x(2− x− y), 0 < x < 1, 0 < y < 1,

and f(x, y) = 0 otherwise. The conditional PDF of X given that Y = y where 0 < y < 1 is

fX|Y (x|y) = f(x, y)
fY (y) =

12
5 x(2− x− y)∫ 1

0
12
5 x(2− x− y) dx

.
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The conditional probability that 0 < X < 0.5 given that Y = y where 0 < y < 1 is

P{0 < X < 0.5 |Y = y} =
∫ 0.5

0
fX|Y (x|y) dx =

∫ 0.5

0

f(x, y)
fY (y) dx =

∫ 0.5
0

12
5 x(2− x− y) dx∫ 1

0
12
5 x(2− x− y) dx

.

3.6 Expectation of function of several random variables
Recall that for a continuous real-valued random variable X with PDF f and a function g : R → R, the
expectation E[g(X)] is given by

E[g(X)] =
∫ ∞
−∞

g(x) · f(x) dx.

For a pair of random variables (X,Y ) with joint PDF f and a function g : R × R → R, the expectation
E[g(X,Y )] is analogously given by

E[g(X,Y )] =
∫ ∞
−∞

∫ ∞
−∞

g(x, y) · f(x, y) dx dy

In the discrete case, if (X,Y ) takes values in S × T , then we have

E[g(X,Y )] =
∑
x∈S

∑
y∈T

(
g(x, y) · f(x, y)

)
.

These formulas can be generalized to joint random variables with three or more components in the natural
way.

3.6.1 Covariance

Recall that if a random variable X has mean E[X] = µ, then its variance is defined by E[(X − µ)2].

Definition. Suppose random variables X and Y have means µ1 and µ2 respectively. The covariance between
X and Y is defined by

Cov(X,Y ) := E[(X − µ1)(Y − µ2)].

The correlation between X and Y is defined by

Corr(X,Y ) := Cov(X,Y )√
Var(X) ·Var(Y )

.

Remark. We have the following:

• Cov(X,Y ) = Cov(Y,X) and Corr(X,Y ) = Corr(Y,X);

• Cov(X,X) = Var(X) and Corr(X,X) = 1;

• The correlation defined above is a generalization of the correlation coefficient between two samples.

3.6.2 Useful identities for expectation, variance, and covariance

Let X, Y , X1, . . . , Xn, and Y1, . . . , Yn be real-valued random variables. The following formulas hold.

Expectation:

• E[
∑n
i=1Xi] =

∑n
i=1 E[Xi];

• If X and Y are independent, then E[XY ] = E[X] · E[Y ];

• If X and Y are independent, and g and h are real-valued functions, then g(X) and h(Y ) are independent,
so E[g(X) · h(Y )] = E[g(X)] · E[h(Y )].

• If X1, . . . , Xn are independent, then E[X1 · · ·Xn] = E[X1] · · ·E[Xn].
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Covariance:

• Cov(
∑n
i=1Xi, Y ) =

∑n
i=1 Cov(Xi, Y );

• Cov(
∑n
i=1Xi,

∑n
j=1 Yj) =

∑n
i,j=1 Cov(Xi, Yj);

• If X and Y are independent, then Cov(X,Y ) = 0.

Variance:

• If X1, . . . , Xn are independent, then

Var
( n∑
i=1

Xi

)
= Cov

( n∑
i=1

Xi,

n∑
j=1

Xj

)
=

n∑
i,j=1

Cov(Xi, Xj)

=
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj) =
n∑
i=1

Var(Xi);

• If X1, . . . , Xn are independent and have the same variance, then Var(
∑n
i=1Xi) = nVar(X1).

3.7 Sum of random variables
In this section, we discuss some results regarding a sum of independent random variables.

3.7.1 MGF

For any random variable X, let MX(t) denote its MGF. Let X, Y , and X1, . . . , Xn be independent random
variables. Then we have:

• MX+Y (t) = E[et(X+Y )] = E[etXetY ] = E[etX ] · E[etY ] = MX(t) ·MY (t);

• If S :=
∑n
i=1Xi, then MS(t) =

∏n
i=1MXi(t).

3.7.2 Binomial

If Y1, . . . , Yn are independent Ber(p) random variables for p ∈ [0, 1], then X :=
∑n
i=1 Yi is a Bin(n, p) random

variable. We have:

• E[X] =
∑n
i=1 E[Yi] = np;

• Var(X) =
∑n
i=1 Var(Yi) = np(1− p).

For independent random variables X1 ∼ Bin(n1, p) and X2 ∼ Bin(n2, p), we have X1 +X2 ∼ Bin(n1 + n2, p).

3.7.3 Poisson

For independent random variables X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2), we have X1 +X2 ∼ Poi(λ1 + λ2). This
is because the MGF of X1 +X2 is

E[et(X1+X2)] = E[etX1 ] · E[etX2 ] = e(λ1+λ2)(et−1)

which determines the distribution of X1 +X2.

The following fact is more advanced but interesting to know: Consider X items, where X ∼ Poi(λ), and r
boxes. We put each of the X items independently in the ith box with probability pi, where

∑r
i=1 pi = 1.

Let Xi be the number of items in the ith box. Then Xi ∼ Poi(λpi) for i = 1, . . . , r, and X1, . . . , Xr are
independent.
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3.7.4 Normal

For independent random variables X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2), we have X+Y ∼ N (µ1 +µ2, σ

2
1 +σ2

2).

More generally, if Xi ∼ N (µi, σ2
i ) for i = 1, . . . , n, and they are independent, then

n∑
i=1

Xi ∼ N
( n∑
i=1

µi,

n∑
i=1

σ2
i

)
.

Example. Suppose that the yearly precipitation in an area is a normal random variable with mean 12.08
inches and standard deviation 3.1 inches. Suppose that the precipitation totals in the next two years are
independent. What is the probability that the first year’s precipitation exceeds the second year’s by more
than 3 inches?

Let the two years’ precipitation totals be X and Y respectively. Then X − Y ∼ N (0, 3.12 + 3.12), so

P{X > Y + 3} = P{X − Y > 3}

= P
{ X − Y√

3.12 + 3.12
>

3√
3.12 + 3.12

}
≈ P{Z > 0.6843}
= 1− Φ(0.6843) ≈ 0.2469.

3.7.5 Chi-squared distribution

If Z1, . . . , Zn are independent standard normal random variables, then

X := Z2
1 + · · ·+ Z2

n

is said to have a chi-squared distribution with n degrees of freedom, and we write X ∼ χ2
n. Moreover,

• E[X] = E[Z2
1 ] + · · ·+ E[Z2

n] = n;

• Var(Z2
1 ) = E[(Z2

1 − 1)2] = 2 and Var(X) = 2n.

3.7.6 t-distribution

Consider independent random variables Z ∼ N (0, 1) and X ∼ χ2
n. Then the random variable

T := Z√
X/n

is said to have a t-distribution with n degrees of freedom.

Note that X/n = 1
n (Z2

1 + · · ·+ Z2
n) is “close” to E[Z2

i ] = 1 if n is large. Thus T is “close” to Z, a standard
normal, if n is large. Moreover,

• E[T ] = E[Z] · E
[ 1√

X/n

]
= 0;

• Var(T ) = n
n−2 .

The t-distribution is also known as Student’s t-distribution, because the statistician William Sealy Gosset
who studied the distribution used the pen name “Student”.

4 Inequalities and limiting theorems
4.1 Markov’s inequality
Proposition. (Markov’s inequality) If X is a random variable that takes only nonnegative values, then for
any a > 0,

P{X > a} ≤ E[X]
a

.
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Proof. Consider the case where X is continuous with PDF f . Then

E[X] =
∫ ∞

0
xf(x) dx ≥

∫ ∞
a

xf(x) dx ≥
∫ ∞
a

af(x) dx = a · P{X > a}.

Proposition. (Chebyshev’s inequality) If X is a random variable with mean µ and variance σ2, then for
any a > 0,

P{|X − µ| > a} ≤ σ2

a2 .

Proof. Apply Markov’s inequality to the random variable (X − µ)2 to obtain

P{(X − µ)2 > a2} ≤ E[(X − µ)2]
a2 .

Example. Suppose that the number of items produced in a factory during a week is a random variable with
mean 50. What can be said about the probability that this week’s production will exceed 75? We have

P{X > 75} ≤ E[X]
75 = 2

3 .

If the variance of a week’s production is known to be equal to 25, what can be said about the probability
that this week’s production will be between 40 and 60? We have

P{|X − 50| > 10} ≤ σ2

102 = 1
4 .

4.2 Weak law of large numbers
Theorem. Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) random variables.
In other words, the random variables Xi have the same distribution and are mutually independent. Let µ
and σ2 denote the mean and the variance of Xi repectively. Then for any ε > 0,

P
{∣∣∣ 1
n

(X1 + · · ·+Xn)− µ
∣∣∣ > ε

}
→ 0 as n→∞.

Proof. We have
E
[ 1
n

(X1 + · · ·+Xn)
]

= 1
n

(
E[X1] + · · ·+ E[Xn]

)
= µ

and
Var
( 1
n

(X1 + · · ·+Xn)
)

= 1
n2 Var(X1) + · · ·+ Var(Xn) = σ2

n
.

By Chebyshev’s inequality,

P
{∣∣∣ 1
n

(X1 + · · ·+Xn)− µ
∣∣∣ > ε

}
≤ σ2

nε2
→ 0.

Remark. We have 1
n (X1 + · · ·+Xn)→ µ “in probability” as n→∞. From a slightly different perspective,

if σ = 1 and ε = 10√
n
, then

P
{∣∣∣ 1
n

(X1 + · · ·+Xn)− µ
∣∣∣ ≤ 10√

n

}
> 1− 1

100 = 0.99.
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4.3 Central limit theorem
Theorem. Consider a sequence of i.i.d. random variables X1, X2, . . . each with mean µ and variance σ2. For
n sufficiently large, the distribution of

1
σ
√
n

(X1 + · · ·+Xn − nµ) =
√
n

σ
(X̄ − µ)

is approximately N (0, 1), the standard normal distribution. In other words, for Z ∼ N (0, 1) and x ∈ R,

P
{ 1
σ
√
n

(X1 + · · ·+Xn − nµ) ≤ x
}
≈ P{Z ≤ x}.

Remark. We have
E
[ 1
σ
√
n

(X1 + · · ·+Xn − nµ)
]

= 0

and
Var
( 1
σ
√
n

(X1 + · · ·+Xn − nµ)
)

= 1.

Example. An insurance company has n = 2500 automobile policy holders. If the yearly claim of a policy
holder is a random variable with mean µ = 320 and standard deviation σ = 540, approximate the probability
that the total yearly claim exceeds 830000.

If Xi is the claim of policy holder i, the total claim is X = X1 + · · ·+Xn. Since 1
540·50 (X − 2500 · 320) is

approximately N (0, 1),

P{X > 830000} = P
{ 1

540 · 50(X − 2500 · 320) > 1
540 · 50(830000− 2500 · 320)

}
≈ P{Z > 10/9} = 1− P{Z ≤ 10/9} = 1− Φ(10/9).

Example. An astronomer wants to measure the distance between stars. Suppose that successive measure-
ments are independent, and each is a random variable with mean µ being the true distance and standard
deviation σ = 2 light years. How many measurements does she need to be at least 95% certain to estimate
the distance within ±0.5 light years?

Let X̄ be the sample mean of n measurements. Since
√
n
σ (X̄ − µ) is approximately N (0, 1),

P{−0.5 < X̄ − µ < 0.5} = P
{
−
√
n

4 <

√
n

2 (X̄ − µ) <
√
n

4

}
≈ P

{
−
√
n

4 < Z <

√
n

4

}
= 1− P

{
Z < −

√
n

4

}
− P

{
Z >

√
n

4

}
= 1− 2 · P

{
Z >

√
n

4

}
= 1− 2

[
1− Φ(

√
n/4)

]
= 2 Φ(

√
n/4)− 1.

We need this quantity to be at least 0.95, that is, Φ(
√
n/4) ≥ 0.975. The approximation is

√
n/4 ≥ 1.96, so

the number of measurements n needs to be at least 62.

4.4 Normal approximation
By virtue of the central limit theorem, we can use the normal distribution to approximate other distributions.
For example, let us consider the binomial distribution Bin(n, p). Recall that it can be approximated by
Poi(np) if n is large and p is small. Instead, to obtain a normal approximation, note that X ∼ Bin(n, p) if
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X = X1 + · · ·+Xn where Xi are i.i.d. Ber(p) random variables. Thus 1
σ
√
n

(X − np) can be approximated by
N (0, 1), where σ2 = p(1− p) is the variance of Ber(p). In other words, Bin(n, p) can be approximated by
N (np, np(1− p)). Let us verify this approximation using R:
n = 100
p = 0.3
x = c(15:45)
y = dbinom(x, n, p)
z = dnorm(x, n*p, sqrt(n*p*(1-p)))
plot(x, y, type="p", col="blue", pch=4)
lines(x, z, type="p", col="red")
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Example. Suppose that 45% of the population favors a certain candidate in an upcoming election. A random
sample of size 200 is chosen.

(a) What is the expectation and standard deviation of the number of people X in the sample that favor
the candidate?

(b) What is the probability that more than half the members of the sample favor the candidate?

Let Xi be the indicator that the ith member of the sample favors the candidate. In such a scenario where
the population is very large, we can view the random variables Xi as independent Bernoulli random variables.
Hence, approximately, X =

∑200
i=1Xi ∼ Bin(200, 0.45).

(a) We have E[X] = 90 and
√

Var(X) =
√

200 · 0.45 · (1− 0.45) =
√

49.5.
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(b) Using the half-unit correction for continuity, we have

P{X > 100} ≈ P{X > 100.5}

= P
{X − 90√

49.5
>

100.5− 90√
49.5

}
≈ P{Z > 10.5/

√
49.5}

= 1− Φ(10.5/
√

49.5) ≈ 0.068.

The correction for continuity can be justified numerically using R:
1-pbinom(100,200,0.45)

## [1] 0.06807525

1-pnorm(10.5/sqrt(49.5))

## [1] 0.0677965

1-pnorm(10/sqrt(49.5))

## [1] 0.07760924

1-pnorm(11/sqrt(49.5))

## [1] 0.05897082

5 Statistical estimation
5.1 Procedure of statistical inference
The basic procedure of statistical inference is roughly as follows:

1. We are interested in some quantity in a population (scores in a standardized test).

2. The quantity follows some unknown distribution P. Possible assumption:

• Parametric: Known family of distributions with unknown parameters (normal distribution N (µ, σ2));

• Nonparametric: Unknown distribution (not our focus in this course).

3. Take a sample {X1, . . . , Xn} for i.i.d. X1, . . . , Xn ∼ P.

4. Infer some property of the population using a statistic of the sample (mean vs sample mean, variance
vs sample variance).

Focusing on parametric models, we will discuss two fundamental tasks in statistics: statistical estimation and
hypothesis testing.

Suppose that there is an underlying distribution Pθ with unknown parameter θ (e.g., Pθ = Poi(λ) where
θ = λ, and Pθ = N (µ, σ2) where θ = (µ, σ2)). Given an i.i.d. sample {X1, . . . , Xn} where Xi ∼ Pθ for
i = 1, . . . , n, we do:

• Statistical estimation: Estimate the parameter θ, i.e., find an estimator θ̂ that is close to θ. We may
also estimate a function g(θ) where g(·) is known.

• Hypothesis testing: Test the null hypothesis H0 against the alternative hypothesis H1. For example,
H0 : θ = 5 versus H1 : θ 6= 5.

In the language of statistical estimation, the parameter θ or function g(θ) to be estimated is called the
estimand. A statistic θ̂ that is used to estimate θ is called an estimator. The value that the estimator takes is
called the estimate.
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For example, in estimating the mean θ in N (θ, 1) from i.i.d. observations, θ is the estimand, θ̂ = X̄ is an
estimator, and if, say X̄ = 3, then 3 is the estimate.

5.2 Basic sample statistics
5.2.1 Sample mean

Consider i.i.d. X1, . . . , Xn ∼ P, where E[Xi] = µ and E[(Xi − µ)2] = σ2.

Definition. The expectation µ is the population mean. The average X̄ = 1
n (X1 + · · ·+Xn) is the sample

mean.

We have

• E[X̄] = 1
n (E[X1] + · · ·+ E[Xn]) = µ;

• Var(X̄) = 1
n2 Var(X1 + · · ·+Xn) = 1

n2 [Var(X1) + · · ·+ Var(Xn)] = σ2/n.

Example. If P = N (0, 1), then the PDF of X̄ looks like (for varying n):

5.2.2 Sample variance

Definition. The sample variance is S2 = 1
n−1

∑n
i=1(Xi− X̄)2. Moreover, S is the sample standard deviation.

To compute the expectation of S2, note that

(n− 1)S2 =
n∑
i=1

(Xi − X̄)2 =
n∑
i=1

X2
i − nX̄2.

Therefore,

(n− 1)E[S2] =
n∑
i=1

E[X2
i ]− nE[X̄2] =

n∑
i=1

[Var(Xi) + µ2]− n[Var(X̄) + µ2] = nσ2 − σ2 = (n− 1)σ2,

so
E[S2] = σ2.
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Since the expectation of the sample variance is precisely the variance, we say that the sample variance is
unbiased. This is the reason why we used the normalization 1

n−1 instead of 1
n in the definition of S2, because

otherwise it would be biased.

5.2.3 Sample mean and sample variance of normal random variables

Consider i.i.d. X1, . . . , Xn ∼ N (µ, σ2). We have X1 + · · ·+Xn ∼ N (nµ, nσ2) and X̄ ∼ N (µ, σ2/n). What is
the distribution of S2? How about the joint random variable (X̄, S2)?

Theorem. For i.i.d. X1, . . . , Xn ∼ N (µ, σ2), we have

• X̄ ∼ N (µ, σ2/n);

• (n− 1)S2/σ2 ∼ χ2
n−1;

• X̄ and S2 are independent.

Intuition: Recall that χ2
n is the distribution of

∑n
i=1 Z

2
i for independent standard normal random variables

Z1, . . . , Zn. Consider the equation
n∑
i=1

(Xi − µ
σ

)2
= 1
σ2

n∑
i=1

(Xi − X̄)2 +
(X̄ − µ
σ/
√
n

)2

The left-hand side is a χ2
n random variable and the rightmost term is a χ2

1 random variable. It is reasonable
to expect that

1
σ2

n∑
i=1

(Xi − X̄)2 = (n− 1)S2/σ2

is a χ2
n−1 random variable.

Corollary. For i.i.d. X1, . . . , Xn ∼ N (µ, σ2), the random variable
√
n(X̄ − µ)

S

has t-distribution with n− 1 degrees of freedom.

Proof. Recall that the t-distribution with n − 1 degrees of freedom is the distribution of Z√
X/(n−1)

for
independent random variables Z ∼ N (0, 1) and X ∼ χ2

n−1. Writing the random variable in consideration as
√
n(X̄ − µ)

S
=

(X̄ − µ)
/

(σ/
√
n)√

(n−1)S2

σ2

/
(n− 1)

finishes the proof.

Example. The time it takes a CPU to process a certain type of job is normally distributed with mean
µ = 20 seconds and standard deviation σ = 3 seconds. If a sample of n = 15 such jobs is observed, what is
the probability that the sample variance exceeds 12?

We have
P{S2 > 12} = P

{14S2

9 >
14
9 · 12

}
= 1− Fχ2

14
(56/3)

where 14S2

9 ∼ χ2
14.

1-pchisq(56/3,14)

## [1] 0.1780811
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5.2.4 F-distribution

Definition. If X ∼ χ2
n and Y ∼ χ2

m are independent, then

X/n

Y/m

is said to have the F -distribution with n and m degrees of freedom.

Example. If T has the t-distribution with n degrees of freedom, then T 2 has the F -distribution with 1 and
n degrees of freedom.

Example. Consider two independent samples: The first sample has 10 independent normal random variables
with variance 4; the second sample has 5 normal random variables having variance 2. Compute the probability
that the sample variance of the second sample exceeds that of the first.

Let the sample variances of the two samples be S2
1 and S2

2 respectively. Then 9S2
1/4 ∼ χ2

9 and 4S2
2/2 ∼ χ2

4.
Hence

P{S2
2 > S2

1} = P
{ (9S2

1/4)/9
(4S2

2/2)/4 < 1/2
}

= F (1/2)

where F is the CDF of the F -distribution with 9 and 4 degrees of freedom.

5.3 Maximum likelihood estimation
5.3.1 First examples

Example. If we observe a single X ∼ N (θ, 1), how should we estimate θ? Intuitively, we should simply
choose the estimator θ̂ = X. Is there a principle behind this choice?

• Question: Which choice of the estimator θ̂ of the parameter is the “most likely” one? In other words,
which normal distribution N (θ̂, 1) is the mostly likely to generate an observation X?

• Answer: θ̂ = X.

• Reason: The PDF of N (θ, 1) is f(x) = 1√
2π e
−(x−θ)2/2. As a result, N (x, 1) is more likely to generate x

than any other N (θ, 1) for θ 6= x, because

1√
2π
e−(x−x)2/2 = 1√

2π
>

1√
2π
e−(x−θ)2/2.

Therefore, observing X, we simply estimate the parameter by X itself.

Example. Given i.i.d. X1, . . . , Xn ∼ N (θ, 1), why should we use the estimator θ̂ = X̄ to estimate the mean
θ?

The joint distribution of (X1, . . . , Xn) is specified by the PDF

f̃(x1, . . . , xn) = f(x1) · · · f(xn)

= 1√
2π
e−(x1−θ)2/2 · · · 1√

2π
e−(xn−θ)2/2

= 1
(2π)n/2 e

−
∑n

i=1
(xi−θ)2/2.

As above, we would like to choose θ so that this quantity is maximized, that is,
∑n
i=1(xi − θ)2 is minimized.

The optimal choice is θ = 1
n

∑n
i=1 xi = x̄ since the sample mean minimizes the squared error. (This can be

seen by setting the derivative to zero.) Therefore, given X1, . . . , Xn, we choose the estimator θ̂ = X̄ for the
parameter θ.
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5.3.2 Theory

Let Pθ be a distribution parametrized by θ. Denote its PDF by f(x|θ). (Here the PDF can be understood as
a conditional PDF which is especially useful when studying Bayesian statistics. If this confuses you, simply
understand x as the variable of the function and θ as the parameter.)

Given i.i.d. X1, . . . , Xn ∼ Pθ, the joint PDF is

f̃(x1, . . . , xn|θ) = f(x1|θ) · · · f(xn|θ).

The likelihood (function) is equal to the joint PDF, but it is understood as a function of θ:

L(θ|x1, . . . , xn) = f̃(x1, . . . , xn|θ) =
n∏
i=1

f(xi|θ).

It describes “how likely” the joint distribution parametrized by θ generates (x1, . . . , xn). The log-likelihood
(function) is the logarithm of the likelihood:

logL(θ|x1, . . . , xn) =
n∑
i=1

log f(xi|θ).

The maximum likelihood estimator (MLE) is defined to be θ = θ̂ that maximizes L(θ|x1, . . . , xn) or
logL(θ|x1, . . . , xn).

Remark. The above definitions are valid for discrete random variables as well, once we use f to denote the
PMF.

5.4 More examples of maximum likelihood estimation
5.4.1 Normal distribution

Consider i.i.d. X1, . . . , Xn ∼ N (µ, σ2), where µ and σ are both unknown. What are the MLEs of µ and σ?

The joint PDF is

f̃(x1, . . . , xn|µ, σ) =
n∏
i=1

1√
2πσ

exp
(−(xi − µ)2

2σ2

)
= 1

(2π)n/2σn exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

The log-likelihood is

logL(µ, σ|x1, . . . , xn) = −n2 log(2π)− n log σ − 1
2σ2

n∑
i=1

(xi − µ)2.

To maximize this over µ, we again need to minimize
∑n
i=1(xi − µ)2, which yields the optimal choice

µ̂ = 1
n

∑n
i=1 xi. Hence the MLE of µ is

µ̂ = X̄ = 1
n

n∑
i=1

Xi.

We set µ = µ̂. Then, to maximize the log-likelihood over σ, differentiate the log-likelihood with respect to σ
and set the result to 0:

−n
σ

+ 1
σ3

n∑
i=1

(xi − µ̂)2 = 0

which yields σ̂2 = 1
n

∑n
i=1(xi − µ̂)2. Hence the MLE of σ is

σ̂ =
[ 1
n

n∑
i=1

(Xi − X̄)2
]1/2

.

Note that the MLE is not equal to the sample standard deviation S =
[ 1
n−1

∑n
i=1(Xi − X̄)2]1/2.

36



5.4.2 Binomial distribution

Suppose n independent trials are performed, each with success probability p. Let Xi be the indicator that
the ith trial succeeds. What is the MLE of p?

What is the PMF of each Xi ∼ Ber(p)? Note that f(1) = p and f(0) = 1− p, so we can write
f(xi|p) = pxi(1− p)1−xi

where xi ∈ {0, 1}. Therefore, the PMF of (X1, . . . , Xn) is

f̃(x1, . . . , xn|p) =
n∏
i=1

f(xi|p) =
n∏
i=1

pxi(1− p)1−xi = p
∑n

i=1
xi(1− p)n−

∑n

i=1
xi .

The log-likelihood is

logL(p|x1, . . . , xn) = log f̃(x1, . . . , xn|p) =
( n∑
i=1

xi

)
log p+

(
n−

n∑
i=1

xi

)
log(1− p).

To maximize the log-likelihood, differentiate the log-likelihood with respect to p and set the result to 0:

1
p

n∑
i=1

xi −
1

1− p

(
n−

n∑
i=1

xi

)
= 0

which yields p̂ = 1
n

∑n
i=1 xi. Hence the MLE of p is

p̂ = 1
n

n∑
i=1

Xi.

5.4.3 Poisson distribution

Consider i.i.d. X1, . . . , Xn ∼ Poi(λ). What is the MLE of λ?

The Poisson PDF is f(x) = e−λ λ
x

x! , so the joint PDF is

f̃(x1, . . . , xn|λ) = e−λ
λx1

x1! · · · e
−λλ

xn

xn! = e−nλ
λ
∑n

i=1
xi∏n

i=1 xi!
.

The log-likelihood is

logL(λ|x1, . . . , xn) = −nλ+
( n∑
i=1

xi

)
log λ−

n∑
i=1

log(xi!).

Differentiate the log-likelihood with respect to λ and set the result to 0:

−n+ 1
λ

n∑
i=1

xi = 0

which yields λ̂ = 1
n

∑n
i=1 xi. Hence the MLE of λ is

λ̂ = 1
n

n∑
i=1

Xi.

5.4.4 Uniform distribution

Consider i.i.d.X1, . . . , Xn ∼ Uniform([0, θ]), where θ is the unknown parameter. The PDF ofXi is f(xi) = 1/θ
for xi ∈ [0, θ], so the joint PDF is

f̃(x1, . . . , xn|θ) = 1/θn

where xi ∈ [0, θ] for each i = 1, . . . , n, and f̃ = 0 otherwise. To maximize the likelihood (which is equal to
the joint PDF) over θ, we would like θ to be as small as possible. However, xi ≤ θ for each i = 1, . . . , n, so
the smallest θ we can take is θ̂ = max(x1, . . . , xn). Hence the MLE of θ is

θ̂ = max(X1, . . . , Xn).
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5.5 Interval estimation
There are two types of statistical estimation procedures, with the second being more refined than the first:

• Point estimation: Give an estimator θ̂ of the parameter θ;

• Interval estimation: Give an interval that contains θ with high probability.

Definition. Suppose that we have i.i.d. X1, . . . , Xn ∼ Pθ for a real-valued parameter θ. Fix α ∈ (0, 1).
An interval I ⊂ R computed from the data is called a (1 − α) confidence interval for the parameter θ if
P{θ ∈ I} ≥ 1− α.

Remark. The probability makes sense because although θ may be fixed, the interval is random. Specifically,
given the data X = (X1, . . . , Xn), the confidence interval is of the form (L(X), U(X)) where L(X) and U(X)
are random variables computed from the data.

For special distributions Pθ, we can often achieve the equality P{θ ∈ I} = 1− α as in the following examples.

5.5.1 Normal mean estimation with known variance

Given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where σ is known, we can use X̄ to estimate µ. Moreover, we have that√
n
σ (X̄ − µ) ∼ N (0, 1). Recall that zα/2 := Φ−1(1− α/2) is the quantile of order 1− α/2 for N (0, 1). Thus

P
{√n
σ
|X̄ − µ| ≥ zα/2

}
= α,

P
{
− zα/2 <

√
n

σ
(X̄ − µ) < zα/2

}
= 1− α,

P
{
− zα/2

σ√
n
< X̄ − µ < zα/2

σ√
n

}
= 1− α,

P
{
− zα/2

σ√
n
< µ− X̄ < zα/2

σ√
n

}
= 1− α,

P
{
X̄ − zα/2

σ√
n
< µ < X̄ + zα/2

σ√
n

}
= 1− α.

In other words, with probability 1− α, the population mean µ lies in the interval(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
,

which we call the (1− α) two-sided confidence interval for µ.
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Similarly, (
X̄ − zα

σ√
n
,∞
)
,

(
−∞, X̄ + zα

σ√
n

)
are the (1− α) one-sided confidence intervals for µ, where the first gives a lower bound on µ and the second
gives an upper bound on µ.

Example. A signal with value µ is sent from A to B, and the value received at B is X ∼ N (µ, 4). If the
same signal is sent 9 times with independent noise, with sample mean equal to 9, what is the 95 percent
two-sided confidence interval for µ? How about the 95 percent one-sided confidence interval that provides a
lower bound on µ?

Recall that z0.05/2 ≈ 1.96 and z0.05 ≈ 1.645, so the confidence intervals are, respectively,(
9− 1.96 · 2

3 , 9 + 1.96 · 2
3

)
,

(
9− 1.645 · 2

3 ,∞
)
.

Example. Suppose that the weights of salmon grown at a hatchery are normal with standard deviation 0.3
pounds. If we want to be 95 percent certain that our estimate of the mean of a salmon’s weight is correct to
within ±0.1 pounds, how large a sample is needed?

The 95 percent two-sided confidence interval is(
X̄ − 1.96 0.3√

n
, X̄ + 1.96 0.3√

n

)
.

We need 1.96 0.3√
n
≤ 0.1 which gives

√
n ≥ 5.88, so n ≥ 35.

5.5.2 Normal mean estimation with unknown variance

Given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where both µ and σ are unknown, let S2 = 1
n−1

∑n
i=1(Xi − X̄)2 be the

sample variance. Recall that
T =

√
n

S
(X̄ − µ)

follows the t-distribution with n− 1 degrees of freedom. Define tα,n−1 to be the quantile of order 1− α for
the t distribution with n− 1 degrees of freedom, i.e.,

tα,n−1 = F−1
T (1− α), P{T ≤ tα,n−1} = 1− α.

Similar to the previous case, we can derive that the (1− α) two-sided confidence interval for µ is(
X̄ − tα/2,n−1

S√
n
, X̄ + tα/2,n−1

S√
n

)
.

Moreover, the (1− α) one-sided confidence intervals are(
X̄ − tα,n−1

S√
n
,∞
)
,

(
−∞, X̄ + tα,n−1

S√
n

)
.

Example. A signal with value µ is sent from A to B, and the value received at B is X ∼ N (µ, σ2). If the
same signal is sent 9 times with independent noise, with sample mean 9 and sample variance 9.5, what is the
95 two-sided percent confidence interval for µ?

It is (
9− t0.025,8

√
9.5
3 , 9 + t0.025,8

√
9.5
3

)
where t0.025,8 ≈ 2.306.
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qt(0.975,8)

## [1] 2.306004

5.5.3 Normal variance estimation

Given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where µ and σ2 are unknown, we now consider estimating σ2. Recall that

W = n− 1
σ2 S2 ∼ χ2

n−1.

Define xα,n−1 to be the quantile of order 1− α for the χ2
n−1, i.e.,

xα,n−1 = F−1
W (1− α), P{W ≤ xα,n−1} = 1− α.

Then we have

P
{
x1−α/2,n−1 ≤

n− 1
σ2 S2 ≤ xα/2,n−1

}
= 1− α,

P
{x1−α/2,n−1

(n− 1)S2 ≤
1
σ2 ≤

xα/2,n−1

(n− 1)S2

}
= 1− α,

P
{ (n− 1)S2

xα/2,n−1
≤ σ2 ≤ (n− 1)S2

x1−α/2,n−1

}
= 1− α.

Hence the (1− α) two-sided confidence interval for σ2 is( (n− 1)S2

xα/2,n−1
,

(n− 1)S2

x1−α/2,n−1

)
.

Similarly, the one-sided confidence intervals for σ2 are( (n− 1)S2

xα,n−1
,∞
)
,

(
0, (n− 1)S2

x1−α,n−1

)
.

Example. A procedure is expected to produce plates with very small deviation in their thicknesses.
Suppose that 10 plates were chosen and measured. If the thicknesses of these plates have sample variance
S2 = 1.366× 10−5, what is the 90 percent two-sided confidence interval for the standard deviation of the
thickness of a plate?

We can compute x0.05,9 ≈ 16.919 and x0.95,9 ≈ 3.325, so the confidence interval for the variance is(9× 1.366× 10−5

16.919 ,
9× 1.366× 10−5

3.325

)
.

The confidence interval for the standard deviation is(√
9× 1.366× 10−5

16.919 ,

√
9× 1.366× 10−5

3.325

)
.

qchisq(1-0.05,9)

## [1] 16.91898

qchisq(1-0.95,9)

## [1] 3.325113
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5.6 More examples of interval estimation
5.6.1 Estimation of normal difference with known variances

Given i.i.d. X1, . . . , Xn ∼ N (µ1, σ
2
1) and i.i.d. Y1, . . . , Ym ∼ N (µ2, σ

2
2) where σ1 and σ2 are known, consider

estimation of µ1 − µ2. We have

X̄ − Ȳ ∼ N (µ1 − µ2, σ
2
1/n+ σ2

2/m),
X̄ − Ȳ − (µ1 − µ2)√

σ2
1/n+ σ2

2/m
∼ N (0, 1),

so

P
{
− zα/2 <

X̄ − Ȳ − (µ1 − µ2)√
σ2

1/n+ σ2
2/m

< zα/2

}
= 1− α,

P
{
X̄ − Ȳ − zα/2

√
σ2

1
n

+ σ2
2
m

< µ1 − µ2 < X̄ − Ȳ + zα/2

√
σ2

1
n

+ σ2
2
m

}
= 1− α.

Therefore, the (1− α) two-sided confidence interval for µ1 − µ2 is

(
X̄ − Ȳ − zα/2

√
σ2

1
n

+ σ2
2
m
, X̄ − Ȳ + zα/2

√
σ2

1
n

+ σ2
2
m

)
.

The (1− α) one-sided confidence intervals for µ1 − µ2 are

(
−∞, X̄ − Ȳ + zα

√
σ2

1
n

+ σ2
2
m

)
,

(
X̄ − Ȳ − zα

√
σ2

1
n

+ σ2
2
m
,∞
)
.

Examples. Two types of electrical cable insulation have recently been tested to determine the voltage level
at which failures tend to occur. Given two samples of sizes 14 and 12 for the two types respectively, the
failure voltages have sample means 50 and 65 respectively. Suppose the two samples are normally distributed
with variances 40 and 100 respectively.

• Determine the 95 percent confidence interval for µ1 − µ2.

• Determine the value that we can assert, with 95 percent confidence, exceeds µ1 − µ2.

Plug X̄ = 50, Ȳ = 65, σ2
1 = 40, σ2

2 = 100, n = 14, m = 12, and z0.025 into the above formula for the two-sided
confidence interval.

For the second question, use the one-sided confidence interval with z0.05 that provides the upper bound.

5.6.2 Estimation of normal difference with unknown but equal variances

Given i.i.d.X1, . . . , Xn ∼ N (µ1, σ
2) and i.i.d. Y1, . . . , Ym ∼ N (µ2, σ

2) where σ is unknown, consider estimation
of µ1 − µ2. If σ were known, we would start from

X̄ − Ȳ − (µ1 − µ2)
σ
√

1/n+ 1/m
∼ N (0, 1)

to derive confidence intervals as above. However, σ is unknown, so we instead consider sample variances

S2
1 = 1

n− 1

n∑
i=1

(Xi − X̄)2, S2
2 = 1

m− 1

m∑
i=1

(Yi − Ȳ )2.

Since
n− 1
σ2 S2

1 ∼ χ2
n−1,

m− 1
σ2 S2

2 ∼ χ2
m−1
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we have
n− 1
σ2 S2

1 + m− 1
σ2 S2

2 ∼ χ2
n+m−2.

It follows that
X̄ − Ȳ − (µ1 − µ2)
σ
√

1/n+ 1/m

/√(n− 1
σ2 S2

1 + m− 1
σ2 S2

2

)/
(n+m− 2)

has the t-distribution with n+m− 2 degrees of freedom. This quantity can be written as

X̄ − Ȳ − (µ1 − µ2)
Sp
√

1/n+ 1/m

where
S2
p := (n− 1)S2

1 + (m− 1)S2
2

n+m− 2 .

As a result,

P
{
− tα/2,n+m−2 <

X̄ − Ȳ − (µ1 − µ2)
Sp
√

1/n+ 1/m
< tα/2,n+m−2

}
= 1− α.

Then the (1− α) two-sided confidence interval for µ1 − µ2 is

(
X̄ − Ȳ − tα/2,n+m−2Sp

√
1
n

+ 1
m
, X̄ − Ȳ + tα/2,n+m−2Sp

√
1
n

+ 1
m

)
.

The (1− α) one-sided confidence intervals for µ1 − µ2 are

(
−∞, X̄ − Ȳ + tα,n+m−2Sp

√
1
n

+ 1
m

)
,

(
X̄ − Ȳ − tα,n+m−2Sp

√
1
n

+ 1
m
,∞
)
.

Examples. There are two different techniques employed to produce batteries. A sample of 12 batteries was
produced by the first method, and a sample of 14 batteries was produced by the second method. Suppose
that the sample means are 140 and 135 respectively, and the sample variances are 100 and 75 respectively.
Determine the 90 percent two-sided confidence interval for the difference between the means, assuming a
common variance.

Apply the above formula with X̄ = 140, Ȳ = 135, S2
1 = 100, S2

2 = 75, n = 12, m = 14, and t0.05,24.

5.6.3 Binomial estimation

Given X ∼ Bin(n, p), we are interested in estimating p. Recall that

X − np√
np(1− p)

can be approximated by N (0, 1). Then we have

P
{
− zα/2 <

X − np√
np(1− p)

< zα/2

}
≈ 1− α,

so we can define the (1− α) confidence region for p as{
p : −zα/2 <

X − np√
np(1− p)

< zα/2

}
.
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However, this is not necessarily an interval. To obtain a confidence interval, let p̂ := X/n (which is the MLE
of p) and use

√
np̂(1− p̂) to approximate

√
np(1− p). We obtain

P
{
− zα/2 <

X − np√
np̂(1− p̂)

< zα/2

}
≈ 1− α,

P
{
− zα/2

√
np̂(1− p̂) < X − np < zα/2

√
np̂(1− p̂)

}
≈ 1− α,

P
{
− zα/2

√
np̂(1− p̂) < np−X < zα/2

√
np̂(1− p̂)

}
≈ 1− α,

P
{
X − zα/2

√
np̂(1− p̂) < np < X + zα/2

√
np̂(1− p̂)

}
≈ 1− α,

P
{
p̂− zα/2

√
p̂(1− p̂)/n < p < p̂+ zα/2

√
p̂(1− p̂)/n

}
≈ 1− α.

Therefore, the approximate (1− α) two-sided confidence interval for p is(
p̂− zα/2

√
p̂(1− p̂)/n, p̂+ zα/2

√
p̂(1− p̂)/n

)
.

The one-sided versions can be derived similarly.

Examples. Out of a sample of 100 transistors, 80 meet a certain standard. Approximate the 95 percent
confidence interval for p.

We have (
0.8− 1.96

√
0.8 · 0.2/100, 0.8 + 1.96

√
0.8 · 0.2/100

)
.

Examples. A recent poll indicated that 52% of the population was in favor of the job of the government
with a margin of error of ±4%. Suppose the poll used 95% confidence interval. How many people were
questioned?

The 95% confidence interval is approximately(
p̂− 1.96

√
p̂(1− p̂)/n, p̂+ 1.96

√
p̂(1− p̂)/n

)
.

Plugging in p̂ = 52%, we obtain(
0.52− 1.96

√
0.52 · 0.48/n, 0.52 + 1.96

√
0.52 · 0.48/n

)
.

Moreover, we have
1.96

√
0.52 · 0.48/n ≈ 0.04,

so
n ≈ 599.

5.7 Bayesian estimation
In this section, to ease the notation, we use f(·) to denote the PDF or PMF of the random variable(s) in the
brackets, and we do not distinguish random variables from the specific values they take.

5.7.1 The Bayesian perspective

According to Wikipedia, Bayesian statistics is a theory in the field of statistics based on the Bayesian
interpretation of probability where probability expresses a degree of belief in an event. The degree of belief
may be based on prior knowledge about the event, such as the results of previous experiments, or on personal
beliefs about the event.

Given i.i.d. X1, . . . , Xn ∼ Pθ, we aim to estimate the real-valued parameter θ. Suppose that we have a prior
belief that θ is itself a random variable following the distribution with PDF f(θ). This distribution of the
parameter θ is called the prior (distribution).

43



Upon observing X1, . . . , Xn, how should we update our belief? Let f(X1, . . . , Xn | θ) be the joint PDF of
(X1, . . . , Xn) when the true parameter is θ. Let f(θ | X1, . . . , Xn) be the PDF of the parameter θ conditional
on that we have observed X1, . . . , Xn. By the definition of conditional distribution,

f(θ | X1, . . . , Xn) = f(θ,X1, . . . , Xn)
f(X1, . . . , Xn) = f(θ,X1, . . . , Xn)∫

f(θ,X1, . . . , Xn) dθ = f(θ) · f(X1, . . . , Xn | θ)∫
f(θ) · f(X1, . . . , Xn | θ) dθ

.

This updated distribution of the parameter θ specified by the PDF f(θ | X1, . . . , Xn) is called the posterior
(distribution).

Then we may estimate the true parameter by the mean of the posterior or simply the posterior mean:

E[θ | X1, . . . , Xn] =
∫
θ · f(θ | X1, . . . , Xn) dθ.

Another possible estimator of θ is the maximum a posteriori (MAP) estimator, defined as the mode θ̂ of
the posterior f(θ | X1, . . . , Xn), i.e., the parameter θ̂ that maximizes f(θ | X1, . . . , Xn). Note that this is
different from the MLE, which is defined as the maximizer of f(X1, . . . , Xn | θ). We will not discuss the
MAP estimator in detail.

Note that the Bayesian perspective is different from the frequentist perspective which we used to derive the
MLE. A rough understanding is as follows:

• Frequentist: The parameter θ is fixed, while the data X1, . . . , Xn and the estimator θ̂ are random
variables (e.g., the MLE);

• Bayesian: The parameter θ is a random variable, while the data X1, . . . , Xn and the estimator θ̂ are
fixed (e.g., the posterior mean or the MAP).

Remark. Is the MLE related to the posterior? Yes. Consider the case where θ ∈ [a, b] and the prior is the
uniform distribution on [a, b]. Then the posterior has PDF

f(θ | X1, . . . , Xn) = f(X1, . . . , Xn | θ)∫
f(X1, . . . , Xn | θ) dθ

.

Since the denominator does not depend on θ, maximizing f(X1, . . . , Xn | θ) is the same as maximizing
f(θ | X1, . . . , Xn). In short, the MLE is equal to the MAP estimator when the prior is uniform.

5.7.2 Posterior mean

We would like to show that the posterior mean is optimal in some sense. First recall that for any random
variable θ and a constant c, we have

E[(θ − c)2] = E[(θ − E[θ] + E[θ]− c)2]
= E[(θ − E[θ])2 + 2(θ − E[θ])(E[θ]− c) + (E[θ]− c)2]
= E[(θ − E[θ])2] + (E[θ]− c)2 (bias-variance trade-off)
≥ E[(θ − E[θ])2].

That is, to estimate the random variable θ by a fixed number, its mean E[θ] does the best job in terms of the
expected squared error or the mean squared error (MSE). Therefore, under the posterior distribution with
PDF f(θ | X1, . . . , Xn), the posterior mean is optimal in the MSE.

Example. (Binomial estimation) Given i.i.d. X1, . . . , Xn ∼ Ber(θ), what is the posterior mean of θ if the
prior is the uniform distribution on [0, 1]? (Recall that the MLE is simply X̄.)

The joint PMF conditional on θ is

f(X1, . . . , Xn | θ) =
n∏
i=1

θXi(1− θ)1−Xi = θ
∑n

i=1
Xi(1− θ)n−

∑n

i=1
Xi .
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Therefore, the posterior PDF is

f(θ | X1, . . . , Xn) = f(θ) · f(X1, . . . , Xn | θ)∫
f(θ) · f(X1, . . . , Xn | θ) dθ

= f(X1, . . . , Xn | θ)∫ 1
0 f(X1, . . . , Xn | θ) dθ

= θ
∑n

i=1
Xi(1− θ)n−

∑n

i=1
Xi∫ 1

0 θ
∑n

i=1
Xi(1− θ)n−

∑n

i=1
Xi dθ

.

Since ∫ 1

0
θm(1− θ)l dθ = m! · l!

(m+ l + 1)! ,

we obtain

f(θ | X1, . . . , Xn) = (n+ 1)! · θ
∑n

i=1
Xi(1− θ)n−

∑n

i=1
Xi

(
∑n
i=1Xi)! · (n−

∑n
i=1Xi)!

= (n+ 1)! · θx(1− θ)n−x
x! · (n− x)! ,

where x :=
∑n
i=1Xi. Thus the posterior mean is

E[θ | X1, . . . , Xn] =
∫ 1

0

(n+ 1)! · θx+1(1− θ)n−x
x! · (n− x)! dθ = (n+ 1)! · (x+ 1)! · (n− x)!

x! · (n− x)! · (n+ 2)! = x+ 1
n+ 2 .

We conclude that the posterior mean is

θ̂ := 1
n+ 2

(
1 +

n∑
i=1

Xi

)
.

(Again, compare this to the MLE X̄ = 1
n

∑n
i=1Xi.)

Example. (Normal estimation) Consider i.i.d. X1, . . . , Xn ∼ N (θ, τ2) where the τ is known. Suppose that
we have the prior θ ∼ N (µ, σ2) where µ and σ are known. What is the posterior mean of θ?

The joint PDF conditional on θ is

f(X1, . . . , Xn | θ) =
n∏
i=1

1√
2πτ

exp
(−(Xi − θ)2

2τ2

)
= 1

(2π)n/2τn exp
(
−

n∑
i=1

(Xi − θ)2

2τ2

)
,

and the prior is

f(θ) = 1√
2πσ

exp
(−(θ − µ)2

2σ2

)
.

Hence we can compute the posterior PDF using the formula

f(θ | X1, . . . , Xn) = f(θ) · f(X1, . . . , Xn | θ)∫
f(θ) · f(X1, . . . , Xn | θ) dθ

.

The posterior is a normal distribution, with mean

E[θ | X1, . . . , Xn] =
∫
θ · f(θ | X1, . . . , Xn) dθ = σ2

nσ2 + τ2

n∑
i=1

Xi + τ2

nσ2 + τ2µ

and variance
Var(θ | X1, . . . , Xn) = σ2τ2

nσ2 + τ2 .

Hence the posterior mean is

θ̂ := nσ2

nσ2 + τ2 X̄ + τ2

nσ2 + τ2µ.
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Example. (Confidence interval) Suppose that a signal of value s is sent from A and the value received at
B has distribution N (s, 60). Suppose that the signal sent from A is a priori known to have distribution
N (50, 100). If the value received at B is equal to 40, determine the 90 percent confidence interval that will
contain the actual value sent.

We have n = 1, µ = 50, σ2 = 100, X̄ = 40, and τ2 = 60. Thus the posterior mean is

E[θ | X1, . . . Xn] = 100
100 + 60 · 40 + 60

100 + 60 · 50 = 43.75,

and the posterior variance is
Var(θ | X1, . . . Xn) = 100 · 60

100 + 60 = 37.5.

As a result,
P
{
− 1.645 < s− 43.75√

37.5
< 1.645 | X1, . . . , Xn

}
≈ 0.9

or
P
{

43.75− 1.645
√

37.5 < s < 43.75 + 1.645
√

37.5 | X1, . . . , Xn

}
≈ 0.9.

Hence the 90 percent confidence interval is(
43.75− 1.645

√
37.5, 43.75 + 1.645

√
37.5

)
.

5.7.3 Sequential estimation

An advantage of the Bayesian framework is that it allows us to do sequential estimation easily. Suppose that
we are given i.i.d. random variables X1, X2, X3, . . . from a distribution Pθ sequentially. At time n, we would
like to compute the posterior of θ based on X1, . . . , Xn. Recall that the posterior distribution at time n is

f(θ | X1, . . . , Xn) = f(θ) · f(X1, . . . , Xn | θ)∫
f(θ) · f(X1, . . . , Xn | θ) dθ

= f(θ) ·
∏n
i=1 f(Xi | θ)∫

f(θ) ·
∏n
i=1 f(Xi | θ) dθ

.

At time n+ 1, the random variable Xn+1 is given. We can now view f(θ | X1, . . . , Xn) as the new prior and
use the observation Xn+1 to compute the new posterior at time n+ 1 as follows:

f(θ | X1, . . . , Xn, Xn+1) = f(θ | X1, . . . , Xn) · f(Xn+1 | θ)∫
f(θ | X1, . . . , Xn) · f(Xn+1 | θ) dθ

.

Plugging the formula for f(θ | X1, . . . , Xn) into the right-hand side, we obtain

f(θ | X1, . . . , Xn, Xn+1) = f(θ) ·
∏n
i=1 f(Xi | θ) · f(Xn+1 | θ)∫

f(θ) ·
∏n
i=1 f(Xi | θ) · f(Xn+1 | θ) dθ

= f(θ) ·
∏n+1
i=1 f(Xi | θ)∫

f(θ) ·
∏n+1
i=1 f(Xi | θ) dθ

.

Note that this is precisely the formula we would get for f(θ | X1, . . . , Xn+1) if we started from the prior
f(θ) and computed the posterior using all the observations X1, . . . , Xn+1 in a batch. In other words, we can
compute the posterior sequentially given a stream of data, and this is much cheaper than computing the
posterior using all the data at every time.

Example. (Normal estimation) Recall that given i.i.d. X1, . . . , Xn ∼ N (θ, τ2) and prior θ ∼ N (µ, σ2), the
posterior is

N (µn, σn), where µn := σ2

nσ2 + τ2

n∑
i=1

Xi + τ2

nσ2 + τ2µ and σ2
n := σ2τ2

nσ2 + τ2 .

Viewing this as the new prior, we compute a new posterior based on one more independent observation
Xn+1 ∼ N (θ, τ2) as follows:

N
( σ2

n

σ2
n + τ2Xn+1 + τ2

σ2
n + τ2µn,

σ2
nτ

2

σ2
n + τ2

)
,
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where

σ2
n

σ2
n + τ2Xn+1 + τ2

σ2
n + τ2µn

= σ2τ2

σ2τ2 + τ2(nσ2 + τ2)Xn+1 + τ2(nσ2 + τ2)
σ2τ2 + τ2(nσ2 + τ2)

( σ2

nσ2 + τ2

n∑
i=1

Xi + τ2

nσ2 + τ2µ
)

= σ2

(n+ 1)σ2 + τ2

n+1∑
i=1

Xi + τ2

(n+ 1)σ2 + τ2µ = µn+1

and
σ2
nτ

2

σ2
n + τ2 = σ2τ2τ2

σ2τ2 + τ2(nσ2 + τ2) = σ2τ2

(n+ 1)σ2 + τ2 .

This distribution is indeed the posterior updated from the prior N (µ, σ2) using the i.i.d. observations
X1, . . . , Xn+1 ∼ N (θ, τ2) in a batch.

6 Hypothesis testing
6.1 Basic setup of hypothesis testing
Consider i.i.d. X1, . . . , Xn ∼ Pθ for an unknown parameter θ ∈ R. For example, we may have θ = µ as
the parameter and Pµ = N (µ, σ2) where σ is known. Given the observations, our goal is to test the null
hypothesis H0 against the alternative hypothesis H1. For example, given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) and a
fixed constant µ0, we test between

• H0 : µ = µ0;

• H1 : µ 6= µ0.

A hypothesis consisting of a single parameter that specifies the distribution is called a simple hypothesis (e.g.,
H0 above). A hypothesis consisting of multiple parameters is called a composite hypothesis (e.g., H1 above).

More precisely, testing is the task of deciding whether to accept or reject H0, and a test is a decision rule that
makes such a decision. A test is specified by a critical region or region of rejection C ⊂ Rn: Namely, the test

• accepts H0 if (X1, . . . , Xn) /∈ C;

• rejects H0 if (X1, . . . , Xn) ∈ C.

In the above example of normal observations, the critical region can be chosen to be

C =
{

(X1, . . . , Xn) :
∣∣∣√n
σ

(X̄ − µ0)
∣∣∣ > zα/2

}
.

In other words, the associated test

• accepts H0 if
∣∣√n
σ (X̄ − µ0)

∣∣ ≤ zα/2;
• rejects H0 if

∣∣√n
σ (X̄ − µ0)

∣∣ > zα/2.

Here
√
n
σ (X̄ − µ0) is called the test statistic. Recall that a statistic is simply a quantity computed from the

data, and a test statistic is a statistic that is used to define the test.

Two types of errors can arise in a test. Type I error : H0 is true, but the test rejects it. Type II error : H0 is
false, but the test accepts it.
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6.1.1 Significance level

We typically fix a quantity α ∈ (0, 1) called the level of significance or significance level and require the test
to be such that the probability of having a Type I error is no larger than α. In other words, if H0 is true, then
the probability that the test rejects H0 is at most α. Usually α is a small constant such as 0.1, 0.05, or 0.005.

Continuing with the above example (i.i.d. X1, . . . , Xn ∼ N (µ, σ2) and H0 : µ = µ0), what significance level
does the test (reject H0 if

∣∣√n
σ (X̄ − µ0)

∣∣ > zα/2) achieve? That is, if H0 is true, what is the probability that∣∣√n
σ (X̄ − µ0)

∣∣ > zα/2 so that we reject H0?

If H0 : µ = µ0 is true, then X1, . . . , Xn ∼ N (µ0, σ
2). As a result,

√
n
σ (X̄ − µ0) ∼ N (0, 1) and

Pµ0

{∣∣∣√n
σ

(X̄ − µ0)
∣∣∣ > zα/2

}
= α,

where the notation Pµ0 is used to emphasize that the probability is under the hypothesis µ = µ0. Therefore,
the test satisfies a significance level of α. We call this test the two-sided Z-test at significance level α. It is
often employed for testing hypotheses about a normal mean when the variance is known.

Example. Suppose that a signal of value µ is sent from A, contaminated by random noise with distribution
N (0, 4), and then received at B. The signal is sent 5 times with independent noise and the average value
received at B is X̄ = 9.5. If people at location B believe that µ = 8 and would like to do a test at significance
level 0.05, should they accept or reject the hypothesis?

Let the test statistic be the standardized random variable
X̄ − µ0

σ/
√
n

= X̄ − 8
2/
√

5
.

The test achieving the significance level 0.05 will

• accept H0 if
∣∣ X̄−8

2/
√

5

∣∣ ≤ z0.05/2;

• reject H0 if
∣∣ X̄−8

2/
√

5

∣∣ > z0.05/2.

Since X̄ = 9.5 which gives X̄−8
2/
√

5 ≈ 1.677 < 1.96 ≈ z0.05/2, the hypothesis is accepted.

6.1.2 p-value

If the significance level is not specified in advance, what should we do for hypothesis testing? How do we
quantify how likely a hypothesis is true? In the above example, given the value X̄ = 9.5, consider the quantity

P
{
|Z| >

∣∣∣9.5− 8
2/
√

5

∣∣∣} = 2
[
1− Φ

(∣∣∣9.5− 8
2/
√

5

∣∣∣)]
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which is the probability that Z ∼ N (0, 1) exceeds the standardized observation. We call this quantity the
p-value. The smaller the p-value is, the more unlikely the null hypothesis is true.

For example, X̄ = 9.5 and X̄ = 8.5 give respective p-values

P
{
|Z| >

∣∣∣9.5− 8
2/
√

5

∣∣∣} ≈ 0.094, P
{
|Z| >

∣∣∣8.5− 8
2/
√

5

∣∣∣} ≈ 0.576.

When a significance level α = 0.1 is required, we reject the null hypothesis µ0 = 8 if X̄ = 9.5 since the
corresponding p-value is smaller than 0.1, and we accept the null hypothesis if X̄ = 8.5 since the corresponding
p-value is larger than 0.1.

In general, given the value of the sample mean X̄, the p-value is

P
{
|Z| >

√
n

σ
|X̄ − µ0|

}
= 2
[
1− Φ

(√n
σ
|X̄ − µ0|

)]
= 2 Φ

(
−
√
n

σ
|X̄ − µ0|

)
,

where the probability is with respect to Z ∼ N (0, 1). We reject H0 if and only if the p-value is smaller than
the significance level α.

6.1.3 Power of a test

We focused on the probability of type I error above, i.e., the probability that the test rejects the null hypothesis
H0 when it is true. We consider the probability of type II error now, i.e., the probability of accepting the
null hypothesis H0 when the alternative hypothesis H1 is true.

Consider i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where σ2 is known and hypotheses H0 : µ = µ0 and H1 : µ 6= µ0.
Recall that the Z-test that rejects H0 if

√
n
σ |X̄ − µ0| > zα/2 achieves significance level α. Let Pµ denote the

probability to emphasize that the mean is µ. Define the probability of type II error as

β(µ) = Pµ{H0 is accepted} = Pµ
{√n
σ
|X̄ − µ0| ≤ zα/2

}
.

The function 1 − β(µ) is called the power function or power of the test, i.e., the probability that the test
rejects H0 when H1 is true. In this case,

√
n
σ (X̄ − µ) ∼ N (0, 1) (note that it is µ not µ0), so

β(µ) = Pµ
{
− zα/2 ≤

√
n

σ
(X̄ − µ0) ≤ zα/2

}
= Pµ

{
− zα/2 +

√
n

σ
(µ0 − µ) ≤

√
n

σ
(X̄ − µ) ≤ zα/2 +

√
n

σ
(µ0 − µ)

}
= Φ

(
zα/2 +

√
n

σ
(µ0 − µ)

)
− Φ

(
− zα/2 +

√
n

σ
(µ0 − µ)

)
.

Note that

• β(µ0) = Φ(zα/2)− Φ(−zα/2) = 2 · Φ(zα/2)− 1 = 1− α;

• limµ→−∞ β(µ) = Φ(∞)− Φ(∞) = 0;

• limµ→∞ β(µ) = Φ(−∞)− Φ(−∞) = 0.

Example. Suppose that a signal of value 10 is sent from A, contaminated by random noise with distribution
N (0, 4), and then received at B. The signal is sent 5 times with independent noise. If people at location
B believe that the true value is 8, what is the probability of type II error of the test that rejects H0 if√

5
2 |X̄ − 8| > 1.96?

Since µ0 = 8 and µ = 10, we have

β(10) = Φ
(

1.96 +
√

5
2 (8− 10)

)
− Φ

(
− 1.96 +

√
5

2 (8− 10)
)
≈ 0.391.
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pnorm(1.96+sqrt(5))-pnorm(-1.96+sqrt(5))

## [1] 0.3912343

6.2 One-sided tests
6.2.1 One-sided Z-test

In some cases, we consider the one-sided hypothesis testing problem with

• H0 : µ ≤ µ0 (or µ = µ0);

• H1 : µ > µ0.

Suppose that we are given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where σ2 is known. The one-sided Z-test

• accepts H0 if
√
n
σ (X̄ − µ0) ≤ zα;

• rejects H0 if
√
n
σ (X̄ − µ0) > zα.

The rationale behind the test is that it is at significance level α:

Pµ0

{√n
σ

(X̄ − µ0) > zα

}
= α,

as
√
n
σ (X̄ − µ0) ∼ N (0, 1). Moreover, given the value of the sample mean X̄, the p-value is

P
{
Z >

√
n

σ
(X̄ − µ0)

}
= 1− Φ

(√n
σ

(X̄ − µ0)
)
,

where Z ∼ N (0, 1) and X̄ is a fixed value here.

Example. Suppose that a signal of value µ is sent from A, contaminated by random noise with distribution
N (0, 4), and then received at B. The signal is sent 5 times with independent noise and the average value
received at B is X̄ = 9.5. If people at location B believe that µ ≤ 8 and would like to do a one-sided test at
significance level 0.05, should they accept or reject the hypothesis?

Similar to the two-sided case, there are two ways to approach this problem: via the test itself or via the
p-value.

The test statistic is again the standardized random variable

X̄ − µ
σ/
√
n

= 9.5− 8
2/
√

5
≈ 1.677.

Since z0.05 = Φ−1(1 − 0.05) ≈ 1.645 < 1.677, we have X̄−µ
σ/
√
n
> zα. As a result, the test rejects the null

hypothesis H0.

In addition, the p-value is

P
{
Z >

√
5

2 (9.5− 8)
}

= 1− Φ
(√5

2 (9.5− 8)
)
≈ 0.048 < 0.05,

so again the test rejects the null hypothesis H0.
qnorm(1-0.05)

## [1] 1.644854

1-pnorm(sqrt(5)/2*1.5)

## [1] 0.04676626
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6.2.2 Power of a one-sided test

As before, β(µ) is defined to be the probability that H0 is accepted if the true mean is µ > µ0 (i.e., H1 is
true):

β(µ) = Pµ{H0 is accepted}

= Pµ
{√n
σ

(X̄ − µ0) ≤ zα
}

= Pµ
{√n
σ

(X̄ − µ) ≤ zα +
√
n

σ
(µ0 − µ)

}
= Φ

(
zα +

√
n

σ
(µ0 − µ)

)
.

Note that
β(µ0) = Φ(zα) = 1− α, lim

µ→∞
β(µ) = Φ(−∞) = 0.

Again, the quantity 1− β(µ) is called the power of the test.

6.2.3 The other direction

We can also consider hypothesis testing between

• H0 : µ ≥ µ0 (or µ = µ0);

• H1 : µ < µ0.

The one-sided Z-test at significance level α

• accepts H0 if
√
n
σ (X̄ − µ0) ≥ −zα;

• rejects H0 if
√
n
σ (X̄ − µ0) < −zα.

The p-value is
P
{
Z <

√
n

σ
(X̄ − µ0)

}
= Φ

(√n
σ

(X̄ − µ0)
)
.

Example. Suppose that cigarettes on the market have an average nicotine content of at least 1.6 mg per
cigarette with standard deviation 0.8 mg. A firm claims that it has a new way to produce cigarettes with
average nicotine content being less than 1.6 mg. To test this claim, a sample of 20 cigarettes from this firm
were analyzed. What conclusion can be drawn, at a significance level 0.05, if the average nicotine content of
the 20 cigarettes is 1.54?

We are testing between H0 : µ ≥ 1.6 and H1 : µ < 1.6. How do we know which is the null and which is the
alternative? This can be decided based on the following reasoning:

• We know the standard deviation of the population (cigarettes on the market) as prior knowledge, so it
is more reasonable to define the null hypothesis H0 to be the prior knowledge (i.e., µ ≥ 1.6).

• Rejection of H0 is a sound, convincing statement when the significance level is low: If H0 were true,
the data is very unlikely; given the data, H0 is very unlikely. On the other hand, accepting H0 does not
mean much—it should be understood as not rejecting H0. Since we would only endorse the company
when there is convincing evidence, we should define H1 to be what the company claims (i.e., µ < 1.6).

To test H0 : µ ≥ 1.6 against H1 : µ < 1.6, we compute the test statistic
√
n

σ
(X̄ − µ0) =

√
20

0.8 (1.54− 1.6) ≈ −0.3354,

so the p-value is
P{Z < −0.3354} = Φ(−0.3354) ≈ 0.369 > 0.05.

As a consequence, we accept H0, that is, the evidence is not strong enough to support the company’s claim.
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pnorm(sqrt(20)/0.8*(1.54-1.6))

## [1] 0.3686578

Remark. In the above discussion, we assumed i.i.d. X1, . . . , Xn ∼ N (µ, σ2) and did tests using the statistic√
n
σ (X̄ − µ) ∼ N (0, 1). In fact, if we have i.i.d. X1, . . . , Xn from any distribution with mean µ and variance
σ2, by the central limit theorem, the standardized statistic

√
n
σ (X̄ − µ) is approximately N (0, 1) provided

that n is large. Therefore, the above discussion also applies to the more general setting approximately.

6.3 t-test
Given i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where σ is unknown, consider testing H0 : µ = µ0 against H1 : µ 6= µ0.
Recall that if σ were known, the test statistic would be

√
n

σ
(X̄ − µ0).

Since σ is not known in this case, we replace it by the sample standard deviation S to obtain the test statistic

T :=
√
n

S
(X̄ − µ0),

where the sample variance is defined by

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2.

Under H0, recall that T follows the t-distribution with n − 1 degrees of freedom. Let tα,n−1 denote the
quantile of order 1− α for this distribution. Then we can define the two-sided t-test at significance level α to
be the test that

• accepts H0 if |T | ≤ tα/2,n−1;

• rejects H0 if |T | > tα/2,n−1.

Given the values of the sample mean X̄ and sample variance S, the p-value for the t-test is defined to be

P
{
|Tn−1| >

√
n

S
|X̄ − µ0|

}
= 2
[
1− FTn−1

(√n
S
|X̄ − µ0|

)]
= 2FTn−1

(
−
√
n

S
|X̄ − µ0|

)
,

where Tn−1 denotes a t-random variable with n− 1 degrees of freedom and FTn−1 denotes its CDF. Similar
to the Z-test, the p-value for the t-test is the probability that Tn−1 is more extreme than the observed data.

Example. A public health official claims that the average home water use is 350 gallons a day. To verify
this claim, a study of 20 randomly selected homes was instigated with the result that the average daily water
uses of these 20 homes were such that X̄ = 353 and S = 22, do the data contradict the official’s claim at a
significance level α = 0.1?

We test H0 : µ = 350 against H1 : µ 6= 350. We can compute t0.05,19 ≈ 1.73, so the t-test rejects H0 if√
20

22 |X̄ − 350| > 1.73. In this case,
√

20
22 |X̄ − 350| ≈ 0.61, so we accept H0. The p-value is

P
{
|T19| > 0.61

}
= 2
[
1− FT19(0.61)

]
≈ 0.55 > 0.1,

so, again, we accept H0.
qt(0.95,19)

## [1] 1.729133
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2*(1-pt(3*sqrt(20)/22,19))

## [1] 0.5491946

Given the same observations, let us now test H0 : µ ≤ µ0 (or µ = µ0) against H1 : µ > µ0. The one-sided
t-test at significance level α rejects H0 if

√
n
S (X̄ − µ0) > tα,n−1. The p-value is

P
{
Tn−1 >

√
n

S
(X̄ − µ0)

}
= 1− FTn−1

(√n
S

(X̄ − µ0)
)
.

The test between H0 : µ ≥ µ0 (or µ = µ0) and H1 : µ < µ0 is similar.

Example. The manufacturer of a new fiberglass tire claims that its average life will be at least 40K miles.
To verify this claim, a sample of 12 tires is tested, with sample mean 37K and sample standard deviation 3K.
Test the manufacturer’s claim at the significance level 0.01.

We test H0 : µ ≥ 40 against H1 : µ < 40. We can compute t0.01,11 ≈ 2.72, so the t-test rejects H0 if√
12
3 (X̄ − 40) < −2.72. In this case,

√
12
3 (X̄ − 40) ≈ −3.464, so we reject H0. The p-value is

P{T11 < −3.464} = FT11(−3.464) ≈ 0.0026 < 0.01,

so, again, we reject H0.
qt(0.99,11)

## [1] 2.718079

pt(sqrt(12)/3*(37-40),11)

## [1] 0.002647366

6.4 More examples of Z-test and t-test
6.4.1 Difference between normal means with known variances

Suppose that we have two independent samples: i.i.d. X1, . . . , Xn ∼ N (µ1, σ
2
1) and i.i.d. Y1, . . . , Ym ∼

N (µ2, σ
2
2), where σ1 and σ2 are known. Consider testing H0 : µ1 = µ2 against H1 : µ1 6= µ2. The idea is

that, if X̄ − Ȳ is too large, then we tend to reject H0. To make this precise, note that

X̄ − Ȳ ∼ N (µ1 − µ2, σ
2
1/n+ σ2

2/m),

so X̄−Ȳ−(µ1−µ2)√
σ2

1/n+σ2
2/m

∼ N (0, 1). If H0 is true, then µ1 − µ2 = 0, so the test statistic is

X̄ − Ȳ√
σ2

1/n+ σ2
2/m

∼ N (0, 1).

The two-sided Z-test at significance level α rejects H0 if

|X̄ − Ȳ |√
σ2

1/n+ σ2
2/m

> zα/2.

The p-value is

P
{
|Z| > |X̄ − Ȳ |√

σ2
1/n+ σ2

2/m

}
= 2 Φ

(
− |X̄ − Ȳ |√

σ2
1/n+ σ2

2/m

)
.

Example. Two new methods for producing a tire have been proposed. A tire manufacturer produces a
sample of 10 tires using the first method and a sample 8 using the second. The first set is road tested at
location A, and the lifetime of tires has sample mean 65 in hundred kilometers. The second set is tested
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at location B, and the lifetime has sample mean 55. Suppose that the tire lifetime at the two locations
is normal with standard deviation 40 and 30 respectively. If the manufacturer is interested in testing the
hypothesis that there is no appreciable difference in the mean lifetime of tires produced by either method,
what conclusion should be drawn at the significance level 0.05?

The test statistic is
65− 55√

402/10 + 302/8
≈ 0.6.

We can check that the hypothesis is accepted because the p-value is roughly 0.54.
2*pnorm(-(65-55)/sqrt(40ˆ2/10+30ˆ2/8))

## [1] 0.5446592

For testing between H0 : µ1 ≤ µ2 (or µ1 = µ2) against H1 : µ1 > µ2, the one-sided Z-test rejects H0 if

X̄ − Ȳ√
σ2

1/n+ σ2
2/m

> zα.

The p-value is

1− Φ
(

X̄ − Ȳ√
σ2

1/n+ σ2
2/m

)
.

The other side is similar and can be derived as before.

6.4.2 Difference between normal means with same but unknown variance

Consider two independent samples: i.i.d. X1, . . . , Xn ∼ N (µ1, σ
2) and i.i.d. Y1, . . . , Ym ∼ N (µ2, σ

2), where σ
is unknown. The sample variances are

S2
1 = 1

n− 1

n∑
i=1

(Xi − X̄)2, S2
2 = 1

m− 1

m∑
i=1

(Yi − Ȳ )2

As in interval estimation, the key is to replace σ with an estimate in the statistic

X̄ − Ȳ
σ
√

1/n+ 1/m
.

Since
n− 1
σ2 S2

1 ∼ χ2
n−1,

m− 1
σ2 S2

2 ∼ χ2
m−1,

we have
n− 1
σ2 S2

1 + m− 1
σ2 S2

2 ∼ χ2
n+m−2.

Moreover, under H0 : µ1 = µ2,
X̄ − Ȳ√

σ2/n+ σ2/m
∼ N (0, 1).

It follows that
X̄ − Ȳ√

σ2/n+ σ2/m

/√(n− 1
σ2 S2

1 + m− 1
σ2 S2

2

)/
(n+m− 2)

has the t-distribution with n+m− 2 degrees of freedom, which we use as the test statistic. This statistic can
be written as

T = X̄ − Ȳ
Sp
√

1/n+ 1/m
,

where
S2
p = (n− 1)S2

1 + (m− 1)S2
2

n+m− 2 .

54



Recall that the quantity S2
p is called the pooled estimator of the common variance σ2.

The two-sided and one-sided t-tests can be derived in the same way as before.

Example. To study whether a type of medicine is effective for curing cold, a random group of 10 volunteers
was given tablets containing the medicine. Moreover, a control group consisting of 12 other volunteers took
placebo tablets. The lengths of time the cold lasted for the first group have sample mean 6.5 and sample
variance 0.6 days; the lengths of time for the second group have sample mean 7.1 and sample variance 0.8. Is
the medicine effective? Assuming the population variance is the same for the two groups, what conclusion
can we draw at significance level 0.05?

If the medicine is effective, the time for the first group should be reduced. Therefore, we test µ1 = µ2 against
µ1 < µ2. The test statistic is

T = X̄ − Ȳ
Sp
√

1/10 + 1/12
≈ −0.6

0.295 ≈ −2.03,

where
S2
p = 11S2

1 + 9S2
2

20 = 11 · 0.6 + 9 · 0.8
20 = 0.69.

Since t0.05,20 = F−1
T20

(1− 0.05) ≈ 1.72, the null hypothesis H0 is rejected. Alternatively, we can see this from
the p-value

P{T20 < T} ≈ FT20(−2.03) ≈ 0.028 < 0.05.

pt(-0.6/(13.8/20*sqrt(1/10+1/12)),20)

## [1] 0.02788752

qt(0.95,20)

## [1] 1.724718

6.4.3 Difference between normal means with unknown and unequal variances

Consider two independent samples: i.i.d. X1, . . . , Xn ∼ N (µ1, σ
2
1) and i.i.d. Y1, . . . , Ym ∼ N (µ2, σ

2
2), where

σ1 and σ2 are unknown. In this case, it is difficult to do a precise analysis. Let us assume that n and m are
large and do the Z-test, justified by the central limit theorem and the law of large numbers.

Pretending that the sample variances S1 and S2 are sufficiently close to σ1 and σ2 respectively, we consider
the test statistic

X̄ − Ȳ√
S2

1/n+ S2
2/m

which is approximately N (0, 1). The rest is the same as the case of known variances.

6.5 Test statistics with other distributions
6.5.1 Testing normal variances

Suppose that we observe i.i.d. X1, . . . , Xn ∼ N (µ, σ2) where µ and σ2 are unknown. Consider testing
H0 : σ2 = σ2

0 against H1 : σ2 6= σ2
0 . Recall that under H0,

n− 1
σ2

0
S2 ∼ χ2

n−1,

where S2 is the sample variance. Then we can use n−1
σ2

0
S2 as the test statistic. Let Fχ2

n−1
denote the CDF of

χ2
n−1, and let xα,n−1 = F−1

χ2
n−1

(1 − α), i.e., the quantile of order 1 − α for χ2
n−1. The two-sided χ2-test at

significance level α ∈ (0, 1) does the following:

• accept H0 if x1−α/2,n−1 ≤ n−1
σ2

0
S2 ≤ xα/2,n−1;
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• reject H0 if n−1
σ2

0
S2 < x1−α/2,n−1 or n−1

σ2
0
S2 > xα/2,n−1.

In this case, the p-value is not as clear, so we do not use it.

Next, consider one-sided testing between H0 : σ2 ≤ σ2
0 (or σ2 = σ2

0) and H1 : σ2 > σ2
0 . The one-sided χ2-test

at significance level α rejects H0 if
n− 1
σ2

0
S2 > xα,n−1.

The p-value is
P
{
X >

n− 1
σ2

0
S2
}

= 1− Fχ2
n−1

(n− 1
σ2

0
S2
)
,

where X ∼ χ2
n−1.

The other side is analogous.

Example. A machine that controls the amount of ribbon on a tape will be judged to be effective if the
variance σ2 of the amount of ribbon on a tape is less than 0.0225 cm2. If a sample of 20 tapes yields a sample
variance of S2 = 0.025 cm2, can we conclude that the machine is ineffective at a significance level 0.05?

We test H0 : σ2 ≤ 0.0225 against H1 : σ2 > 0.0225. Since

19
0.0225S

2 ≈ 21.11 ≤ 30.14 ≈ x0.05,19,

we accept H0. The p-value is approximately

P{X > 21.11} = 1− Fχ2
19

(21.11) ≈ 0.33 > 0.05,

which gives the same conclusion.
19/0.0225*0.025

## [1] 21.11111

qchisq(1-0.05,19)

## [1] 30.14353

1-pchisq(19/0.0225*0.025,19)

## [1] 0.330694

6.5.2 Testing for binomial distributions

Suppose that we observe X ∼ Bin(n, p) where p is unknown. Alternatively, we may observe i.i.d. X1, . . . , Xn ∼
Ber(p) and set X =

∑n
i=1Xi. Consider testing p ≤ p0 against p > p0. A test would reject H0 if X > k∗ for

an appropriate threshold k∗. What k∗ achieves a significance level α? Under H0, we have

P{X > k} = 1− Fn,p0(k),

where Fn,p0 denotes the CDF of Bin(n, p). To have this probability bounded by α, we should define

k∗ := min
{
k : 1− Fn,p0(k) ≤ α

}
.

However, it is not clear how to solve for k∗ given α. The easier approach is to compute the p-value

P{B > X} = 1− Fn,p0(X),

where B ∼ Bin(n, p0). If the p-value is smaller than α, then we reject H0.

The other one-sided case can be derived analogously. The two-sided case is more involved and we omit it.
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Example. A computer chip manufacturer claims that no more than 2 percent of the chips it sends out
are defective. An electronics company has purchased a large quantity of such chips. To determine if the
manufacturer’s claim can be taken, the company tested 300 chips and 9 of them are defective. Should the
manufacturer’s claim be rejected at significance level 0.05?

We test H0 : p ≤ 0.02 against H1 : p > 0.02. The p-value is

1− F300,0.02(9) = 0.082 > 0.05,

where B ∼ Bin(300, 0.02), so the claim H0 is accepted.
1-pbinom(9,300,0.02)

## [1] 0.08183807

For the same task, we may consider normal approximation and use the Z-test. If p = p0, the standardized
random variable

X − np0√
np0(1− p0)

is approximately N (0, 1) by the central limit theorem. Therefore, we can use this quantity as the test statistic
in the Z-test. This approximation allows us to employ the Z-test in the two-sided and both one-sided cases
as before.

Example. For the above example, the p-value for the Z-test is

P
{
Z ≥ 9.5− 300 · 0.02√

300 · 0.02 · 0.98

}
= 1− Φ

( 3.5√
6 · 098

)
≈ 0.0745 > 0.05,

so again, we accept H0. Note that we have used the half-unit correction for continuity.
1-pnorm(3.5/sqrt(6*0.98))

## [1] 0.07445734

6.5.3 Testing for Poisson distributions

Given i.i.d. X1, . . . , Xn ∼ Poi(λ), consider testing H0 : λ ≤ λ0 against H1 : λ > λ0. Then we have
X := X1 + · · ·+Xn ∼ Poi(nλ). For simplicity, we directly compute the p-value

P{Y > X} = 1− Fnλ0(X),

where Y ∼ Poi(nλ0) and Fnλ0 denotes the CDF of Poi(nλ0).

Example. Suppose that the number of defective computer chips produced daily by a company follows a
Poisson distribution. The company claims that the average number of defective chips produced daily is no
greater than 25. If a sample of 5 days consists of 28, 34, 32, 38, and 22 defective chips, test the claim at
significance level 0.05.

We test H0 : λ ≤ 25 against H1 : λ > 25. The p-value is

1− F125(28 + 34 + 32 + 38 + 22) ≈ 0.00526 < 0.05,

so we reject H0.
1-ppois(28+34+32+38+22,125)

## [1] 0.005260669

Similar to binomial testing, we may also use normal approximation and the Z-test for Poisson testing.
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7 Linear regression
7.1 The model
How much does a factor, such as location, food quality, service, etc., affect a restaurant’s revenue? Let the
factors be x1, . . . , xr and let the revenue be Y . Suppose that Y is determined by x1, . . . , xr linearly up to
noise, i.e.,

Y = β0 + β1x1 + · · ·+ βrxr + ε = β0 + x>β + ε

where β0, β1, . . . , βr are unknown real-valued coefficients that we aim to estimate, and ε is random noise. We
can also write the model in the vector form with x = (x1, . . . , xr)> and β = (β1, . . . , βr)> are r-dimensional
vectors. Typically, we assume that the noise ε is a random variable with mean zero. Thus we also write

E[Y | x] = β0 + β1x1 + · · ·+ βrxr = β0 + x>β.

Remark. The above model is called the linear regression model, which describes the regression of the
dependent variable Y on the set of independent variables x1, . . . , xr. The quantities β0, . . . , βr are called the
regression coefficients. The quantity ε is the random noise. Alternatively,

• Y can be called the regressand, endogenous variable, response variable, measured variable, criterion
variable, or predicted variable;

• x1, . . . , xr can be called the regressors, exogenous variables, explanatory variables, covariates, input
variables, predictor variables, or design points (x is known as the design vector);

• β0 is the intercept term, and β1, . . . , βr are called the effects or regression parameters (β is known as
the parameter vector);

• ε is also known as the disturbance term or simply the noise.

Let us first consider the simple linear regression model (r = 1)

Y = α+ βx+ ε.

Suppose that we observe n data points (xi, Yi) for i = 1, . . . , n following the model

Yi = α+ βxi + εi.

Example. Consider the observations:

(x1, Y1) = (100, 45), (x2, Y2) = (110, 52),
(x3, Y3) = (120, 54), (x4, Y4) = (130, 63),
(x5, Y5) = (140, 62), (x6, Y6) = (150, 68),
(x7, Y7) = (160, 75), (x8, Y8) = (170, 76),
(x9, Y9) = (180, 92), (x10, Y10) = (190, 88).

x <- seq(100,190,10)
y <- c(45,52,54,63,62,68,75,76,92,88)
fit <- lm(y ~ x)
print(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -4.4727 0.4964

58



plot(x,y)
abline(fit)
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7.2 Least squares estimators of regression coefficients
7.2.1 The estimators

Given (xi, Yi) for i = 1, . . . , n in a simple linear regression model

Yi = α+ βxi + εi,

how do we estimate the coefficients α and β? Let α̂ and β̂ be estimators of α and β respectively (hypothetical
at the moment). Then our prediction of Yi would be

α̂+ β̂xi.

The squared error is (Yi − α̂− β̂xi)2, and the sum of squared errors is

S =
n∑
i=1

(Yi − α̂− β̂xi)2.

We would like to choose α̂ and β̂ so that the above sum of squares S is minimized. To this end, take the
partial derivatives of S and set them to zero:

∂S

∂α̂
= −2

n∑
i=1

(Yi − α̂− β̂xi) = 0, ∂S

∂β̂
= −2

n∑
i=1

xi(Yi − α̂− β̂xi) = 0.
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Let x̄ = 1
n

∑n
i=1 xi and Ȳ = 1

n

∑n
i=1. Then the above two equations become

Ȳ = α̂+ β̂x̄,

n∑
i=1

xiYi = α̂nx̄+ β̂

n∑
i=1

x2
i .

Hence
n∑
i=1

xiYi = (Ȳ − β̂x̄)nx̄+ β̂

n∑
i=1

x2
i ,

so solving for β̂ yields

β̂ = (
∑n
i=1 xiYi)− nx̄Ȳ

(
∑n
i=1 x

2
i )− nx̄2

and then
α̂ = Ȳ − β̂x̄.

The estimators α̂ and β̂ are called the least squares estimators. The line y = α̂+ β̂x is called the estimated
regression line.
print(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -4.4727 0.4964

beta = (sum(x*y)-10*mean(x)*mean(y))/(sum(xˆ2)-10*mean(x)ˆ2)
alpha = mean(y)-beta*mean(x)
print(c(alpha,beta))

## [1] -4.4727273 0.4963636

To simplify the notation, we let

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2, SY Y =

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

Y 2
i − nȲ 2,

SxY =
n∑
i=1

(xi − x̄)(Yi − Ȳ ) =
n∑
i=1

xiYi − nx̄Ȳ ,

and the least squares estimators are

β̂ = SxY
Sxx

, α̂ = Ȳ − β̂x̄.

Remark. If the noise terms εi are i.i.d. N (0, σ2) variables, then the least squares estimators are equivalent
to the MLEs. This is because minimizing the sum of squares of errors is the same as maximizing the
log-likelihood.

7.2.2 Distributions of the least squares estimators

We assume that the random noise terms εi are i.i.d. N (0, σ2) variables, so that

Yi = α+ βxi + εi ∼ N (α+ βxi, σ
2).
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We now determine the distributions of the least squares estimators β̂ and α̂ of the regression coefficients.
First note that, as linear combinations of normal random variables, β̂ and α̂ are normal random variables. It
suffices to compute their means and variances. The mean of β̂ is

E[β̂] = (
∑n
i=1 xi · E[Yi])− nx̄ · E[Ȳ ]

(
∑n
i=1 x

2
i )− nx̄2 = (

∑n
i=1 xi(α+ βxi))− nx̄(α+ βx̄)

(
∑n
i=1 x

2
i )− nx̄2 = (

∑n
i=1 βx

2
i )− nβx̄2

(
∑n
i=1 x

2
i )− nx̄2 = β,

so β̂ is an unbiased estimator of β. Moreover,

Var(β̂) =
∑n
i=1(xi − x̄)2 ·Var(Yi)[
(
∑n
i=1 x

2
i )− nx̄2

]2 =
∑n
i=1(xi − x̄)2σ2[

(
∑n
i=1 x

2
i )− nx̄2

]2 = σ2

(
∑n
i=1 x

2
i )− nx̄2 .

For α̂, we have
E[α̂] = E[Ȳ ]− E[β̂]x̄ = α+ βx̄− βx̄ = α,

so α̂ is an unbiased estimator of α. In addition, it can be shown that

Var(α̂) = σ2∑n
i=1 x

2
i

n(
∑n
i=1 x

2
i )− n2x̄2 .

In conclusion, we have

β̂ ∼ N
(
β,

σ2

Sxx

)
, α̂ ∼ N

(
α,
σ2∑n

i=1 x
2
i

nSxx

)
.

7.2.3 Residuals

The quantities Yi − α̂ − β̂xi, where i = 1, . . . , n, are called the residuals (i.e., the differences between the
actual responses and the predictors). The sum of squares of the residuals is

SSR =
n∑
i=1

(Yi − α̂− β̂xi)2 = SxxSY Y − (SxY )2

Sxx
.

It is known that
SSR
σ2 ∼ χ

2
n−2,

so
E
[SSR
σ2

]
= n− 2, E

[ SSR
n− 2

]
= σ2.

Consequently, SSR
n−2 is an unbiased estimator of σ2. Moreover, it is known that SSR is independent of α̂ and β̂.

7.2.4 Coefficient of determination

Consider the “variation” in Yi, i.e., the quantity

SY Y =
n∑
i=1

(Yi − Ȳ )2.

Two factors contribute to the variation in Yi:

• variation in xi, which explains variation in Yi;

• variation from the noise, which is not really meaningful.

The sum of squares of residuals SSR can be viewed as the variation coming from the noise. Therefore,
SY Y − SSR

represents the amount of variation in Yi that is explained by the variation in xi. Moreover, the quantity

R2 = SY Y − SSR
SY Y

= 1− SSR
SY Y

represents the proportion of the variation in Yi that is explained by the variation in xi. This quantity R2 is
called the coefficient of determination. We have 0 ≤ R2 ≤ 1. A value near 1 indicates a good fit, while a
value near 0 indicates a poor fit.
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7.2.5 Sample correlation coefficient

Recall that the sample correlation coefficient r of (xi, Yi) for i = 1, . . . , n is defined to be

r = SxY√
SxxSY Y

=
∑n
i=1(xi − x̄)(Yi − Ȳ )√[∑n

i=1(xi − x̄)2
]
·
[∑n

i=1(Yi − Ȳ )2
] .

Using the identity

SSR = SxxSY Y − S2
xY

Sxx
,

we obtain
r2 = S2

xY

SxxSY Y
= SxxSY Y − SSRSxx

SxxSY Y
= SY Y − SSR

SY Y
= R2.

Thus r = ±
√
R2 and the coefficient of determination is the square of the sample correlation coefficient.

7.2.6 Validity of a linear model

How well does a linear regression model fit the data? There are several ways to evaluate a model fit:

• Compute R2 or r. The fit is good if R2 is close to 1, i.e., r close to 1 or −1.

• Compute the approximately standardized residuals

Yi − α̂− β̂xi√
SSR/(n− 2)

, i = 1, . . . , n.

If the linear model fits well, the standardized residuals are approximately standard normal.

• Draw pictures.
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7.3 Inference in linear regression
7.3.1 Hypothesis testing for the slope

Assume the simple linear regression model Yi = α+ βxi + εi where i = 1, . . . , n. Consider testing H0 : β = 0
against β 6= 0, i.e., whether xi has effect on Yi. Note that

β̂ − β√
σ2/Sxx

=
√
Sxx
σ

(β̂ − β) ∼ N (0, 1),

Therefore, if we know σ2, then we can do the Z-test using the test statistic
√
Sxx
σ β̂.

For the case where σ2 is unknown, recall that SSR
n−2 is an unbiased estimator of σ2. As

√
Sxx
σ (β̂ − β) is

independent of
SSR
σ2 ∼ χ

2
n−2,

we have that √
Sxx
σ (β̂ − β)√

SSR
σ2(n−2)

=

√
(n− 2)Sxx

SSR
(β̂ − β)

follows the t-distribution with n− 2 degrees of freedom. If H0 is true, the above becomes√
(n− 2)Sxx

SSR
· β̂

which we use as the test statistic for the t-test.

Example. A person claims that fuel consumption of their automobile does not depend on how fast the car
is driven. To test this hypothesis, the car was tested at the following speeds in miles per hour. The fuel
consumption in miles per gallon attained at each of these speeds was determined with the following results.

Speed: 45 50 55 60 65 70 75
MPG: 24.2 25.0 23.3 22.0 21.5 20.6 19.8

Do these data refute the claim that fuel consumption is unaffected by the speed at which the car is being
driven at the significance level 1 percent?

We compute x̄ = 60, Ȳ ≈ 22.343,

Sxx =
n∑
i=1

(xi − x̄)2 = 700, SY Y =
n∑
i=1

(Yi − Ȳ )2 ≈ 21.757, SxY =
n∑
i=1

(xi − x̄)(Yi − Ȳ ) = −119,

β̂ = SxY
Sxx

= −0.17, α̂ = Ȳ − β̂x̄ ≈ 32.543, SSR = SxxSY Y − (SxY )2

Sxx
≈ 1.527.

It follows that √
(n− 2)Sxx

SSR
· |β̂| ≈ 8.138 > 4.032 ≈ |t0.005,5|,

so we reject H0. There is evidence that increased speeds lead to decreased fuel consumption, because β̂ is
negative and Yi ≈ α̂+ β̂xi.
n = 7
x <- c(45,50,55,60,65,70,75)
y <- c(24.2,25.0,23.3,22.0,21.5,20.6,19.8)
x_bar = mean(x)
y_bar = mean(y)
print(c(x_bar,y_bar))
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## [1] 60.00000 22.34286

s_xx = (n-1)*var(x)
s_yy = (n-1)*var(y)
s_xy = (n-1)*cov(x,y)
print(c(s_xx,s_yy,s_xy))

## [1] 700.00000 21.75714 -119.00000

beta_hat = s_xy/s_xx
alpha_hat = y_bar-beta_hat*x_bar
print(c(beta_hat,alpha_hat))

## [1] -0.17000 32.54286

ss_r = (s_xx*s_yy-s_xyˆ2)/s_xx
ts = sqrt((n-2)*s_xx/ss_r)*beta_hat
print(c(ss_r,ts,qt(1-0.005,n-2)))

## [1] 1.527143 -8.138476 4.032143

delta = sqrt(ss_r/(n-2)/s_xx)*qt(1-0.025,n-2)
print(c(beta_hat-delta,beta_hat+delta))

## [1] -0.2236954 -0.1163046

plot(x,y)
abline(lm(y~x))
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7.3.2 Confidence interval for the slope

Since √
(n− 2)Sxx

SSR
(β̂ − β)

follows the t-distribution with n− 2 degrees of freedom, we have that for any γ ∈ (0, 1),

P
{
− tγ/2,n−2 <

√
(n− 2)Sxx

SSR
(β̂ − β) < tγ/2,n−2

}
= 1− γ,

P
{
β̂ −

√
SSR

(n− 2)Sxx
tγ/2,n−2 < β < β̂ +

√
SSR

(n− 2)Sxx
tγ/2,n−2

}
= 1− γ.

Therefore, the two-sided (1− γ) confidence interval for β is(
β̂ −

√
SSR

(n− 2)Sxx
tγ/2,n−2, β̂ +

√
SSR

(n− 2)Sxx
tγ/2,n−2

)
.

The one-sided versions can be derived analogously.

Example. In the above example, we can compute the two-sided 95 percent confidence interval for β, which
is approximately (−0.224,−0.116).

7.3.3 Inference for the intercept

Similarly, if σ is known, we can standardize α̂ to obtain the test statistic for the Z-test about α.

If σ is unknown, it can be shown that √
n(n− 2)Sxx
SSR

∑n
i=1 x

2
i

(α̂− α)

follows the t-distribution with n− 2 degrees of freedom. Hence it can be used as the test statistic for the
t-test. The two-sided (1− γ) confidence interval for α is(

α̂− tγ/2,n−2

√
SSR

∑n
i=1 x

2
i

n(n− 2)Sxx
, α̂+ tγ/2,n−2

√
SSR

∑n
i=1 x

2
i

n(n− 2)Sxx

)
.

7.3.4 Prediction of a mean response

In addition to (xi, Yi) for i = 1, . . . , n, suppose that we are given a new variable x0 and aim to estimate
α+ βx0. The natural estimator is α̂+ β̂x0. It can be shown that

α̂+ β̂x0 − (α+ βx0)√
1
n + (x0−x̄)2

Sxx

√
SSR
n−2

follows the t-distribution with n− 2 degrees of freedom, which can be used as the test statistic for the t-test.

The two-sided (1− γ) confidence interval for α+ βx0 is(
α̂+ β̂x0 − tγ/2,n−2

√
1
n

+ (x0 − x̄)2

Sxx

√
SSR
n− 2 , α̂+ β̂x0 + tγ/2,n−2

√
1
n

+ (x0 − x̄)2

Sxx

√
SSR
n− 2

)
.
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7.3.5 Prediction of a future response

Given (xi, Yi) for i = 1, . . . , n and x0, suppose that we aim to estimate Y0 = α+βx0 + ε0 where ε0 ∼ N (0, σ2).
The natural estimator is still α̂+ β̂x0. It can be shown that

α̂+ β̂x0 − Y0√
n+1
n + (x0−x̄)2

Sxx

√
SSR
n−2

follows the t-distribution with n− 2 degrees of freedom, which can be used as the test statistic for the t-test.
The two-sided (1− γ) confidence interval for Y0 is(

α̂+ β̂x0 − tγ/2,n−2

√
n+ 1
n

+ (x0 − x̄)2

Sxx

√
SSR
n− 2 , α̂+ β̂x0 + tγ/2,n−2

√
n+ 1
n

+ (x0 − x̄)2

Sxx

√
SSR
n− 2

)
.

7.4 Variants of a linear model
7.4.1 Transform to linearity

Consider the following situation: The amplitude of a signal at time t is

W (t) ≈ c · e−d·t.

Taking logarithms yields
logW (t) ≈ log c− d · t.

Let
Y = logW (t), α = log c, β = −d.

The relation becomes
Y = α+ βt+ ε

for a noise term ε. This is the linear regression model.

Example. The following table lists the percentages of a chemical (denoted by f(x)) used in an experiment
that is run at various temperatures in Celsius (denoted by x). Assume the relation 1 − f(x) ≈ c(1 − d)x
for constants c and d. Use the data to estimate the percentage of the chemical that would be used if the
experiment were to be run at 350 degrees.

Temperature x 5 10 20 30 40 50 60 80
Percentage f(x) 0.061 0.113 0.192 0.259 0.339 0.401 0.461 0.551

Taking logarithms yields
log(1− f(x)) ≈ log c+ x log(1− d).

For
Y = − log(1− f(x)), α = − log c, β = − log(1− d),

we obtain
Y = α+ βx+ ε.

Then we can do linear regression:
x <- c(5,10,20,30,40,50,60,80)
f <- c(.061,.113,.192,.259,.339,.401,.461,.551)
y = -log(1-f)
fit <- lm(y ~ x)
print(fit)
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##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 0.01545 0.00989

alpha = unname(coef(fit)[1])
beta = unname(coef(fit)[2])
c = exp(-alpha)
d = 1-exp(-beta)
x_new = 350
y_new = alpha + beta*x_new
f_new = 1-exp(-y_new)
print(c(c, d, f_new))

## [1] 0.984672526 0.009841073 0.969096383

plot(x,y)
abline(fit)
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7.4.2 Linear regression with different variances

In the linear regression model
Yi = α+ βxi + εi, i = 1, . . . n,

68



suppose that the noise terms have different variances Var(εi) = Var(Yi) = σ2
i . If σi is known for each i, then

it suffices to do the rescaling
Yi
σi

= α

σi
+ βxi

σi
+ εi
σi
,

so that the noise ε̃i = εi
σi

has variance Var(ε̃i) = 1. Therefore, we can compute the least squares estimator

(α̂, β̂) = argmin
(α′,β′)

n∑
i=1

(Yi
σi
− α′

σi
− β′xi

σi

)2
= argmin

(α′,β′)

n∑
i=1

1
σ2
i

(Yi − α′ − β′xi)2.

Such estimators are called weighted least squares estimators.

Given weights w1, . . . , wn, how do we compute

(α̂, β̂) = argmin
(α′,β′)

n∑
i=1

wi(Yi − α′ − β′xi)2?

As before, let us take the partial derivatives with respect to α′ and β′ to obtain
n∑
i=1

wi(Yi − α̂− β̂xi) = 0,
n∑
i=1

xiwi(Yi − α̂− β̂xi) = 0

that is,
n∑
i=1

wiYi = α̂

n∑
i=1

wi + β̂

n∑
i=1

wixi,

n∑
i=1

wixiYi = α̂

n∑
i=1

wixi + β̂

n∑
i=1

wix
2
i .

This is a system of linear equations in α̂ and β̂, so we can solve for the estimators.

It is common that Var(Yi) is proportional to xi. For example, if xi is the distance between two places and Yi
is the travel time, then it is reasonable to assume that

Yi = α+ βxi + εi

where Var(Yi) = Var(εi) = c xi for an unknown constant c > 0. From the above discussion, the system of
linear equations is

n∑
i=1

Yi/xi = α̂

n∑
i=1

1/xi + β̂n,

n∑
i=1

Yi = α̂n+ β̂

n∑
i=1

xi.

Note that the constant c gets canceled out. Then we can solve for α̂ and β̂.

Example. The following data represent travel times in a city, with distance x in miles and travel time Y in
minutes. Assume a linear relation Y = α+ βx+ ε and that the variance of Y is proportional to x. Find the
weighted least squares estimators α̂ and β̂ in the linear regression model.

Distance 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0
Travel time 15.0 15.1 16.5 19.9 27.7 29.7 26.7 35.9 42.0 49.4

We can compute
n∑
i=1

Yi/xi ≈ 104.22,
n∑
i=1

1/xi ≈ 5.34,
n∑
i=1

Yi = 277.9,
n∑
i=1

xi = 41.

The system we need to solve is

104.22 ≈ 5.34α̂+ 10β̂, 277.9 ≈ 10α̂+ 41β̂,

which yields α̂ ≈ 12.56 and β̂ ≈ 3.71.
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x <- c(.5,1,1.5,2,3,4,5,6,8,10)
y <- c(15,15.1,16.5,19.9,27.7,29.7,26.7,35.9,42,49.4)
print(c(sum(y/x),sum(1/x),sum(y),sum(x)))

## [1] 104.221667 5.341667 277.900000 41.000000

fit <- lm(y ~ x)
print(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 12.722 3.675

Note that the (unweighted) least squares estimators are slightly different.

8 Advanced linear models
8.1 Multiple linear regression
Let us consider the linear regression model where there are k factors affecting the outcome. Suppose that we
observe n normally distributed data points. The model can be written as

Yi = β0 + β1xi1 + · · ·+ βkxik + εi = β>xi + εi, i = 1, . . . , n,

where the parameter vector β ∈ Rk+1 has entries β0, β1, . . . , βk, each independent variable xi ∈ Rk+1 has
entries 1, xi1, . . . , xik, and the error terms εi are i.i.d. N (0, σ2) random variables. Equivalently, we can write
the model in a matrix form as

Y = Xβ + ε,

where Y, ε ∈ Rn are the vectors with entries Yi and εi respectively, and X ∈ Rn×(k+1) is the matrix with rows
x>i .

8.1.1 Least-squares estimator

The least squares estimators are β̂0, β̂1, . . . , β̂k (or written as a vector β̂ ∈ Rk+1) that minimize
n∑
i=1

(Yi − β̂0 − β̂1xi1 − · · · − β̂kxik)2 =
n∑
i=1

(Yi − β̂>xi)2 = ‖Y −Xβ̂‖22.

Note that there are k + 1 unknown variables β̂0, β̂1, . . . , β̂k. Taking the partial derivatives of the above
quantity with respect to them, we obtain a system of k + 1 linear equations, so we can solve for the unknown
variables. However, this is too tedious. Alternatively, it is much easier to use matrix calculus to achieve the
same. Namely, setting

d

dβ̂
‖Y −Xβ̂‖22 = 2X>(Y −Xβ̂) = 0

yields
X>Xβ̂ = X>Y.

Assuming that n ≥ k + 1 (i.e., more observations than unknown parameters, which is reasonable) and that
X>X ∈ R(k+1)×(k+1) is invertible, we have

β̂ = (X>X)−1X>Y.
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Example. The following data relate the suicide rate to the population size and the divorce rate at eight
different locations:

We fit a multiple linear regression model to the data of the form

Y = β0 + β1x1 + β2x2 + ε,

where Y is the suicide rate, x1 is the population, and x2 is the divorce rate. The following R code gives
β̂0 ≈ 3.50735, β̂1 ≈ −0.00025, and β̂2 ≈ 0.26095.
x1 = c(679,1420,1349,296,6975,323,4200,633)
x2 = c(30.4,34.1,17.2,26.8,29.1,18.7,32.6,32.5)
y = c(11.6,16.1,9.3,9.1,8.4,7.7,11.3,8.4)
fit = lm(y ~ x1 + x2)
print(fit)

##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Coefficients:
## (Intercept) x1 x2
## 3.5073534 -0.0002477 0.2609466

X = matrix(c(1,1,1,1,1,1,1,1,x1,x2), nrow=8, ncol=3)
Y = matrix(y)
print(X)

## [,1] [,2] [,3]
## [1,] 1 679 30.4
## [2,] 1 1420 34.1
## [3,] 1 1349 17.2
## [4,] 1 296 26.8
## [5,] 1 6975 29.1
## [6,] 1 323 18.7
## [7,] 1 4200 32.6
## [8,] 1 633 32.5

beta = solve(t(X) %*% X ) %*% t(X) %*% Y
print(beta)
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## [,1]
## [1,] 3.5073533595
## [2,] -0.0002477099
## [3,] 0.2609465576

8.1.2 Bias, variance, and covariance

The least squares estimator is unbiased:
E[β̂] = E[(X>X)−1X>Y ]

= E[(X>X)−1X>(Xβ + ε)]
= E[(X>X)−1X>Xβ + (X>X)−1X>ε]
= E[β + (X>X)−1X>ε]
= β + (X>X)−1X>E[ε] = β.

The covariances between entries of β̂ can be computed as follows: Let M = (X>X)−1X> and then β̂ = MY .
As a result

β̂i−1 =
n∑
l=1

MilYl

so

Cov(β̂i−1, β̂j−1) = Cov
( n∑
l=1

MilYl,

n∑
r=1

MjrYr

)
=

n∑
l=1

n∑
r=1

MilMjrCov(Yl, Yr)

=
n∑
l=1

MilMjlVar(Yl)

= σ2
n∑
l=1

MilMjl

= σ2(MM>)ij .
This can be written in the matrix form as

Cov(β̂) = σ2MM> = σ2(X>X)−1X>X(X>X)−1 = σ2(X>X)−1.

In particular, Var(β̂i) are the diagonal elements of σ2(X>X)−1, and

β̂i−1 ∼ N
(
βi−1, σ

2[(X>X)−1]ii
)
.

8.1.3 Residuals

The sum of squares of residuals can be similarly defined as

SSR =
n∑
i=1

(Yi − β̂0 − β̂1xi1 − · · · − β̂kxik)2

=
n∑
i=1

(Yi − β̂>xi)2

= ‖Y −Xβ̂‖22
= (Y −Xβ̂)>(Y −Xβ̂)
= Y >Y − Y >Xβ̂ − β̂>X>Y + β̂>X>Xβ̂

= Y >Y − Y >Xβ̂,
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where the second-to-last equality holds because X>Xβ = X>Y .

It can shown that
SSR
σ2 ∼ χ

2
n−(k+1),

so E[ SSR
σ2 ] = n− k − 1 or

E
[ SSR
n− k − 1

]
= σ2.

Therefore, SSR
n−k−1 is an unbiased estimator of σ2. In fact, SSR is independent of β̂ = (β̂0, β̂1, . . . , β̂k)>.

Example. In the previous example, we can compute SSR and SSR
n−k−1 as follows:

ssr = t(Y) %*% Y - t(Y) %*% X %*% beta
print(ssr)

## [,1]
## [1,] 34.12123

sigma2 = ssr/(8-2-1)
print(sigma2)

## [,1]
## [1,] 6.824247

The coefficient of determination is defined as

R2 = 1− SSR∑n
i=1(Yi − Ȳ )2

.

8.1.4 Inference

Estimating a parameter: We have, for i = 1, . . . , k + 1,

β̂i−1 − βi−1

σ
√

[(X>X)−1]ii
∼ N (0, 1),

so
β̂i−1 − βi−1

σ
√

[(X>X)−1]ii
√

SSR/σ2/(n− k − 1)
= β̂i−1 − βi−1√

[(X>X)−1]ii · SSR/(n− k − 1)
has the t-distribution with n− k − 1 degrees of freedom. We can use this fact to do hypothesis testing and
build confidence intervals as before.

Predicting a mean response: Suppose that we are given a new covariate vector x0 = (1, x01, . . . , x0k)>.
Then the predicted response is

k∑
i=0

β̂ix0i = β̂>x0.

To build confidence intervals for
∑k
i=0 βix0i, it suffices to use the fact that∑k

i=0 β̂ix0i −
∑k
i=0 βix0i√

x>0 (X>X)−1x0 · SSR/(n− k − 1)

has the t-distribution with n− k − 1 degrees of freedom.

Predicting a future response: To build confidence intervals for Y0 = β>x0 + ε0 where ε0 ∼ N (0, σ2), it
suffices to use the fact that ∑k

i=0 β̂ix0i − Y0√
[x>0 (X>X)−1x0 + 1] · SSR/(n− k − 1)

has the t-distribution with n− k − 1 degrees of freedom.
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8.2 Polynomial regression
Let us consider the case where the relation between the dependent variable Y and the independent variable x
is approximated by a polynomial with degree r ≥ 2. This is a generalization of linear regression because a
linear function is a polynomial of degree 1. More formally, we have

Y = β0 + β1x+ β2x
2 + · · ·+ βrx

r + ε,

where β0, β1, . . . , βr are the regression coefficients to be estimated, and ε is the error term.

Suppose we observe n pairs (xi, Yi) for i = 1, . . . , n satisfying

Yi = β0 + β1xi + β2x
2
i + · · ·+ βrx

r
i + εi.

Then the least squares estimators β̂0, β̂1, . . . , β̂r are the quantities that minimize
n∑
i=1

(Yi − β̂0 − β̂1xi − β̂2x
2
i − · · · − β̂rxri )2.

To solve for β̂0, β̂1, . . . , β̂r, we can take the partial derivatives of the above quantity with respect to the r + 1
variables and set them to zero. The system of r + 1 linear equations will yield the estimators β̂0, β̂1, . . . , β̂r.

Example. Let xi = i for i = 1, . . . , 10, and let Yi be

20.6, 30.8, 55, 71.4, 97.3, 131.8, 156.3, 197.3, 238.7, 291.7.

Let us do a quadratic fit using R:
x = seq(1, 10)
y = c(20.6, 30.8, 55, 71.4, 97.3, 131.8, 156.3, 197.3, 238.7, 291.7)
fit = lm(y ~ 1 + x + I(xˆ2))
print(fit)

##
## Call:
## lm(formula = y ~ 1 + x + I(x^2))
##
## Coefficients:
## (Intercept) x I(x^2)
## 12.643 6.297 2.125

plot(x, y)
points(x, predict(fit), type="l")
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Check the residuals:
r = y - (12.643 + 6.297*x + 2.125*xˆ2)
plot(x, r)
abline(0, 0)
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How about higher-order fit?
fit = lm(y ~ 1 + x + I(xˆ2) + I(xˆ3))
print(fit)

##
## Call:
## lm(formula = y ~ 1 + x + I(x^2) + I(x^3))
##
## Coefficients:
## (Intercept) x I(x^2) I(x^3)
## 5.15667 12.93739 0.68526 0.08726

plot(x, y)
points(x, predict(fit), type="l")
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fit = lm(y ~ 1 + x + I(xˆ2) + I(xˆ3) + I(xˆ4) + I(xˆ5) + I(xˆ6) + I(xˆ7) + I(xˆ8))
print(fit)

##
## Call:
## lm(formula = y ~ 1 + x + I(x^2) + I(x^3) + I(x^4) + I(x^5) +
## I(x^6) + I(x^7) + I(x^8))
##
## Coefficients:
## (Intercept) x I(x^2) I(x^3) I(x^4) I(x^5)
## 6.430e+02 -1.542e+03 1.457e+03 -7.043e+02 1.959e+02 -3.252e+01
## I(x^6) I(x^7) I(x^8)
## 3.181e+00 -1.691e-01 3.765e-03
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plot(x, y)
points(x, predict(fit), type="l")
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8.3 Regression with binary response
8.3.1 Logistic model

Consider independent experiments that result in a binary outcome: either a success or a failure. Suppose
that a factor of value x in the experiment leads to a success with probability p(x). The logistic regression
model assumes

p(x) = ea+bx

1 + ea+bx .

The logistic regression function p(x) is increasing if b > 0, and is decreasing if b < 0:

Let
o(x) = p(x)

1− p(x) = ea+bx

be the odds for success. Then the log odds, called the logit, is a linear function:

log(o(x)) = a+ bx.

Here a and b are the parameters to be estimated.
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8.3.2 Maximum likelihood estimation

Suppose that in each of n independent experiments, the independent variable xi leads to a binary result Yi.
Here Yi = 1 means a success and Yi = 0 means a failure. Therefore, Yi are independent Bernoulli random
variables

Yi ∼ Ber
(
p(xi)

)
= Ber

( ea+bxi

1 + ea+bxi

)
.

Observing the data (xi, Yi) for i = 1, . . . , n, we aim to estimate the parameters a and b.

For this, consider the PMF of each Yi:

fi(yi | a, b) = P{Yi = yi} = [p(xi)]yi [1− p(xi)]1−yi =
( ea+bxi

1 + ea+bxi

)yi( 1
1 + ea+bxi

)1−yi
= (ea+bxi)yi

1 + ea+bxi

where yi = 0 or 1. Thus the joint PMF of (Y1, . . . , Yn) or the likelihood is

L(a, b | y1, . . . , yn) = f(y1, . . . , yn | a, b) =
n∏
i=1

fi(yi) =
n∏
i=1

(ea+bxi)yi
1 + ea+bxi

The log-likelihood is

logL(a, b | y1, . . . , yn) =
n∑
i=1

log (ea+bxi)yi
1 + ea+bxi

=
n∑
i=1

[
yi(a+ bxi)− log(1 + ea+bxi)

]
.

The maximum likelihood estimators â and b̂ are the quantities a and b that maximize the above log-likelihood.
There is no closed-form expression for (â, b̂), so we have to rely on some package to find the solution.

Example. Let us consider the relation between the temperature and whether a machine fails. The experi-
ments are run at temperatures 53, 56, 57, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 80, 81.
Whether the machine fails is indicated by a 0−1 response: 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.
Here is how we fit the logistic regression model in R:
x = c(53,56,57,63,66,67,67,67,68,69,70,70,70,70,72,73,75,75,76,76,78,79,80,81)
y = c(1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0)
fit = glm(y ~ x, family = binomial)
print(fit)

##
## Call: glm(formula = y ~ x, family = binomial)
##
## Coefficients:
## (Intercept) x
## 10.8753 -0.1713
##
## Degrees of Freedom: 23 Total (i.e. Null); 22 Residual
## Null Deviance: 28.97
## Residual Deviance: 23.03 AIC: 27.03

plot(x,y)
a = unname(coef(fit)[1])
b = unname(coef(fit)[2])
x2 = seq(53,81,0.1)
y2 = exp(a+b*x2)/(1+exp(a+b*x2))
points(x2,y2,type="l")
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8.3.3 Probit model

The probit model is very similar to the logistic regression model, with the difference being that the success
probability is defined as

p(x) = Φ(a+ bx) = 1√
2π

∫ a+bx

−∞
e−y

2/2 dy.

Here Φ is the CDF of N (0, 1), so p(x) is the probability that a standard normal random variable is less than
a+ bx.

The maximum likelihood estimator can be defined similarly.

Example. We now fit a probit model to the above data:
fit = glm(y ~ x, family = binomial(link = "probit"))
print(fit)

##
## Call: glm(formula = y ~ x, family = binomial(link = "probit"))
##
## Coefficients:
## (Intercept) x
## 6.6444 -0.1042
##
## Degrees of Freedom: 23 Total (i.e. Null); 22 Residual
## Null Deviance: 28.97
## Residual Deviance: 22.98 AIC: 26.98
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plot(x,y)
a = unname(coef(fit)[1])
b = unname(coef(fit)[2])
x2 = seq(53,81,0.1)
y2 = exp(a+b*x2)/(1+exp(a+b*x2))
points(x2,y2,type="l")
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8.4 Analysis of variance
Example. A company is considering purchasing, in quantity, one of four different computer packages
designed to teach employees a new programming language. To see the effectiveness of the four packages,
the company can do an experiment as follows: Choose 160 employees and divide them into 4 groups of size
40. Each group uses one of the packages, and after a period of time, the effectivenss of the packages can be
measured by an exam given to the employees.

The problem is, the scores of the employees in the exam will be stochastic: For example, if the average score
of one group is higher than that of another group, it could be due to that one package is better than the
other, but it could also be the case that this is due to random chance. How do we decide if one package is
indeed better, or if the packages are interchangeable?

8.4.1 One-way analysis of variance

Throughout the discussion, the data are normally distributed with the same (but unknown) variance σ2.
Hence it suffices to specify the mean when we talk about how the data are generated.

Consider m independent samples, each of size n, consisting of independent
Xij ∼ N (µi, σ2), i = 1, . . . ,m, j = 1, . . . , n.
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We are interested in testing H0 : µ1 = µ2 = · · · = µm against H1 : otherwise.

To this end, we will construct two estimators of σ2 and compare them: The first estimator is good regardless
of whether H0 or H1 is true, while the second is good only under H0. As a result, comparing the two will
serve as a test.

8.4.2 First estimator of variance

Since
(Xij − µi)/σ ∼ N (0, 1),

we have that
m∑
i=1

n∑
j=1

(Xij − µi)2/σ2 ∼ χ2
mn.

Because we do not know µi, the above quantity is not a statistic. But we can estimate µi by

X̄i = 1
n

n∑
j=1

Xij

for i = 1, . . . ,m. It can be shown that
m∑
i=1

n∑
j=1

(Xij − X̄i)2/σ2 ∼ χ2
nm−m.

Define
SSw =

m∑
i=1

n∑
j=1

(Xij − X̄i)2

which is called the within samples sum of squares. Then SSw/σ
2 ∼ χ2

nm−m, so

E[SSw/σ
2] = nm−m, E[SSw/(nm−m)] = σ2,

Thus SSw/(nm−m) is an unbiased estimator of σ2.

8.4.3 Second estimator of variance

Let us assume H0 : µ1 = · · · = µm = µ. In this case, X̄i ∼ N (µ, σ2/n), so

X̄i − µ√
σ2/n

=
√
n

σ
(X̄i − µ) ∼ N (0, 1).

Hence
n

m∑
i=1

(X̄i − µ)2/σ2 ∼ χ2
m.

Furthermore, we can estimate µ by

X̄ = 1
m

m∑
i=1

X̄i = 1
mn

m∑
i=1

n∑
j=1

Xij .

It can be shown that
n

m∑
i=1

(X̄i − X̄)2/σ2 ∼ χ2
m−1.

Define
SSb = n

m∑
i=1

(X̄i − X̄)2
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which is called the between samples sum of squares. Then SSb/σ
2 ∼ χ2

m−1, so

E[SSb/σ
2] = m− 1, E[SSb/(m− 1)] = σ2,

Thus SSb/(m− 1) is an unbiased estimator of σ2. In addition, it is known that this quantity tends to exceed
σ2 if H0 is not true.

Moreover, a useful fact is that
m∑
i=1

n∑
j=1

X2
ij = nmX̄2 + SSb + SSw.

8.4.4 Test statistic and F -distribution

The test statistic we use is
TS = SSb/(m− 1)

SSw/(nm−m) .

It is known that SSb and SSw are actually independent. It follows from the definition of the F -distribution
that TS is an F -random variable with m − 1 and nm − m degrees of freedom. We define the quantile
fm−1,nm−m,α by

P{X ≤ fm−1,nm−m,α} = 1− α

where X denotes an F -random variable with m− 1 and nm−m degrees of freedom. Since an F -random
variable takes only positive values, the F -test is similar to the chi-square test, rather than the Z-test or the
t-test. In particular, we have that the p-value is

P{X > TS}.

Example. An auto rental firm is using 15 identical motors that run at a fixed speed to test 3 different
brands of gasoline. Each brand of gasoline is assigned to exactly 5 of the motors. Each motor runs on 10
gallons of gasoline until it is out of fuel. The total mileages obtained by different motors are as follows:

Gas 1 : 220 251 226 246 260
Gas 2 : 244 235 232 242 225
Gas 3 : 252 272 250 238 256

Test the hypothesis that the average mileage is not affected by the type of gas used at the 5 percent level of
significance.

We can compute the p-value P{X > TS} ≈ 0.115 > 0.05 to see that H0 is accepted.
x1 = c(220 , 251 , 226 , 246 , 260)
x2 = c(244 , 235 , 232 , 242 , 225)
x3 = c(252 , 272 , 250 , 238 , 256)
x_avg = (mean(x1) + mean(x2) + mean(x3))/3
n = 5
m = 3
SS_w = (n-1)*(var(x1) + var(x2) + var(x3))
SS_b = n*((mean(x1) - x_avg)ˆ2 + (mean(x2) - x_avg)ˆ2 + (mean(x3) - x_avg)ˆ2)
TS = (SS_b/(m-1))/(SS_w/(n*m-m))
print(c(SS_w, SS_b, TS))

## [1] 1991.600000 863.333333 2.600924

print(1-pf(TS,m-1,n*m-m))

## [1] 0.1152489
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print(qf(1-0.05,m-1,n*m-m))

## [1] 3.885294

8.4.5 One-way analysis of variance with unequal sample sizes

Now suppose that the samples i = 1, . . . ,m have sizes n1, . . . , nm respectively, consisting of independent

Xij ∼ N (µi, σ2), i = 1, . . . ,m, j = 1, . . . , ni.

Again, consider testing H0 : µ1 = µ2 = · · · = µm against H1 : otherwise.

Let
X̄i = 1

ni

ni∑
j=1

Xij , X̄ = 1
m

m∑
i=1

X̄i.

For similar reasons,

SSw/σ
2 ∼ χ2∑m

i=1
ni−m

, SSw =
m∑
i=1

ni∑
j=1

(Xij − X̄i)2,

and SSw/(
∑m
i=1 ni −m) is an unbiased estimator of σ2.

Moreover, if H0 is true, then

SSb/σ
2 ∼ χ2

m−1, SSb =
m∑
i=1

ni(X̄i − X̄)2,

and SSb/(m− 1) is an unbiased estimator of σ2.

Finally, SSb and SSw are independent and

SSb/(m− 1)
SSw/(

∑m
i=1 ni −m)

is an F -random variable with m− 1 and
∑m
i=1 ni −m degrees of freedom. We can use this quantity as the

test statistic.

8.5 Two-way analysis of variance
Let us consider independent observations

Xij ∼ N (µij , σ2), i = 1, . . . ,m, j = 1, . . . n.

Note that the means may be all distinct, which is different from the setup in the last section. For example,
Xij can be the score of student j in exam i. In this section, we consider the two-factor additive model

µij = µ+ αi + βj , i = 1, . . . ,m, j = 1, . . . n,

such that
m∑
i=1

αi =
n∑
j=1

βj = 0.

We are interested in testing H0 : α1 = · · · = αm = 0 against H1 : otherwise. Here H0 means that

µij = µ+ βj , j = 1, . . . n,

i.e., the mean is affected only by the column (e.g., which student), not the row (e.g., which exam).

The test will be constructed in a way similar to what we discussed in the last section: construct and compare
two estimators of σ2.
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8.5.1 First estimator of variance

Since
(Xij − µ− αi − βj)/σ ∼ N (0, 1),

we have
m∑
i=1

n∑
j=1

(Xij − µ− αi − βj)2/σ2 ∼ χ2
nm.

We need to replace µ, αi and βj by estimators. Define

X̄ = 1
mn

m∑
i=1

n∑
j=1

Xij , X̄i· = 1
n

n∑
j=1

Xij , X̄·j = 1
m

m∑
i=1

Xij .

We claim:

• X̄ is an unbiased estimator of µ;

• X̄i· − X̄ is an unbiased estimator of αi;

• X̄·j − X̄ is an unbiased estimator of βj .

Indeed,

E[X̄] = 1
mn

m∑
i=1

n∑
j=1

µij = 1
mn

m∑
i=1

n∑
j=1

(µ+ αi + βj) = µ,

E[X̄i· − X̄] = 1
n

n∑
j=1

µij − µ = 1
n

n∑
j=1

(µ+ αi + βj)− µ = αi,

and similarly E[X̄·j − X̄] = βj .

Replacing µ, αi and βj in
∑m
i=1
∑n
j=1(Xij − µ−αi − βj)2/σ2 by the corresponding estimators, one can show

that
m∑
i=1

n∑
j=1

(Xij − X̄i· − X̄·j + X̄)2/σ2 ∼ χ2
(n−1)(m−1).

Why is (n− 1)(m− 1) the number of degrees of freedom? We need to estimate µ, αi for i = 1, . . . ,m, and
βj for j = 1, . . . , n, but

∑m
i=1 αi = 0 and

∑n
j=1 βj = 0, so there are 1 +m+ n− 2 = m+ n− 1 parameters.

Hence there are mn− (m+ n− 1) = (m− 1)(n− 1) degrees of freedom.

We call the quantity

SSe =
m∑
i=1

n∑
j=1

(Xij − X̄i· − X̄·j + X̄)2

the error sum of squares. Hence SSe/σ
2 ∼ χ2

(n−1)(m−1), and
SSe

(n−1)(m−1) is an unbiased estimator of σ2.

8.5.2 Second estimator of variance

If H0 is true, then
E[X̄i·] = µ+ αi = µ

and
Var(X̄i·) = σ2/n.

Hence
X̄i· − µ
σ/
√
n
∼ N (0, 1), n

m∑
i=1

(Xi· − µ)2/σ2 ∼ χ2
m.
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It is known that
n

m∑
i=1

(X̄i· − X̄)2/σ2 ∼ χ2
m−1.

We call the quantity

SSr = n

m∑
i=1

(X̄i· − X̄)2

the row sum of squares. Hence SSr/σ
2 ∼ χ2

m−1, and SSr
m−1 is an unbiased estimator of σ2.

Again, the above statements hold if H0 is true. If H0 is not true, then SSr
m−1 tends to be larger than σ2.

8.5.3 Test statistics

For hypothesis testing between H0 : α1 = · · · = αm = 0 and H1 : otherwise, the test statistic is

TS = SSr/(m− 1)
SSe/[(n− 1)(m− 1)] = SSr(n− 1)

SSe
,

which follows the F -distribution with m− 1 and (n− 1)(m− 1) degrees of freedom.

Analogously, for hypothesis testing between H0 : β1 = · · · = βn = 0 and H1 : otherwise, we define the column
sum of squares

SSc = m

n∑
j=1

(X̄·j − X̄)2.

The test statistic is
TS = SSc/(n− 1)

SSe/[(n− 1)(m− 1)] = SSc(m− 1)
SSe

,

which follows the F -distribution with n− 1 and (n− 1)(m− 1) degrees of freedom.

Example. The following data represent the number of different species collected at 6 stations from 1970 to
1977:

1970 : 53 35 31 37 40 43
1971 : 36 34 17 21 30 18
1972 : 47 37 17 31 45 26
1973 : 55 31 17 23 43 37
1974 : 40 32 19 26 45 37
1975 : 52 42 20 27 26 32
1976 : 39 28 21 21 36 28
1977 : 40 32 21 21 36 35

Test if the number of species depends on the location or the year, at the 5 percent level of significance.

It turns out that the p-value is very small in each case, so H0 is rejected. That is, the number of species
probably depends on both the location and the year.
m = 8
n = 6
x1 = c(53,35,31,37,40,43)
x2 = c(36,34,17,21,30,18)
x3 = c(47,37,17,31,45,26)
x4 = c(55,31,17,23,43,37)
x5 = c(40,32,19,26,45,37)
x6 = c(52,42,20,27,26,32)
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x7 = c(39,28,21,21,36,28)
x8 = c(40,32,21,21,36,35)
X = t(matrix(c(x1,x2,x3,x4,x5,x6,x7,x8),nrow=n,ncol=m))
SS_r = n*sum((rowMeans(X)-mean(X))ˆ2)
SS_c = m*sum((colMeans(X)-mean(X))ˆ2)
SS_e = sum((X - matrix(rep(rowMeans(X),n),nrow=m) - t(matrix(rep(colMeans(X),m),nrow=n))

+ mean(X))ˆ2)
TS1 = (n-1)*SS_r/SS_e
TS2 = (m-1)*SS_c/SS_e
print(1-pf(TS1,m-1,(n-1)*(m-1)))

## [1] 0.004066874

print(1-pf(TS2,n-1,(n-1)*(m-1)))

## [1] 4.929785e-10
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