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Chapter 1

Fundamentals of hypothesis testing

1.1 Background and setup

1.1.1 Review of probability

Sample space Consider a sample space X containing all possible outcomes of an experiment.
Let µ be the reference (or natural) measure on X . We primarily consider the following spaces:

• A finite or countable set X equipped with the counting measure µ. For example, when we roll
a die, the outcome lies in X = {1, 2, 3, 4, 5, 6}. Moreover, if we consider the number of times we
flip a coin before a “heads” is observed, then this number lies in X = {1, 2, 3, . . . }.

• X = R
d equipped with the Lebesgue measure µ. For example, tomorrow’s temperature is in

X = R, while tomorrow’s temperature and humidity jointly lie in X = R
2.

Random variable and distribution A random variable X is an experiment taking values in
X . We write X ∼ P if X follows a distribution P. There are several ways to describe a random
variable or a distribution:

• If X is discrete, i.e., X is finite or countable, we can specify the probability mass function (PMF)
fX of X. For example, for the uniform random variable X ∼ Unif([n]) where [n] := {1, . . . , n},
we have fX(i) = P{X = i} = 1/n for i = 1, . . . , n.

• If X is continuous, e.g., X = R or Rd, we can specify the probability density function (PDF or
density) fX of X. For example, for the standard Gaussian random variable X ∼ N(0, 1), we have
fX(t) = 1√

2π
e−t

2/2 for t ∈ R.

• The cumulative distribution function (CDF) of a random variable X on R is FX(t) = P{X ≤ t}.
We have F ′X(t) = fX(t) and

∫ t
−∞ fX(s) ds = FX(t). The CDF of X = (X1, . . . , Xd) on Rd is

FX(t1, . . . , td) = P{X1 ≤ t1, . . . , Xd ≤ td}.

Event, probability, and expectation In general, for a subset E ⊂ X , the probability of the
event {X ∈ E} is P{X ∈ E} =

∫
E fX dµ. Examples:

• Roll a die; the outcome is X ∼ Unif([6]). The probability of seeing 2 or 3 is P{X ∈ {2, 3}} =∑3
i=2 1/6 = 1/3.
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• Consider X ∼ N(0, 1). The probability that X is positive is P{X > 0} =
∫∞

0
1√
2π
e−t

2/2 dt = 1/2.

The expectation of X is E[X] =
∫
X t fX(t) dµ(t). Given a function g : X → R, the expectation

of g(X) is E[g(X)] =
∫
X g(t)fX(t) dµ(t). Examples:

• For X ∼ Unif([6]), E[X] =
∑6

i=1 i ·
1
6 = 3.5.

• For X ∼ N(0, 1), the variance of X is E[(X − 0)2] =
∫∞
−∞ t

2 · 1√
2π
e−t

2/2 dt = 1.

1.1.2 Setup of statistical hypothesis testing

Statistics is in some sense the reverse engineering of probability. Observing a set of data X =
(X1, X2, . . . , Xn), we aim to say something about the underlying distribution that generates the
data. Let us describe the basic setup of hypothesis testing using a biased coin flip as a running
example. Consider a biased coin for which we see 1 (heads) with probability θ ∈ [0, 1] and see 0
(tails) with probability 1− θ. In other words, the observation follows the Ber(θ) distribution. The
following is a list of basic concepts in (parametric) statistics:

• Parameter: θ, which is typically a real number. E.g., θ = 0.3, 0.5, or 0.8.

• Parameter space: the set Θ of parameters. E.g., Θ = [0, 1].

• Probability distribution: Pθ. E.g., Pθ = Ber(θ).

• Observation: X = (X1, . . . , Xn), where we have i.i.d. X1, . . . , Xn ∼ Pθ. E.g., X1, . . . , Xn are the
binary outcomes of n independent coin flips.

• Family of distributions: the set P containing all Pθ. E.g., P = {Ber(θ) : θ ∈ [0, 1]}.

Observing the data X ∼ P⊗nθ (or simply X ∼ Pθ), statistical hypothesis testing consists in
testing between two hypotheses:

• Null hypothesis, H0: θ ∈ Θ0 for a subset Θ0 ⊂ Θ;

• Alternative hypothesis, H1: θ ∈ Θ1 where Θ1 := Θ \Θ0.

For coin flips, an example is Θ0 = [0, 0.5].

1.1.3 Non-randomized and randomized tests

A non-randomized test ψ = ψ(X) is a function of X taking values in {0, 1}, where

• ψ(X) = 0 means that we accept the null hypothesis H0;

• ψ(X) = 1 means that we reject the null hypothesis H0.

Since X is a random variable, ψ(X) is also a random variable, and, clearly, it has to be a Bernoulli
random variable. For coin flips, an example is ψ(X) = 1{X̄ > 0.5} where X̄ := (X1 + · · ·Xn)/n.

Defining a non-randomized test is equivalent to specifying the following two regions:

• Region of acceptance, S0: ψ(X) = 0 if and only if X ∈ S0;
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• Region of rejection or critical region, S1: ψ(X) = 1 if and only if X ∈ S1.

For coin flips, an example is S0 = {x ∈ {0, 1}n : x̄ ≤ 0.5} where x̄ = (x1 + · · ·+ xn)/n.

A randomized test can be defined through a function φ = φ(X) of X taking values in [0, 1]:
Given X, we

• accept the null hypothesis H0 with probability 1− φ(X);

• reject the null hypothesis H0 with probability φ(X).

Therefore, a randomized test is a generalization of the non-randomized version, and the test is a
Ber(φ(X)) random variable conditional on X.

1.1.4 Level of significance, power, and two types of errors

When designing and analyzing a (non-randomized) test ψ, we usually select a number α ∈ (0, 1),
called the level of significance (also known as significance, statistical significance, or significance
level), such that

Pθ{ψ(X) = 1} = Pθ{X ∈ S1} ≤ α for all θ ∈ Θ0. (1.1)

In other words, α is an upper bound on the size of the critical region under the probability Pθ for
any θ ∈ Θ0. For example, when α = 0.05, the above condition says that, whenever H0 holds, the
test ψ gives 1 with probability at most 0.05, i.e., ψ gives 0 with probability at least 0.95.

Furthermore, for any θ ∈ Θ1 = Θ\Θ0, the power (function) of the test ψ against the alternative
θ is defined as

β(θ) := Pθ{ψ(X) = 1} = Pθ{X ∈ S1}.

We typically would like to maximize the power β(θ) over all alternatives θ ∈ Θ1 subject to the level
of significance (1.1).

Note that a test ψ can make two types of errors:

• Type I error (false positive): reject H0 when H0 is true;

• Type II error (false negative): accept H0 when H1 is true.

In terms of the two types of errors, we are interested in minimizing the type II error 1−β(θ) subject
to the constraint that the type I error is no larger than α.

The definitions of significance and power can be generalized to a randomized test φ by replacing
Pθ{ψ(X) = 1} with Eθ[φ(X)]. That is, we would like to maximize the power

β(θ) := Eθ[φ(X)] for θ ∈ Θ1

subject to the level of significance

Eθ[φ(X)] ≤ α for θ ∈ Θ0.
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1.2 Neyman–Pearson lemma

1.2.1 Simple hypothesis testing

Let us consider the simplest case where Θ = {0, 1}, Θ0 = {0}, and Θ1 = {1}. That is, we are
testing between two simple hypotheses

• H0 : X ∼ P0;

• H1 : X ∼ P1.

Here a simple hypothesis means that there is a single distribution associated to it. On the other
hand, if the associated set of distributions contains multiple elements, then it is called a composite
hypothesis, which we will study later.

Recall that designing a non-randomized test ψ is equivalent to specifying the critical region S1

(i.e., the region of rejection), which is a subset of the sample space X . Let us revisit our goal: to
maximize the power of the test subject to a certain level of significance, i.e.,

max
S1⊂X

P1{X ∈ S1} s.t. P0{X ∈ S1} ≤ α.

This formulation offers the geometric intuition that we are maximizing the size of S1 under the
probability distribution P1 under the constraint that its size is no larger than α under P0.

For theory, we consider directly the more general case of a (possibly) randomized test φ and
study the problem

max
φ
E1[φ(X)] s.t. E0[φ(X)] ≤ α.

What is the most powerful test φ∗ that solves the above optimization problem?

1.2.2 Likelihood-ratio test

Let p0 and p1 denote the densities of P0 and P1 respectively, with respect to a reference measure
µ. The likelihood ratio (statistic) is defined as

L(X) :=
p1(X)

p0(X)
.

For c > 0 and γ ∈ [0, 1], define

φc,γ(X) :=


1 if L(X) > c,

γ if L(X) = c,

0 if L(X) < c.

The randomized test φc,γ is called the likelihood-ratio test or the Neyman–Pearson test. When
X is a continuous variable, we usually have L(X) = c with probability zero, so the test becomes
non-randomized. The following theorem shows that, if c and γ are chosen appropriately, then the
test φc,γ is the most powerful test that we are aiming for.

Theorem 1.1 (Neyman–Pearson lemma). For any level of significance α ∈ (0, 1), the following
statements hold:
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1. There exists c > 0 and γ ∈ [0, 1] such that E0[φc,γ(X)] = α.

2. For such a choice of c and γ, the test φc,γ maximizes the power βφ := E1[φ(X)] among all tests
φ such that E0[φ(X)] ≤ α. In other words, φc,γ is the most powerful test at significance level α.

3. If φ∗ is a most powerful test at significance level α, then we have φ∗(x) = φc,γ(x) on the set
{x : L(x) 6= c} µ-almost everywhere. Moreover, we have E0[φ∗(X)] = α unless E1[φ∗(X)] = 1.

Proof. 1. Let F (t) := P0{L(X) ≤ t} be the CDF of the likelihood ratio L(X) under the null
hypothesis. Then

E0[φc,γ(X)] = P0{L(X) > c}+ γP0{L(X) = c} = 1− F (c) + γ(F (c)− F (c−))

where F (c−) := limt↗c F (t). Consider two cases: (i) If there exists c such that F (c) = 1 − α,
then we set γ = 0. It follows immediately that E0[φc,γ(X)] = α. (ii) Otherwise, there must exist

c such that F (c−) ≤ 1−α < F (c). Then we set γ = F (c)−(1−α)
F (c)−F (c−) . It follows that E0[φc,γ(X)] = α.

2. Let φ be a test such that E0[φ(X)] ≤ α. By the definition of φc,γ , it is easy to check that(
φc,γ(x)− φ(x)

)(
p1(x)− c p0(x)

)
≥ 0

for any x ∈ X . Therefore,∫
X

(φc,γ − φ)(p1 − c p0) dµ ≥ 0 ⇐⇒
∫
X

(φc,γ − φ)p1 dµ ≥ c
∫
X

(φc,γ − φ)p0 dµ.

In other words, we have

E1[φc,γ(X)]−E1[φ(X)] ≥ c
(
E0[φc,γ(X)]−E0[φ(X)]

)
.

Since E0[φ(X)] ≤ α = E0[φc,γ(X)], it follows that βφc,γ − βφ ≥ 0.

3. Suppose that φ∗ is the most powerful test at significance level α. Replacing φ with φ∗ in the
previous display yields

0 = E1[φc,γ(X)]−E1[φ∗(X)] ≥ c
(
E0[φc,γ(X)]−E0[φ∗(X)]

)
≥ 0,

so the equality holds. As a result, all the inequalities in the previous part are in fact equalities,
and we must have (

φc,γ(x)− φ∗(x)
)(
p1(x)− c p0(x)

)
= 0

µ-almost everywhere. Therefore, on the set {x : L(x) 6= c} = {x : p1(x) 6= c p0(x)}, we have
φ∗(x) = φc,γ(x) µ-almost everywhere.

Finally, since c
(
E0[φc,γ(X)] − E0[φ∗(X)]

)
= 0, we have either E0[φ∗(X)] = α or c = 0. In the

latter case,

E1[φ∗(X)] = E1[φc,γ(X)] ≥ P1{L(X) > 0} ≥ P1{p1(X) > 0} = 1.
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1.2.3 Examples

Gaussian Fix a nonzero vector µ ∈ Rd. Consider testing between simple hypotheses:

• H0 : X ∼ N (0, Id);

• H1 : X ∼ N (µ, Id).

We have

p0(x) =
1

(2π)d/2
exp

(
− ‖x‖

2

2

)
, p1(x) =

1

(2π)d/2
exp

(
− ‖x− µ‖

2

2

)
for x ∈ Rd, so

logL(x) = −‖x− µ‖
2

2
+
‖x‖2

2
= 〈x, µ〉 − ‖µ‖

2

2
.

Therefore, the condition L(x) > c can be written equivalently as 〈x, µ〉 > τ for some τ depending
on c. The likelihood-ratio test takes the form

φτ (X) =

{
1 if 〈X,µ〉 > τ,

0 if 〈X,µ〉 ≤ τ.

It remains to find τ such that E0[φτ (X)] = P0{〈X,µ〉 > τ} = α. Then the above general theory
guarantees that φτ is the most powerful test at significance level α. Towards this end, note that
〈X,µ〉 ∼ N (0, ‖u‖2) and so

P0{〈X,µ〉 > τ} = P{Z > τ/‖u‖}

where Z is a standard Gaussian. Therefore, if zα denotes the (1−α)-quantile of Z, then τ = zα‖u‖
satisfies that P0{〈X,µ〉 > τ} = α.

Binomial Fix θ0, θ1 ∈ [0, 1] such that θ0 < θ1. Consider testing between simple hypotheses:

• H0 : X ∼ Bin(n, θ0);

• H1 : X ∼ Bin(n, θ1).

We have

p0(x) =

(
n

x

)
θx0 (1− θ0)n−x, p1(x) =

(
n

x

)
θx1 (1− θ1)n−x

for x = 0, 1, . . . , n, so

logL(x) = x log
θ1

θ0
+ (n− x) log

1− θ1

1− θ0
= x log

θ1(1− θ0)

θ0(1− θ1)
+ n log

1− θ1

1− θ0
.

Since log θ1(1−θ0)
θ0(1−θ1) > 0, the condition L(x) > c can be written equivalently as x > τ for some τ

depending on c. The likelihood-ratio test takes the form

φτ,γ(X) =


1 if X > τ,

γ if X = τ,

0 if X < τ.
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If it holds that

P0{X ≤ k} =
k∑
j=0

(
n

j

)
θj0(1− θ0)n−j = 1− α

for some k = 0, 1, . . . , n, then we can set τ = k and γ = 0 so that φk,0 is the most powerful test at
significance level α according to the above general theory. Otherwise, if

k−1∑
j=0

(
n

j

)
θj0(1− θ0)n−j ≤ 1− α <

k∑
j=0

(
n

j

)
θj0(1− θ0)n−j ,

then we can set τ = k and

γ =

∑k
j=0

(
n
j

)
θj0(1− θ0)n−j − (1− α)(
n
k

)
θk0(1− θ0)n−k

so that φk,γ is the most powerful test at significance level α.

1.2.4 Geometric intuition

For a simple hypothesis testing problem, we can gain some geometric intuition about the set
of points (α, β) for which there exists a test φ such that E0[φ(X)] = α and E1[φ(X)] = β. See
Figure 3.1 of [LR06]. In short, this convex subset of [0, 1]2 is symmetric around the center (1/2, 1/2),
and the most powerful tests correspond to the points on the upper boundary of the set.

1.3 UMP and unbiasedness

1.3.1 One-sided testing and uniformly most powerful tests

The Neyman–Pearson lemma shows that the most powerful test for a simple hypothesis testing
problem is the likelihood-ratio test. We now turn to composite hypothesis testing between H0 : θ ∈
Θ0 and H1 : θ ∈ Θ1 = Θ \Θ0 given X ∼ Pθ for θ ∈ Θ. Subject to a level of significance α, if there
is a test φ that maximizes the power for all alternatives θ ∈ Θ1, then we call φ a uniformly most
powerful (UMP) test. It is often difficult to find a UMP test, but the likelihood-ratio test works in
the following special case.

Suppose that the parameter θ is real-valued. Given X ∼ Pθ, for a fixed θ0 ∈ R, we test
H0 : θ ≤ θ0 against H1 : θ > θ0. We say that the densities pθ(x) have monotone likelihood ratios if
there exists a real-valued function T (x) such that for any θ < θ′, we have Pθ 6= Pθ′ and pθ′(x)/pθ(x)
is an increasing function of T (x). This is the case for the Gaussian and binomial examples above,
where T (x) = 〈x, µ〉 and T (x) = x respectively. More generally, any exponential family with
densities of the following form has monotone likelihood ratios:

pθ(x) = C(θ)eQ(θ)T (x)h(x),

where Q is strictly monotone.
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Theorem 1.2. Consider the setting described above. For τ > 0 and γ ∈ [0, 1], define the likelihood-
ratio test

φτ,γ(X) :=


1 if T (X) > τ,

γ if T (X) = τ,

0 if T (X) < τ.

(1.2)

Then the following statements hold:

1. The likelihood-ratio test φτ,γ is UMP, where the constants τ and γ are determined by the condi-
tion Eθ0 [φτ,γ(X)] = α.

2. The power function β(θ) = Eθ[φτ,γ(X)] is strictly increasing at all θ such that β(θ) ∈ (0, 1).

3. For any θ < θ0, the test φτ,γ minimizes β(θ) among all tests φ such that Eθ0 [φ(X)] = α.

Proof. 1. Fix any θ1 > θ0. We can modify the proof of part 1 of Theorem 1.1 to obtain τ and γ.
For example, analogous to case (i) in that proof, τ can be defined so that

1− α = P0{T (X) ≤ τ},

and γ is set to zero. In case (ii), the test can be also defined in a similar way. Since pθ1(x)/pθ0(x)
is an increasing function of T (x), the above quantity is equal to F (c) = P0{pθ1(X)/pθ0(X) ≤ c}
that appears in the proof of Theorem 1.1, where c depends on τ . As a result, the test φτ,γ is the
most powerful for the alternative θ1. Furthermore, crucially, τ and γ are defined through T (x)
only and does not depend on the choice θ1. It follows that φτ,γ is UMP over θ > θ0.

The final condition we need to check is that Eθ[φτ,γ(X)] ≤ α for θ < θ0, but this is guaranteed
by the next part.

2. For any θ′ < θ′′, we have in fact showed (again, in parts 1 and 2 of Theorem 1.1) that the
test φτ,γ is the most powerful for testing H0 : θ = θ′ against θ = θ′′ at significance level
β(θ′) = Eθ′ [φτ,γ(X)]. By definition, φτ,γ is no less powerful than the constant test φ = β(θ′), so
we obtain that β(θ′′) ≥ β(θ′). If β(θ′′) = β(θ′), then by part 3 of Theorem 1.1, the likelihood
ratio is constant µ-almost everywhere, so we must have Pθ′ = Pθ′′ and θ = θ′.

3. This follows from symmetry: We can consider testing H0 : θ ≥ θ0 against H1 : θ < θ0 and
reverse all the inequalities in the above proofs.

1.3.2 Two-sided testing and unbiased tests

Suppose that we observe X ∼ Pθ from an exponential family with densities

pθ(x) = C(θ)eQ(θ)T (x)h(x)

where Q is strictly monotone, so that the densities have monotone likelihood ratios with respect
to T (x). For simplicity, let us focus on the case where the likelihood ratios are continuous. For
θ0 < θ1, consider testing H0 : θ /∈ (θ0, θ1) against H1 : θ ∈ (θ0, θ1). Although this is the two-sided
case which has not been discussed, it is natural to consider the likelihood-ratio test

φ(x) =

{
1 if T (x) ∈ (τ0, τ1),

0 if T (x) /∈ (τ0, τ1),
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where τ0 and τ1 are determined by

Eθ0 [φ(X)] = Eθ1 [φ(X)] = α. (1.3)

It is known that (Theorem 3.7.1 of [LR06]):

• The test φ(x) is UMP;

• The test minimizes the power function βφ(θ) := Eθ[φ(X)] for all θ /∈ [θ0, θ1] subject to (1.3);

• The power function βφ(θ) has a maximum at some θ′ ∈ [θ0, θ1] and decreases strictly as θ
goes away from θ′ in either direction.

However, if we test H0 : θ ∈ (θ0, θ1) against H1 : θ /∈ (θ0, θ1), then there exists no UMP in
general. In this case, we can consider a weaker goal as follows.

When testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, we say that a test φ is unbiased if βφ(θ) ≤ α
for θ ∈ Θ0 and βφ(θ) ≥ α for θ ∈ Θ1, so that βφ(θ) = α on the boundary between Θ0 and Θ1. It is
not hard to see that any UMP test is unbiased.

For testing H0 : θ ∈ (θ0, θ1) against H1 : θ /∈ (θ0, θ1), a test φ is unbiased if βφ(θ) ≤ α for
θ ∈ [θ0, θ1] and βφ(θ) ≥ α for θ /∈ (θ0, θ1). Consider the likelihood-ratio test

φ(x) =

{
1 if T (x) /∈ (τ0, τ1),

0 if T (x) ∈ (τ0, τ1),

where τ0 and τ1 are determined by (1.3). Then φ is unbiased by monotonicity.

1.4 p-values

1.4.1 Definition

Consider a family of tests φα, each at significance level α ∈ (0, 1). Suppose that the regions of
rejection S1(α) := {x ∈ X : φα(x) = 1} are nested as α varies in (0, 1), in the sense that

S1(α) ⊂ S1(α′) if α < α′.

(This is typically true except in some corner cases.)

A widely used notion in hypothesis testing is the p-value, which is defined to be the number

p̂ = p̂(X) = inf{α : X ∈ S1(α)}.

In other words, given the data X, the p-value is the smallest significance level at which the null is
rejected. It indicates how strongly the data contradicts the null hypothesis: the smaller p̂ is, the
stronger the contradiction is. At a (fixed) significance level α′, we reject the null if p̂ < α′.
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1.4.2 Examples

Gaussian Recall the testing problem between H0 : X ∼ N (0, Id) and H1 : X ∼ N (µ, Id). The
likelihood-ratio test rejects the null if 〈X,µ〉 > zα‖u‖, where zα denotes the (1− α)-quantile of Z.
Hence, we have

S1(α) = {x ∈ Rd : 〈x, µ〉 > zα‖u‖}

and

p̂(X) = inf{α : X ∈ S1(α)} = inf{α : 〈X,µ〉 > zα‖u‖}.

It follows that zp̂ = 〈X,µ/‖µ‖〉 and

p̂(X) = 1− Φ
(
〈X,µ/‖µ‖〉

)
= P

{
Z > 〈X,µ/‖µ‖〉

}
,

where Z denotes a standard Gaussian and Φ denotes its CDF.

Multinomial Suppose that X takes values in {1, 2, . . . , 10}. Consider testing between hypotheses

• H0 : p0(j) = 1/10 for j = 1, . . . , 10;

• H1 : p1(j) = j/55 for j = 1, . . . , 10.

Consider a test with

S1(α) = {x : x ≥ 11− 10α}.

The p-value is

p̂(X) = inf{α : X ≥ 11− 10α} = (11−X)/10.

1.5 Confidence regions

Hypothesis testing is closely related to the inference problem: Given the data X ∼ Pθ, we would
like to have a subset C(X) ⊂ Θ such that θ ∈ C(X) with high probability. To be more precise, we
say that C(X) ⊂ Θ is a confidence region (or confidence set) at confidence level 1− α if

Pθ{θ ∈ C(X)} ≥ 1− α for all θ ∈ Θ.

The relation of confidence regions to hypothesis testing is explained by the following theorem.

Theorem 1.3. For any θ0 ∈ Θ, let S0(θ0) be the region of acceptance of a level-α test for testing
H0 : θ = θ0 against an alternative given X ∼ Pθ. Define C(X) := {θ ∈ Θ : X ∈ S0(θ)}. Then
C(X) is a confidence region at confidence level 1− α.

Proof. By definition, we have θ ∈ C(X) if and only if X ∈ S0(θ), so

Pθ{θ ∈ C(X)} = Pθ{X ∈ S0(θ)} ≥ 1− α.
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The above theorem is extremely general and (therefore) almost vacuous. To further explore the
connection between confidence regions and hypothesis testing, we now consider a special case where
the confidence region C(X) takes the form [θ`(X),∞) for a real number θ`(X). In other words, the
parameters are real-valued, and we aim to find a lower confidence bound θ`(X) such that

Pθ{θ`(X) ≤ θ} ≥ 1− α.

Subject to this constraint, we would like θ`(X) to minimize Pθ{θ`(X) ≤ θ′} for all θ′ < θ. If this
is indeed the case, we say that θ`(X) is a uniformly most accurate lower confidence bound for θ at
confidence level 1− α.

Theorem 1.4. For Θ ⊂ R, let {pθ(x) : θ ∈ Θ} be a family of densities with continuous likelihood
ratios that are monotone with respect to T (x). Suppose that for θ ∈ Θ and X ∼ Pθ, the CDF Fθ(t)
of T (X) is continuous in θ and t. Then the following statements hold:

1. There exists a uniformly most accurate confidence bound θ`(X) for θ at confidence level 1 − α
for each α ∈ (0, 1).

2. Moreover, if the equation Fθ(T (x)) = 1 − α has a solution θ ∈ Θ, then the solution is unique
and is equal to θ`(x).

Proof. 1. Consider the likelihood-ratio test (1.2) for testing H0 : θ = θ0 against H1 : θ > θ0. Recall
that the region of acceptance is S0(θ0) = {x : T (x) ≤ τ(θ0)}, where τ(θ0) is defined so that
Pθ0{T (X) ≤ τ(θ0)} = 1−α for any θ0 ∈ Θ. Recall that the power Pθ1{T (X) > τ(θ0)} is larger
than α for θ1 > θ0. As a result, we have τ(θ0) < τ(θ1).

Define C(X) := {θ ∈ Θ : T (X) ≤ τ(θ)}. It follows from the monotonicity of τ that C(X) is of
the form [θ`(X),∞) where

θ`(X) := inf{θ ∈ Θ : T (X) ≤ τ(θ)}.

By the previous theorem, [θ`(X),∞) is a confidence region for θ at level 1 − α. Furthermore,
for any θ′ < θ, the probability

Pθ{θ`(X) > θ′} = Pθ{θ′ /∈ C(X)} = Pθ{T (X) > τ(θ′)}

is the power of the likelihood-ratio test for testing H0 : θ ≤ θ′ against θ > θ′. Since the
likelihood-ratio test is UMP, the above quantity is maximized, or, equivalently, the probability
Pθ{θ`(X) ≤ θ′} is minimized. Hence θ`(X) is a uniformly most accurate lower confidence bound.

2. The reasoning is again similar to the previous part. For θ < θ′, since Fθ′(t) is the power of the
likelihood-ratio test at level Fθ(t), we have Fθ(t) < Fθ′(t). That is, Fθ(t) is strictly increasing in
θ. It follows that the equation Fθ(T (x)) = 1− α has at most one solution θ.

Suppose that the solution exists. By the definition of θ`(x), we have τ(θ`(x)) = T (x) and thus

Pθ`(x){T (X) ≤ T (x)} = Pθ`(x){T (X) ≤ τ(θ`(x))} = 1− α.

The claim follows from the uniqueness of the solution.
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Suppose that θ`(X) and θu(X) are lower and upper confidence bounds for θ at confidence levels
1−α1 and 1−α2 respectively. Then [θ`(X), θu(X)] is a confidence interval for θ at confidence level
1− α where α = α1 + α2:

Pθ{θ ∈ [θ`(X), θu(X)]} ≥ 1− α for all θ ∈ Θ.

If θ`(X) and θu(X) are uniformly most accurate, then they together minimize

Pθ{θ`(X) ≤ θ′}+Pθ{θ′′ ≤ θu(X)}

for any θ′ < θ and θ′′ > θ. However, this is a somewhat unnatural measure of accuracy when
we consider confidence intervals. A more widely used measure of accuracy is simply the length
θu(X)− θ`(X) of the confidence interval.
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Chapter 2

Examples of statistical tests

2.1 Hypothesis testing for linear models

2.1.1 Setup

Consider the linear regression model

Yi = α̃+ β̃x̃i + εi, i = 1, . . . , n,

where α̃ and β̃ are constants, and εi are i.i.d. N (0, σ2) random variables. Let us standardize x̃i by
setting

xi :=
x̃i − x̄√∑n
j=1(x̃j − x̄)2

, x̄ =
1

n

n∑
i=1

x̃i.

Then
∑n

i=1 xi = 0 and
∑n

i=1 x
2
i = 1. Moreover, if we set

β∗ := β̃

√√√√ n∑
i=1

(x̃i − x̄)2, α∗ := α̃+ β∗
x̄√∑n

i=1(x̃i − x̄)2
,

then the model can be written in the following standardized form

Yi = α̃+ β̃x̃i + εi = α∗ + β∗xi + εi.

Suppose that we are interested in a linear function of α̃ and β̃ (or, equivalently, of α∗ and β∗).
In other words, let c and d be constants, and consider the unknown quantity

ρ = cα∗ + dβ∗.

Suppose that we would like to test H0 : ρ = ρ0 against H1 : ρ 6= ρ0; or, we would like to obtain a
confidence interval for ρ.

2.1.2 z -test

Towards this end, let us first consider the least squares estimator (α̂, β̂) of (α∗, β∗). Solving

min
α′, β′

n∑
i=1

(Yi − α′ − β′xi)2

19



yields

α̂ = Ȳ , β̂ =
n∑
i=1

xiYi = x>Y.

Therefore, we can estimate ρ by

ρ̂ = cα̂+ dβ̂ = cȲ + dx>Y =

n∑
i=1

( c
n

+ dxi

)
Yi.

At ρ = ρ0, the estimator ρ̂ is Gaussian with mean

n∑
i=1

( c
n

+ dxi

)
(α∗ + β∗xi) = cα∗ + dβ∗ = ρ0

and variance

σ2
n∑
i=1

( c
n

+ dxi

)2
= σ2

(c2

n
+ d2

)
.

As a result,
ρ̂− ρ0

σ
√
c2/n+ d2

∼ N (0, 1).

If σ is known, we can derive a test at significance level δ ∈ (0, 1) from the above fact. Namely,
we accept H0 if ∣∣∣∣ ρ̂− ρ0

σ
√
c2/n+ d2

∣∣∣∣ ≤ zδ/2
where zδ/2 is the (1− δ/2)-quantile of N (0, 1). Moreover, a confidence interval for ρ at confidence
level 1− δ is [

ρ̂− zδ/2 · σ
√
c2/n+ d2, ρ̂+ zδ/2 · σ

√
c2/n+ d2

]
.

2.1.3 t-test

However, since σ is typically unknown, we need a few more steps. A natural idea is to replace σ in
the above formula with an estimate. The sample variance is

σ̂2 =
1

n− 2

n∑
i=1

(Yi − α̂− β̂xi)2

=
1

n− 2
‖Y − Ȳ 1− x>Y x‖2

=
1

n− 2

∥∥∥(I − 11>

n
− xx>

)
Y
∥∥∥2

=
1

n− 2

∥∥∥(I − 11>

n
− xx>

)
(α∗1 + β∗x+ ε)

∥∥∥2

=
1

n− 2

∥∥∥(I − 11>

n
− xx>

)
ε
∥∥∥2
,

and so

(n− 2)
σ̂2

σ2
=
∥∥∥(I − 11>

n
− xx>

) ε
σ

∥∥∥2
.

Based on this formula, we have two observations:
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• Since x is a unit vector orthogonal to 1, the matrix I− 11>

n −xx
> is the orthogonal projection

onto the (n−2)-dimensional subspace S of Rn orthogonal to the span of 1 and x. This implies

that
(
I − 11>

n − xx
>) ε

σ is a standard Gaussian vector in S, so (n− 2) σ̂
2

σ2 ∼ χ2
n−2, i.e., it is a

chi-squared random variable with n− 2 degrees of freedom.

• Since ρ̂ =
(
c
n1 + dx

)>
Y =

(
c
n1 + dx

)>
(α∗1 + β∗x + ε), we see that ρ̂ only depends on the

randomness of the projection of ε on the span of 1 and x. Therefore, ρ̂ is independent of(
I − 11>

n − xx
>) ε

σ and thus of (n− 2) σ̂
2

σ2 .

By a standard characterization of the t-distribution with n−2 degrees of freedom, denoted by tn−2,
it follows that

ρ̂− ρ0

σ̂
√
c2/n+ d2

=
ρ̂− ρ0

σ
√
c2/n+ d2

/√
(n− 2)σ̂2/σ2

n− 2
∼ N (0, 1)√

χ2
n−2/(n− 2)

= tn−2.

Similar to the case of a Z-test, here we accept H0 : ρ = ρ0 if∣∣∣∣ ρ̂− ρ0

σ̂
√
c2/n+ d2

∣∣∣∣ ≤ τδ/2
where τδ/2 is the (1−δ/2)-quantile of tn−2. Moreover, a confidence interval for ρ at confidence level
1− δ is [

ρ̂− τδ/2 · σ̂
√
c2/n+ d2, ρ̂+ τδ/2 · σ̂

√
c2/n+ d2

]
.

2.2 Analysis of variance

Consider m independent samples, each of which consists of i.i.d. observations

Xij ∼ N (µi, σ
2), j = 1, . . . ni, i = 1, . . . ,m,

where σ is unknown. We are interested in testing H0 : µ1 = · · · = µm against H1 : otherwise. The
idea is to construct two estimators of the variance σ2 and compare them. The first estimator is
good regardless of whether H0 or H1 is true, while the second is good only under H0. As a result,
comparing the two will serve as the test.

• Let Yi = 1
ni

∑ni
j=1Xij and Xi = (Xi1, . . . , Xini)

>. Then

ni∑
j=1

(Xij − Yi)2 =
∥∥∥Xi −

1>niXi

ni
1ni

∥∥∥2

2

=
∥∥∥(Ini − 1ni1

>
ni

ni

)
Xi

∥∥∥2

2
=
∥∥∥(Ini − 1ni1

>
ni

ni

)
(Xi − µi1ni)

∥∥∥2

2
,

where 1ni is the all-ones vector in Rni . Since Ini −
1ni1

>
ni

ni
is the orthogonal projection onto

the orthogonal complement of the all-ones vector, and 1
σ (Xi − µi1ni) is a standard Gaussian

vector, we see that 1
σ2

∑ni
j=1(Xij − Yi)2 ∼ χ2

ni−1. It follows that

1

σ2

m∑
i=1

ni∑
j=1

(Xij − Yi)2 ∼ χ2
n−m,

where n :=
∑m

i=1 ni. Then the quantity 1
n−m

∑m
i=1

∑ni
j=1(Xij − Yi)2 is an estimator of σ2.
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• Let Ȳ = 1
m

∑m
i=1 Yi and Y = (Y1, . . . , Ym)>. Under H0, let µ = µ1 and we have i.i.d.√

ni(Yi − µ) ∼ N (0, σ2). Similar to the above case, we can derive

m∑
i=1

ni(Yi − Ȳ )2 =
∥∥∥(Im − 1m1>m

m

)√
ni(Y − µ1m)

∥∥∥2

2
.

It follows that
1

σ2

m∑
i=1

ni(Yi − Ȳ )2 ∼ χ2
m−1.

Then the quantity 1
m−1

∑m
i=1 ni(Yi − Ȳ )2 is an estimator of σ2.

Furthermore, we claim that the two estimators 1
n−m

∑m
i=1

∑ni
j=1(Xij−Yi)2 and 1

m−1

∑m
i=1 ni(Yi−Ȳ )2

are independent. To this end, let us compute the covariance matrix

E

[((
Ini −

1ni1
>
ni

ni

)
(Xi − µ1ni)

)((
Im −

1m1>m
m

)√
ni(Y − µ1m)

)> ]

=
√
ni

(
Ini −

1ni1
>
ni

ni

)
E

[
(Xi − µ1ni)(Y − µ1m)>

](
Im −

1m1>m
m

)>
.

Note that only the ith entry of Y is correlated with Xi, and E
[
(Xi − µ1ni)(Yi − µ)

]
= σ2

ni
1ni .

Therefore, the above quantity is equal to

=
σ2

√
ni

(
Ini −

1ni1
>
ni

ni

)[
0ni · · ·0ni 1ni 0ni · · ·0ni

](
Im −

1m1>m
m

)>
= 0ni×m

where 0d denotes the all-zeros vector in dimension d. The claimed independence then follows easily.

Finally, by a standard characterization of the F -distribution with m− 1 and n−m degrees of
freedom, denoted by Fm−1,n−m, we conclude that

1
m−1

∑m
i=1 ni(Yi − Ȳ )2

1
n−m

∑m
i=1

∑ni
j=1(Xij − Yi)2

∼ Fm−1,n−m.

To define a test at significance level α ∈ (0, 1), we can simply accept H0 if the above quantity is no
larger than fα, where fα denotes the (1− α)-quantile of Fm−1,n−m.

2.3 Wald test

Let θ be a real-valued parameter. Given i.i.d. X1, . . . , Xn ∼ Pθ, let θ̂n = θ̂(X1, . . . , Xn) be an

estimator of θ. Define σ̂n :=

√
Var(θ̂n). Consider testing H0 : θ = θ0 against H1 : θ 6= θ0. Assume

that θ̂n is asymptotically normal in the sense

θ̂n − θ0

σ̂n

d−→ N (0, 1) as n→∞.
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For α ∈ (0, 1), the Wald test at asymptotic significance level α is defined to be

φ(X1, . . . , Xn) :=

{
1 if

∣∣ θ̂n−θ0
σ̂n

∣∣ > zα/2,

0 if
∣∣ θ̂n−θ0

σ̂n

∣∣ ≤ zα/2.
To be more precise, a test φ is said to have an asymptotic significance level α if

Pθ0{φ(X1, . . . , Xn) = 1} → α as n→∞.

This is the case for the Wald test because

Pθ0

{∣∣∣ θ̂n − θ0

σ̂n

∣∣∣ > zα/2

}
→ P{|Z| > zα/2} = α

where Z ∼ N (0, 1).

Moreover, the power β(θ) at θ 6= θ0 is approximately

Pθ

{∣∣∣ θ̂n − θ0

σ̂n

∣∣∣ > zα/2

}
= Pθ

{ θ̂n − θ0

σ̂n
> zα/2

}
+Pθ

{ θ̂n − θ0

σ̂n
< −zα/2

}
= Pθ

{ θ̂n − θ
σ̂n

>
θ0 − θ
σ̂n

+ zα/2

}
+Pθ

{ θ̂n − θ
σ̂n

<
θ0 − θ
σ̂n

− zα/2
}

= 1− Φ
(θ0 − θ

σ̂n
+ zα/2

)
+ Φ

(θ0 − θ
σ̂n

− zα/2
)
.

Since σ̂n → 0 in probability, the power converges to 1.

The associated confidence interval at asymptotic confidence level 1− α is

(θ̂n − σ̂nzα/2, θ̂n + σ̂nzα/2).

Comparing paired binary variables Consider i.i.d. pairs of binary random variables (Xi, Yi)
for i = 1, . . . , n. Let δ := E[Xi] − E[Yi] and consider testing H0 : δ = 0 against H1 : δ 6= 0. The
plug-in estimators of δ and the variance are, respectively,

δ̂n =
1

n

n∑
i=1

(Xi − Yi), σ̂2
n =

1

n

n∑
i=1

(Xi − Yi − δ̂n)2.

The test statistic for the Wald test is δ̂n/σ̂n.

2.4 Goodness-of-fit tests

Suppose that we observe i.i.d. Z1, . . . , Zn ∼ P for a distribution P with density f(x). Consider the
nonparametric setting: We test H0 : P = P0 against H1 : P 6= P0, where there is no parametric
assumption on P0.
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2.4.1 Pearson’s chi-squared test

If the distribution of interest is discrete, then the test introduced in this section can be applied
directly. If the distribution is continuous, we can pre-process the data as follows. For example, in
the real-valued case, let B1, . . . , Bk form a partition of R. For each i ∈ [k], let pi :=

∫
Bi
f(x) dx.

Moreover, let Xi := |{j ∈ [n] : Zj ∈ Bi}. Then Xi/n should be close to pi. Therefore, the essence
of goodness-of-fit testing is the following discrete testing problem for multinomial data.

Consider i.i.d. categorical random variables random variables Y1, . . . , Yn, each taking value i
with probability pi for i ∈ [k]. Here we have pi > 0 for each i ∈ [k] and

∑k
i=1 pi = 1. We are

interested in testing H0 : pi = p0
i for all i ∈ [k] against H1 : pi 6= p0

i for some i ∈ [k]. Let Xi be the
number of Yj that are equal to i. Then Xi ∼ Bin(n, pi) marginally. Consider the test statistic

T :=

k∑
i=1

(Xi − np0
i )

2

np0
i

.

To obtain the asymptotic distribution of T at p = p0, we first compute the covariance

E[(Xi − npi)(Xj − npj)] = E[XiXj ]− n2pipj .

It holds that

E[XiXj ] = E

[( n∑
`=1

1{Y` = i}
)( n∑

m=1

1{Ym = j}
)]

=
n∑
`=1

n∑
m=1

P{Y` = i, Ym = j}.

For i 6= j, we have

E[XiXj ] =
∑
` 6=m

pipj = n(n− 1)pipj .

For i = j, we have

E[X2
i ] =

∑
`=m

pi +
∑
`6=m

p2
i = npi + n(n− 1)p2

i .

Therefore, if we define a random vector V ∈ Rn with Vi := Xi−npi√
n

, then

E[ViVj ] =
npi1{i = j}+ n(n− 1)pipj − n2pipj

n
= pi1{i = j} − pipj .

We conclude that the covariance matrix of V is

E[V V >] = Diag(p)− pp>.

Note that Xk = n−
∑k−1

i=1 Xi, so it suffices to consider the first k − 1 coordinates of V . Let Σ
denote the top-left (k − 1)× (k − 1) principal minor of E[V V >]. Then it is not hard to check that

Σ−1 = Diag(p−k)
−1 +

1

pk
11>,

where p−k = (p1, . . . , pk−1)> and 1 is the all-ones vector in Rk−1. By the central limit theorem,

Σ−1/2V−k
d−→ N (0, Ik−1),

24



and then by the continuous mapping theorem,

V >−kΣ
−1V−k = ‖Σ−1/2V−k‖22

d−→ χ2
k−1.

The left-hand side is equal to

k−1∑
i=1

1

pi

(Xi − npi)2

n
+

1

pk

(
∑k−1

i=1 (Xi − npi))2

n
=

k∑
i=1

(Xi − npi)2

npi
=: T.

Therefore, Pearson’s chi-squared test at significance level α ∈ (0, 1) is

φ(X1, . . . , Xk) :=

{
1 if T > qα,

0 if T ≤ qα,

where qα denotes the (1− α)-quantile of χ2
k−1.

2.4.2 Kolmogorov–Smirnov test

Let F denote the CDF of P, and let Fn denote the empirical CDF defined by

Fn(x) =
1

n

∣∣{j ∈ [n] : Zj ≤ x}
∣∣.

Then we can define the Kolmogorov–Smirnov statistic

Dn := max
x∈R
|Fn(x)− F (x)|.

It is standard that Uj := F (Zj) ∼ Unif(0, 1). As a result, we have

P{Dn ≤ t} = P

{
max
x∈R
|Fn(x)− F (x)| ≤ t

}
= P

{
max
x∈R

∣∣∣∣ |{j ∈ [n] : Zj ≤ x}|
n

− F (x)

∣∣∣∣ ≤ t}
= P

{
max
x∈R

∣∣∣∣ |{j ∈ [n] : Uj ≤ F (x)}|
n

− F (x)

∣∣∣∣ ≤ t}
= P

{
max
y∈(0,1)

∣∣∣∣ |{j ∈ [n] : Uj ≤ y}|
n

− y
∣∣∣∣ ≤ t}.

This shows that the distribution of Dn does not depend on the distribution P.
Moreover, it is known that

√
nDn

d−→ K as n→∞,
where K denotes the Kolmogorov distribution with CDF

FK(x) =

√
2π

x

∞∑
`=1

exp

(
− (2`− 1)2π2

8x2

)
.

Then the Kolmogorov–Smirnov test at significance level α ∈ (0, 1) is defined by

φ(Z1, . . . , Zn) :=

{
1 if

√
nDn > kα,

0 if
√
nDn ≤ kα,

where kα denotes the (1− α)-quantile of K.
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2.5 Nonparametric tests for two samples

2.5.1 Wilcoxon signed-rank test

Given i.i.d. real-valued data X1, . . . , Xn ∼ P, suppose that we are interested in testing between

• H0 : P is symmetric around zero;

• H1 : otherwise.

First, if we would like to test symmetry around any m0 ∈ R, it suffices to subtract m0 from each
Xi to reduce the problem to the above setting. Moreover, the above task appears frequently when
we deal with paired data: Suppose that we have i.i.d. pairs (Y1, Z1), . . . , (Yn, Zn). If each pair is
exchangeable in the sense that (Yi, Zi) and (Zi, Yi) have the same distribution, then Xi := Yi − Zi
has a distribution which is symmetric around zero. Note that we do not have to assume that Yi
and Zi are independent.

The Wilcoxon signed-rank test uses a statistic T defined as follows. Let the sign function be
defined by

sign(t) =


1 if t > 0,

0 if t = 0,

−1 if t < 0.

Moreover, consider the order statistics X(1), . . . , X(n) by absolute values, which are obtained by
reordering X1, . . . , Xn so that

|X(1)| ≤ · · · ≤ |X(n)|.

Then the signed-rank statistic T is defined to be

T :=
n∑
i=1

i · sign(X(i)).

It is easily seen that this statistic does not depend on the particular distribution P as long as it is
symmetric around zero.

To derive a test using the statistic T , assume P{Xi = 0} = 0 for simplicity. Under H0, the
signs Ii := sign(X(i)) are independent Rademacher random variables. We can compute

E[T ] =
n∑
i=1

i ·E[Ii] = 0, Var(T ) =
n∑
i=1

i2 · Var(Ii) =
1

6
n(n+ 1)(2n+ 1).

By the central limit theorem, a test at asymptotic significance level α ∈ (0, 1) is

φ(X1, . . . , Xn) :=

1 if |T |√
Var(T )

> zα/2,

0 if |T |√
Var(T )

≤ zα/2,

where zα/2 denotes the (1− α/2)-quantile of N (0, 1).
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2.5.2 Mann–Whitney U test, aka Wilcoxon rank-sum test

The purpose of the Mann–Whitney U test is similar to that of the Wilcoxon signed-rank test, but
the setup is different. Suppose that we have two i.i.d. samples Y1, . . . , Ym ∼ P and Z1, . . . , Zn ∼
Q, where the sample sizes may not be the same. Moreover, assume that the two samples are
independent from each other. We are interested in testing H0 : P = Q against H1 : P 6= Q. The
Mann–Whitney U statistic is defined by

U :=
m∑
i=1

n∑
j=1

sign(Yi − Zj).

Another equivalent test statistic is the Wilcoxon rank-sum statistic defined as follows. Consider
the two samples Y1, . . . , Ym, Z1, . . . , Zn combined. For i ∈ [m], suppose that Yi is the Rith smallest
number in the combined sample. Thus Ri represents the rank of Yi and is an integer between 1
and m+ n. Then we can define the Wilcoxon rank-sum statistic to be

S :=

m∑
i=1

Ri.

To see that S is equivalent to U , we assume that all the data points are distinct with probability
1 for simplicity. Then we have

S =
m∑
i=1

Ri =
m∑
i=1

(
1 +

m∑
j=1

1{Yj < Yi}+
n∑
j=1

1{Zj < Yi}
)

=
m∑
i=1

(
1 +

∑
j∈[m]\{i}

1

2

(
sign(Yi − Yj) + 1

)
+

n∑
j=1

1

2

(
sign(Yi − Zj) + 1

))

= m+
m(m− 1)

2
+
mn

2
+

1

2

m∑
i=1

∑
j∈[m]\{i}

sign(Yi − Yj) +
1

2

m∑
i=1

n∑
j=1

sign(Yi − Zj)

=
m(m+ n+ 1) + U

2
.

Hence, S and U are related to each other linearly.
It remains to focus on the statistic U . Let Iij := sign(Yi − Zj). Under H0, it is clear that

E[U ] =

m∑
i=1

n∑
j=1

E[Iij ] = 0.

For the variance, we have

Var(U) = E

[( m∑
i=1

n∑
j=1

Iij

)( m∑
k=1

n∑
`=1

Ik`

)]
=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
`=1

E[IijIk`].

If i 6= k and j 6= `, then E[IijIk`] = 0. If i = k and j = `, then E[IijIk`] = 1. If i = k and j 6= `,
then

E[IijIk`] = E[sign(Yi − Zj) · sign(Yi − Z`)]
= P{Yi > max(Zj , Zk) or Yi < min(Zj , Zk)} −P{Zj < Yi < Z` or Z` < Yi < Zj}.
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By applying the CDF F of the underlying distribution, we can again assume without loss of
generality that Yi and Zj are uniform random variables on [0, 1]. Thus the above expectation is
equal to ∫ 1

0

∫ 1

0

(
1− |zj − zk| − |zj − zk|

)
dzj dzk =

1

3
.

In summary, we obtain

Var(U) = mn+
mn(n− 1)

3
+
nm(m− 1)

3
=
mn(m+ n+ 1)

3
.

Using Gaussian approximation, we can again apply the Z-test with the statistic U .

2.6 Testing with permutations

2.6.1 Wald–Wolfowitz runs test

A common task is to determine whether a sequence of observations is “sufficiently random”. Let
us consider a generic example. Suppose that we observe binary outcomes X1, . . . , Xn ∈ {0, 1} and
are interested in testing between

• H0 : X1, . . . , Xn are i.i.d. Ber(p) random variables for some parameter p ∈ (0, 1);

• H1 : otherwise.

Note that H0 is a composite hypothesis that includes any possible p ∈ (0, 1), and here we are
not interested in estimating p. Instead, we simply would like to determine whether the binary
observations are truly random.

The idea of the Wald–Wolfowitz runs test is as follows. First, we condition on the number of
ones, denoted by m, and so the number of zeros is ` = n−m. Under this conditioning, if H0 were
true, the sequence X1, . . . , Xn would be a uniform random permutation of m ones and ` zeros.
Next, to test whether the observed sequence is indeed uniformly random, we consider the number
of runs R in the sequence, where a run is a maximal subsequence consisting of either all ones or all
zeros. For example, the sequence 1110000110001 has five runs.

With m ones and ` zeros, the number of sequences having R = r is

N(r) :=

{
2
(
m−1
k−1

)(
`−1
k−1

)
if r = 2k,(

m−1
k−1

)(
`−1
k

)
+
(
m−1
k

)(
`−1
k−1

)
if r = 2k + 1.

Therefore, under H0, the probability that the observed sequence has a number of runs between r1

and r2 is ( r2∑
r=r1

N(r)

)/(
m+ `

m

)
.

At significance level α ∈ (0, 1), we can choose r1 and r2 such that the above quantity is roughly
1− α. Then we accept H0 if r1 ≤ R ≤ r2.

A computationally easier alternative is (again) to use Gaussian approximation; one can compute

E[R] =
2m`

m+ `
+ 1, Var(R) =

2m`(2m`−m− `)
(m+ `)2(m+ `− 1)

.
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2.6.2 Permutation test

The permutation test refers to a class of nonparametric tests which involve computing the values
of a test statistic under all possible permutations of the observed data points. To demonstrate
a typical setting, let us revisit the problem of testing whether two distributions are the same.
Suppose that we observe i.i.d. X1, . . . , Xm ∼ P and i.i.d. Y1, . . . , Y` ∼ Q where the two samples are
independent. We test H0 : P = Q against H1 : P 6= Q.

Let T = T (X1, . . . , Xm, Y1, . . . , Y`) be some test statistic, e.g., T = |X̄ − Ȳ | if the means of P
and Q are different. Let n = m + ` and consider all n! permutations of the data points. Namely,
we shuffle X1, . . . , Xm, Y1, . . . , Y`, compute the mean of the first m observations and the mean of
the remaining ` observations, and compute the difference between the two means. Let the test
statistics be denoted by T1, . . . , Tn!.

Under H0, all these statistics are identically distributed, so all the values of these statistics are
equally likely. In particular, the rank R of T among T1, . . . , Tn! is uniformly random. At significance
level α ∈ (0, 1), we can choose r1 and r2 such that r2−r1

n! ≈ 1−α. Then we accept H0 if r1 ≤ R ≤ r2.
Although the above example is specific, the same reasoning is valid in broader settings. Let

X1, . . . , Xn denote the observations. Suppose that under H0, the distribution of a test statistic
T (X1, . . . , Xn) is invariant when we permute the observations (and it is not invariant under H1).
Then the same procedure applies. Finally, note that computing all n! test statistics is hard if n is
large. Therefore, in contrast to the previous tests that work well for a large sample, the permutation
test is usually employed when the sample size is small.
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Chapter 3

Extensions of the basic setup

3.1 Bayesian hypothesis testing

3.1.1 Simple hypotheses

Recall the simply hypothesis testing problem between H0 : X ∼ p0 and H1 : X ∼ p1, where p0 and
p1 are densities with respect to a reference measure µ on X . We now introduce the Bayesian point
of view: Suppose that the binary parameter θ has prior distribution Π = Ber(π1) for π1 ∈ [0, 1].
That is, prior to observing any data, we have θ = 0 with probability π0 and θ = 1 with probability
π1 = 1− π0. As before, for a test φ, we let

αφ := E0[φ(X)], βφ := E1[φ(X)].

Moreover, let W0 ≥ 0 be the cost of type I error and W1 ≥ 0 be the cost of type II error. Then the
Bayes risk of the test φ with respect to the prior Π is

RΠ(φ) = W0π0αφ +W1π1(1− βφ).

We say that a test φΠ is Bayes optimal with respect to the prior Π if it minimizes the Bayes risk
RΠ(φ) over all tests.

Theorem 3.1. In the above setting, a Bayes optimal test with respect to the prior Π is given by

φΠ(x) :=

{
1 if W1π1p1(x) ≥W0π0p0(x),

0 if W1π1p1(x) < W0π0p0(x).

Moreover, any other Bayes optimal test must coincide with φΠ on the set

D := {x ∈ X : W1π1p1(x) 6= W0π0p0(x)}

µ-almost everywhere, and it may take arbitrary values in [0, 1] on the set X \ D.

Proof. Note that the Bayes risk can be written as

RΠ(φ) =

∫
X
W0π0φ p0 dµ+

∫
X
W1π1(1− φ)p1 dµ =

∫
X

(W0π0p0 −W1π1p1)φdµ+W1π1.
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Therefore, Bayes optimal tests φ minimize∫
X

(W0π0p0 −W1π1p1)φdµ.

It is not hard to see that the test defined above is Bayes optimal.

In other words, the Bayes optimal test φΠ has region of rejection{
x ∈ X : L(x) ≥ W0π0

W1π1

}
, where L(x) :=

p1(x)

p0(x)
.

3.1.2 Composite hypotheses

Next, we turn to testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 = Θ \ Θ0 given X ∼ Pθ for θ ∈ Θ.
For this composite hypothesis testing problem, we take the Bayesian approach and assume a prior
distribution Π on Θ. Suppose that Π has density π with respect to a reference measure ν on Θ,
and Pθ has density pθ with respect to a reference measure µ on X . As θ ∼ Π is a random variable
now, it is better to write the density of X as a conditional density:

p(x | θ) ≡ pθ(x), x ∈ X , θ ∈ Θ.

The posterior distribution of θ given X = x has density

π(θ | x) =
p(x | θ) · π(θ)

p(x)

by the Bayes formula, where

p(x) :=

∫
Θ
p(x | θ) dΠ(θ).

In general, we have

dΠ(θ | x) =
p(x | θ)
p(x)

dΠ(θ).

We continue to let W0 and W1 be the costs of the two types of errors. Define the power function
of a test φ as

βφ(θ) := E[φ(X) | θ], θ ∈ Θ.

The risk function of φ is defined as

R(θ;φ) := W0βφ(θ) · 1{θ ∈ Θ0}+W1(1− βφ(θ)) · 1{θ ∈ Θ1}.

The Bayes risk of φ with respect to the prior Π is

RΠ(φ) :=

∫
Θ
R(θ;φ) dΠ(θ) =

∫
Θ0

W0βφ(θ) dΠ(θ) +

∫
Θ1

W1(1− βφ(θ)) dΠ(θ).

As before, Bayes optimal tests are the minimizers of the Bayes risk.
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Theorem 3.2. In the above setting, a Bayes optimal test with respect to the prior Π is given by

φΠ(x) :=

{
1 if W1Π(Θ1 | x) ≥W0Π(Θ0 | x),

0 if W1Π(Θ1 | x) < W0Π(Θ0 | x).

Moreover, any other Bayes optimal test must coincide with φΠ on the set

D := {x ∈ X : W1Π(Θ1 | x) 6= W0Π(Θ0 | x)}

µ-almost everywhere, and it may take arbitrary values in [0, 1] on the set X \ D.

Proof. Rewrite the Bayes risk as

RΠ(φ) =

∫
Θ0

W0βφ(θ) dΠ(θ) +

∫
Θ1

W1(1− βφ(θ)) dΠ(θ)

=

∫
Θ
βφ(θ)

(
W0 · 1{θ ∈ Θ0} −W1 · 1{θ ∈ Θ1}

)
dΠ(θ) +W1Π(Θ1).

It suffices to consider minimizing the first term∫
Θ
βφ(θ)

(
W0 · 1{θ ∈ Θ0} −W1 · 1{θ ∈ Θ1}

)
dΠ(θ)

=

∫
Θ

∫
X
φ(x)p(x | θ) dµ(x) ·

(
W0 · 1{θ ∈ Θ0} −W1 · 1{θ ∈ Θ1}

)
dΠ(θ)

=

∫
X

∫
Θ
φ(x)

(
W0 · 1{θ ∈ Θ0} −W1 · 1{θ ∈ Θ1}

)
p(x) dΠ(θ | x) dµ(x)

=

∫
X
φ(x)

(
W0 ·Π(Θ0 | x)−W1 ·Π(Θ1 | x)

)
p(x) dµ(x).

The conclusion follows easily as before.

In other words, the Bayes optimal test φΠ has region of rejection{
x ∈ X : T (x) ≥ W0

W1

}
, where T (x) :=

Π(Θ1 | x)

Π(Θ0 | x)
.

Here T (x) is the ratio between posterior probabilities of Θ1 and Θ0 conditional on X = x.
Finally, if we define π` = Π(Θ`) and

p`(x) =

∫
Θ`

pθ(x)

π`
dΠ(θ)

for ` ∈ {0, 1}, then the Bayes optimal tests for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 with respect
to the prior Π coincide with those for the simple hypothesis testing problem between H0 : X ∼ p0

and H1 : X ∼ p1 with respect to the prior Ber(π1).

3.2 Sequential testing

Consider the hypothesis testing problem between

• H0 : X1, . . . , Xn, . . . i.i.d. from P0;

• H1 : X1, . . . , Xn, . . . i.i.d. from P1.

Here the observations X1, . . . , Xn, . . . come in a sequential fashion, and at time n, we test H0

against H1 based on the observations that we have seen so far.
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3.2.1 Stopping time and sequential test

A stopping time τ = τ(X1, X2, . . . ) is a random variable taking values in {0, 1, 2, . . . } such that
the event {τ = n} depends only on the observations X1, . . . , Xn. This is not saying that τ itself is
a function of X1, . . . , Xn for any fixed n. For example, τ = inf{n : Xn ≥ 1} is a stopping time: If
n is the first time that Xn is at least 1, then we set τ to be n. However, if all X1, . . . , Xn are less
than 1, then we have no idea about the value of τ yet. Moreover, τ = sup{n : Xn ≥ 1} is obviously
not a stopping time.

A sequential test is a pair (τ, {φn}∞n=0), where τ is a stopping time and φn = φn(X1, . . . , Xn)
is a test based on the first n observations. For brevity, we denote the sequential test by (τ, φ) or
simply φ. It does the following: If τ = n, then we stop at time n and apply φn to make a decision
between H0 and H1.

An equivalent formulation of the sequential test (τ, φ) is a sequence of random decisions ν =
{νj}∞j=0, where νj ∈ {c, 0, 1, ∗}. If τ = n, then

• νj = c for j < n, meaning that ν decides to continue and request an additional observation;

• νn ∈ {0, 1}, meaning that ν makes a decision between H0 and H1;

• νj = ∗ for j > n, meaning that the test has already stopped.

Using the terminology of statistical decision theory, we refer to each instance of ν as an action, and
the sequential test is equivalent to a decision rule that generates a distribution on actions.

3.2.2 Bayes optimal sequential test

Consider the Bayesian setup with prior Π = Ber(π) on {0, 1} where π ∈ [0, 1]. When the sequential
test φ stops at τ and makes a decision φτ , suppose that it incurs a loss

L(θ, φ) := λτ +W0φτ1{θ = 0}+W1(1− φτ )1{θ = 1} = λτ +Wθφ
1−θ
τ (1− φτ )θ,

where λ > 0 is a constant representing the cost of one observation and we set 00 = 1 by convention.
Note that the above formula is valid even when we consider randomized tests. This risk of the
sequential test is

R(θ, φ) := Eθ[L(θ, φ)] = Eθ

[
λτ +Wθφτ (X1, . . . , Xτ )1−θ(1− φτ (X1, . . . , Xτ )

)θ]
.

The Bayes risk with respect to the prior Π is

RΠ(φ) := E[R(θ, φ)] = (1− π)E0[L(0, φ)] + πE1[L(1, φ)].

We aim for a Bayes optimal sequential test which, by definition, minimizes the Bayes risk over all
sequential tests.

3.2.3 Analysis of the minimum Bayes risk

First, consider the trivial case τ = 0, which means that the test does not use any data. For
α ∈ (0, 1), we can simply consider a constant test φα = α. Its Bayes risk is

RΠ(φα) = (1− π)W0α+ πW1(1− α).
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Therefore, the minimum Bayes risk is

ρ0(π) = min{(1− π)W0, πW1},

which is achieved by either φ0 or φ1. To be more precise,

ρ0(π) =

{
πW1 if π ≤ W0

W0+W1
,

(1− π)W0 if π > W0
W0+W1

.

Next, consider the case τ ≥ 1, which means that the test uses at least one observation. Let be
the minimum Bayes risk be

ρ+(π) := inf
φ
RΠ(φ) = inf

φ

(
(1− π)E0[L(0, φ)] + πE1[L(1, φ)]

)
.

This is clear that ρ+(π) ≥ λ > 0. Moreover, ρ+(π) is a concave function in π because it is an
infimum of linear functions. Therefore, the graphs of ρ+(π) and ρ0(π) intersect

• at two points if W0W1
W0+W1

> ρ+

(
W0

W0+W1

)
;

• at one point if W0W1
W0+W1

= ρ+

(
W0

W0+W1

)
;

• at zero point if W0W1
W0+W1

< ρ+

(
W0

W0+W1

)
.

Therefore, we can find 0 < γ0 ≤ γ1 < 1 such that ρ+(π) < ρ0(π) for π ∈ (γ0, γ1) and ρ+(π) ≥ ρ0(π)
otherwise. This leads to the following result.

Proposition 3.3. A Bayes optimal sequential test (τ, φ) must, at time 0,

• stop and accept H0 if π ≤ γ0;

• stop and reject H0 if π ≥ γ1;

• continue to request one observation if π ∈ (γ0, γ1).

While the above result does not seem useful, the intuition extends to the following more general
and useful setting. Let π0 := π. By the Bayes formula, at time 1, the posterior distribution of θ
on {0, 1} is Ber(π1) where

π1 := P{θ = 1 | X1} =
π · p1(X1)

(1− π) · p0(X1) + π · p1(X1)
.

Inductively, we see that at time n, the posterior distribution of θ is Ber(πn) where

πn := P{θ = 1 | X1, . . . , Xn} =
π · p1(X1) · · · p1(Xn)

(1− π) · p0(X1) · · · p0(Xn) + π · p1(X1) · · · p1(Xn)
.

Also, recall that the cost of an observation λ and the costs of the two types of errors W0 and W1

are all constant. Therefore, conditional on the event {τ ≥ n}, a Bayes optimal sequential test is
expected to behave at time n in a way similar to its behavior at time 0, but with Ber(πn) being
the new prior at time n. As a result, it is plausible that the following theorem holds.
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Theorem 3.4. Define a stopping time

τ := inf
{
n ≥ 0 : πn /∈ (γ0, γ1)

}
.

For all n ≥ 0, conditional on τ = n, let φn be the test that

• accepts H0 if πn ≤ γ0;

• rejects H0 if πn ≥ γ1.

Then (τ, φ) is the unique Bayes optimal test in the sense that any other Bayes optimal test agrees
with (τ, φ) with respect to P0 and P1.

Here we say that two sequential tests (τ, φ) and (τ ′, φ′) agree with respect to P0 and P1 if
Pi{τ = τ ′} = 1 and Pi{φn(X1, . . . , Xn) = φ′n(X1, . . . , Xn) | τ = τ ′ = n} = 1 for i = 1, 2. The proof
of Theorem 3.4 is based on an inductive argument, but we omit it here.

3.2.4 Likelihood ratios for sequential testing

Observe that the posterior πn can be expressed in terms of the likelihood ratio

Ln = Ln(X1, . . . , Xn) :=
p1(X1) · · · p1(Xn)

p0(X1) · · · p0(Xn)
.

Namely, we have
1

πn
=

1− π
π

1

Ln
+ 1, Ln =

1− π
π

πn
1− πn

.

As a result,

• πn ≤ γ0 if and only if Ln ≤ Γ0 := 1−π
π

γ0

1−γ0
;

• πn ≥ γ1 if and only if Ln ≥ Γ1 := 1−π
π

γ1

1−γ1
.

Therefore, Theorem 3.4 can be rewritten as follows.

Theorem 3.5. Define a stopping time

τ(Γ0,Γ1) := inf
{
n ≥ 0 : Ln /∈ (Γ0,Γ1)

}
.

For all n ≥ 0, conditional on τ(Γ0,Γ1) = n, let φn be the test that

• accepts H0 if Ln ≤ Γ0;

• rejects H0 if Ln ≥ Γ1.

Then (τ, φ) is the unique Bayes optimal test.

To further study a likelihood-ratio sequential test φ of the above form, let α0(φ) denote the
probability of a type I error and α1(φ) denote the probability of a type II error. Then the Bayes
risk of φ is

RΠ(φ) = (1− π)
(
λE0[τ ] +W0 α0(φ)

)
+ π

(
λE1[τ ] +W1 α1(φ)

)
. (3.1)

The following result says that, among all sequential tests achieving certain average type I and type
II errors, the likelihood-ratio sequential test does it the fastest.
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Theorem 3.6. Fix 0 < Γ0 ≤ Γ1 < ∞. Let φ(Γ0,Γ1) denote the likelihood-ratio sequential test
defined above, and let τ(Γ0,Γ1) denote its stopping time. For any sequential test (τ, φ) such that

α0(φ) ≤ α0

(
φ(Γ0,Γ1)

)
, α1(φ) ≤ α1

(
φ(Γ0,Γ1)

)
,

it holds that
E0[τ ] ≥ E0

[
τ(Γ0,Γ1)

]
, E0[τ ] ≥ E0

[
τ(Γ0,Γ1)

]
.

Proof. We only provide a sketch of the proof. Recall that in the last section, γ0 and γ1 are defined
as the points where ρ0(π) and ρ+(π) intersect. Then Γi := 1−π

π
γi

1−γi for i = 0, 1. Based on properties
of Γi(W0,W1) as a function of W0 and W1, one can show that W0 and W1 can be chosen so that
Γi(W0,W1) is equal to any value of Γi. By Theorem 3.5, we have that φ(Γ0,Γ1) is the Bayes optimal
test for the risk with this choice of weights. The conclusion follows by virtue of (3.1).

Ideally, we would like to set the thresholds Γ0 and Γ1 to obtain the Bayes optimal likelihood-
ratio sequential test or to achieve certain average type I and type II errors. Neither of these tasks
is easy in general because the thresholds are implicitly defined. The following result provides an
approximate solution to the latter problem.

Proposition 3.7. We have

α0

(
φ(Γ0,Γ1)

)
≤ 1

Γ1

(
1− α1

(
φ(Γ0,Γ1)

))
, α1

(
φ(Γ0,Γ1)

)
≤ Γ0

(
1− α0

(
φ(Γ0,Γ1)

))
.

Proof. For 0 < Γ0 ≤ Γ1 <∞, define

Sn :=
{

(x1, . . . , xn) : Lk(x1, . . . , xk) ∈ (Γ0,Γ1) for k = 1, . . . , n− 1, and Ln(x1, . . . , xn) ≥ Γ1

}
.

Then we obtain

α0

(
φ(Γ0,Γ1)

)
=
∞∑
n=1

∫
Sn

p0(x1) · · · p0(xn) dµ(x1) · · · dµ(xn)

≤ 1

Γ1

∞∑
n=1

∫
Sn

p1(x1) · · · p1(xn) dµ(x1) · · · dµ(xn)

=
1

Γ1

(
1− α1

(
φ(Γ0,Γ1)

))
.

The proof of the second inequality is similar.

Consequently, if αi
(
φ(Γ0,Γ1)

)
= αi for i = 0, 1, then

α0 ≤
1

Γ1
(1− α1), α1 ≤ Γ0(1− α0),

which implies that

Γ0 ≥ Γ′0 :=
α1

1− α0
, Γ1 ≤ Γ′1 :=

1− α1

α0
.

Applying the above proposition again, we obtain

α0

(
φ(Γ′0,Γ

′
1)
)
≤ 1

Γ′1

(
1− α1

(
φ(Γ′0,Γ

′
1)
))
≤ 1

Γ′1
=

α0

1− α1
,

α1

(
φ(Γ′0,Γ

′
1)
)
≤ Γ′0

(
1− α0

(
φ(Γ′0,Γ

′
1)
))
≤ Γ′0 =

α1

1− α0
.

Therefore, if αi is small for i = 0, 1, then choosing the thresholds Γ′0 and Γ′1 for the likelihood-ratio
sequential test yields the desired average errors approximately.
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3.3 Generalized Neyman–Pearson lemma

Consider integrable functions f1, . . . , fm+1 : X → R and real numbers α1, . . . , αm. The generalized
Neyman–Pearson lemma describes the solutions of the optimization problem

max
φ:X→[0,1]

∫
φfm+1 dµ s.t.

∫
φfj dµ = αj , j = 1, . . . ,m. (3.2)

The integrals in this section are all over X unless otherwise specified.

Theorem 3.8. Let Φα denote the set of tests φ which satisfy the constraints in (3.2). If Φα is
nonempty, then the following statements hold:

1. There exists a function φ∗ : X → [0, 1] that solves (3.2).

2. If

φ∗(x) :=

{
1 if fm+1(x) >

∑m
j=1 ujfj(x),

0 if fm+1(x) <
∑m

j=1 ujfj(x),
(3.3)

for constants u1, . . . , um ∈ R and φ∗ ∈ Φα, then φ∗ solves (3.2).

3. If the above φ∗ is defined with uj ≥ 0 for j = 1, . . . ,m and φ∗ ∈ Φα, then φ∗ solves the problem

max
φ:X→[0,1]

∫
φfm+1 dµ s.t.

∫
φfj dµ ≤ αj , j = 1, . . . ,m.

4. Let Φ denote the set of all tests φ : X → [0, 1]. The set

C :=
{(∫

φf1 dµ, . . . ,

∫
φfm dµ

)
: φ ∈ Φ

}
is a closed and convex subset of Rm. If (α1, . . . , αm) belongs to relint(C), the relative interior
of the set C, then there exist constants u1, . . . , um ∈ R and a test φ∗ satisfying (3.3) that solves
(3.2). Moreover, the condition (3.3) is necessary for any solution of (3.2).

3.3.1 Proof of the theorem

1. Note that

sup
φ∈Φα

∫
φfm+1 dµ ≤

∫
|fm+1| dµ <∞,

and there exists a sequence of tests φn such that∫
φnfm+1 dµ→ sup

φ∈Φα

∫
φfm+1 dµ

as n → ∞. Then with some standard arguments in analysis and topology, we can show that
there exists a subsequence of tests φnk and a test φ∗ ∈ Φα such that∫

φnkf dµ→
∫
φ∗f dµ

as k → ∞ for all integrable functions f . Applying the above convergence to f = fm+1 proves
the first claim.
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2. Let φ∗ be a test satisfying (3.3). Then for any test φ ∈ Φα, we have∫
(φ∗ − φ)

(
fm+1 −

m∑
j=1

ujfj

)
dµ ≥ 0

since the integrand is nonnegative. This implies that∫
φ∗fm+1 dµ−

∫
φfm+1 dµ ≥

m∑
j=1

uj

(∫
φ∗fj dµ−

∫
φfj dµ

)
= 0

since φ∗, φ ∈ Φα. This proves the second claim.

3. This follows similarly.

4. This part is more advanced. We first prove that C is convex and closed; the rest will be proved
later in this section. The set Φ of all tests φ : X → [0, 1] is convex, and the mapping

φ 7→
(∫

φf1 dµ, . . . ,

∫
φfm dµ

)
is linear. As the image of a convex set under a linear mapping, the set C is convex. To see that
C is closed, suppose that there is a sequence of tests φn such that(∫

φnf1 dµ, . . . ,

∫
φnfm dµ

)
→ v

as n → ∞ for a point v ∈ C. It suffices to show that v ∈ C. For this, we again extract a
subsequence φnk such that

∫
φnkf dµ →

∫
φf dµ as k → ∞ for some φ ∈ Φ and all integrable

functions f . It then follows that v = (
∫
φf1 dµ, . . . ,

∫
φfm dµ) ∈ C.

To prove the final part of the theorem, we need some preparations. Let

D :=
{(∫

φf1 dµ, . . . ,

∫
φfm dµ,

∫
φfm+1 dµ

)
: φ ∈ Φ

}
.

Similarly, D is a closed and convex subset of Rm+1. Fix α = (α1, . . . , αm) ∈ relint(C). Define

c+
m+1(α) := sup

{∫
φfm+1 dµ : φ ∈ Φα

}
, c−m+1(α) := inf

{∫
φfm+1 dµ : φ ∈ Φα

}
,

and
c+(α) :=

(
α, c+

m+1(α)
)
, c−(α) :=

(
α, c−m+1(α)

)
.

By Part 1 of the theorem, c+(α) ∈ D; similarly, c−(α) ∈ D. Then, by the convexity of D, the
segment connecting c+(α) and c−(α) is contained in D. We therefore have the following lemma.

Lemma 3.9. The function c+
m+1(α) is concave and the function c−m+1(α) is convex; in particular,

both are continuous. Moreover, the set D can be represented as

D =
⋃
α∈C
{α} ×

[
c−m+1(α), c+

m+1(α)
]
.

Informally, the set D has the set C as its “base”. The “upper” boundary of D consists of graphs
of the concave functions c+

m+1(α), α ∈ C, and the “lower” boundary of D consists of graphs of the
convex functions c−m+1(α), α ∈ C.

We split the rest of the proof into two cases.
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Case 1: c+
m+1(α) = c−m+1(α) for some α ∈ relint(C). Let us start with the following lemma.

Lemma 3.10. If c+
m+1(α) = c−m+1(α) for some α ∈ relint(C), then c+

m+1(β) = c−m+1(β) for all
β ∈ C. In this case, cm+1(β) := c+

m+1(β) = c−m+1(β) is a linear function and thus can be written
cm+1(β) = 〈u, β〉 for some u ∈ Rm. Moreover, the set D belongs to a hyperplane in Rm+1 passing
through the origin 0 ∈ Rm+1.

Proof. We only sketch the proof. By the concavity of c+
m+1(β) and the convexity of c−m+1(β), one

can prove the first claim, e.g., via a contrapositive argument. Since cm+1(β) is both convex and
concave, it is not hard to see that we must have

cm+1(β) = cm+1(α) + 〈u, β − α〉.

Moreover, the origin is contained in D since we can take φ ≡ 0. Setting α = 0 in the above equation
yields

cm+1(β) = cm+1(0) + 〈u, β〉 = 〈u, β〉,

finishing the proof.

Any test φ ∈ Φ corresponds to x ∈ D via the relation xj =
∫
φfj dµ. By the above lemma, we

have xm+1 =
∑m

j=1 ujxj for some u ∈ Rm. It then follows that∫
φfm+1 dµ =

∫
φ ·
( m∑
j=1

ujfj

)
dµ

for any φ ∈ Φ. Therefore, we must have fm+1 =
∑m

j=1 ujfj almost everywhere, and the condition
(3.3) holds trivially.

Case 2: c−m+1(α) < c+
m+1(α) for all α ∈ relint(C). In this case, there exists a hyperplane H in

R
m+1 passing through the point c+(α) such that the set D lies on one side of H and that H does

not intersect relint(D). In other words, there is a vector w = (u, λ) ∈ Rm+1 for u ∈ Rm and λ ∈ R
such that

H = {x ∈ Rm+1 : 〈x,w〉 = 〈c+(α), w〉}

and

〈x,w〉 ≥ 〈c+(α), w〉 for x ∈ D, (3.4a)

〈x,w〉 > 〈c+(α), w〉 for x ∈ relint(D). (3.4b)

We claim that λ 6= 0. To see this, suppose that λ = 0. Then H is orthogonal to the hyperplane
containing C, so H contains the segment between c+(α) and c−(α). However, it is not hard to show
that a point in the middle of the segment is in relint(D), which yields a contradiction.

As a result, we can rescale the vector w so that λ = −1, let x = (x̃, xm+1), and rewrite (3.4) as

〈x̃, u〉 − xm+1 ≥ 〈α, u〉 − c+
m+1(α) for x ∈ D, (3.5a)

〈x̃, u〉 − xm+1 > 〈α, u〉 − c+
m+1(α) for x ∈ relint(D). (3.5b)

Let φ∗ ∈ Φα be a test maximizing
∫
φfm+1 dµ. Then we have c+

m+1(α) =
∫
φ∗fm+1 dµ. For

x = (x̃, xm+1) =
(∫

φf1 dµ, . . . ,

∫
φfm dµ,

∫
φfm+1 dµ

)
∈ D

40



where φ ∈ Φ, we can further derive from (3.5) that∫
φ∗
(
fm+1 −

m∑
j=1

ujfj

)
dµ = c+

m+1(α)− 〈α, u〉 ≥ xm+1 − 〈x̃, u〉 =

∫
φ
(
fm+1 −

m∑
j=1

ujfj

)
dµ

for φ ∈ Φ. For this, it is necessary and sufficient that φ∗ satisfies (3.3).

3.3.2 Application to two-sided testing

For θ ∈ Θ ⊂ R, let X be from an exponential family with density

pθ(x) :=
1

Z(θ)
exp

(
θ T (x)

)
h(x)

for x ∈ X , where T (x) ∈ R, h(x) > 0, and

Z(θ) :=

∫
X

exp
(
θ T (x)

)
h(x) dµ(x) <∞.

Note that Z(θ) is a convex function, so we may assume that Θ is an open interval in R. Here T (X)
is known as the sufficient statistic of this exponential family. We assume that the function T (x) is
not constant to avoid the trivial case.

Recall that there is no UMP test for the two-sided testing problem betweenH0 : θ ∈ Θ0 = [θ1, θ2]
and H1 : θ ∈ Θ1 = [θ1, θ2]c. In this case, we may instead seek an unbiased test φ whose power
function βφ(θ) satisfies βφ(θ) ≤ α for θ ∈ Θ0 and βφ(θ) ≥ α for θ ∈ Θ1. Let us now consider a
more ambitious goal.

A test φ∗ : X → [0, 1] is called a uniformly most powerful unbiased (UMPU) test at significance
level α ∈ (0, 1) for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, if it is unbiased and satisfies
βφ∗(θ) ≥ βφ(θ) at all θ ∈ Θ1 for any unbiased test φ at significance level α.

Any UMP test is UMPU, but the converse is not true. We have the following result which is a
consequence of the generalized Neyman–Pearson lemma.

Theorem 3.11. Let Pθ denote the exponential family defined above. Let X ∼ Pθ. For θ1, θ2 ∈ Θ,
θ1 < θ2, and α ∈ (0, 1), there exists a UMPU test φ∗ at significance level α for testing H0 : θ ∈
[θ1, θ2] against H1 : θ /∈ [θ1, θ2]. Moreover, φ∗ satisfies

φ∗(x) =

{
1 if T (x) /∈ [τ1, τ2],

0 if T (x) ∈ (τ1, τ2),
(3.6)

for constants τ1, τ2 ∈ R.

Proof. In the case of exponential family, the power function βφ(θ) is continuous for any test φ.
Therefore, if φ is unbiased, then βφ(θ1) = βφ(θ2) = α. Moreover, we have βφ(θ) =

∫
X φ pθ dµ. Fix

θ′ > θ2, and consider the following optimization problem:

max
φ

∫
φ pθ′ dµ s.t.

∫
φ pθ1 dµ =

∫
φ pθ2 dµ = α,

where all the integrals are over the sample space X .
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We will use the generalized Neyman–Pearson lemma to show that the above problem has a
solution φ∗ of the form:

φ∗(x) =

{
1 if pθ′(x) > u1pθ1(x) + u2pθ2(x),

0 if pθ′(x) < u1pθ1(x) + u2pθ2(x),

for certain constants u1 and u2. To this end, it suffices to check that (α, α) is in the relative interior
of the convex set

C :=
{(∫

φ pθ1 dµ,

∫
φ pθ2 dµ

)
: φ ∈ Φ

}
,

where Φ denotes the set of all tests. We may assume that pθ1 6= pθ2 . By considering the power β1
+

of the most powerful test at significance level α for testing H0 : θ = θ1 against H1 : θ = θ2, we see
that (α, β1

+) ∈ C where β1
+ > α. Similarly, considering the least powerful test gives (α, β1

−) ∈ C for
β1
− < α. Swapping θ1 and θ2 yields (β0

+, α) ∈ C where β0
+ > α and (β0

−, α) ∈ C for β0
− < α. Then

the convexity of C guarantees that (α, α) is in the relative interior of C.
Next, note that the condition pθ′(x) > u1pθ1(x) + u2pθ2(x) is equivalent to

1

Z(θ′)
eθ
′T (x) >

u1

Z(θ1)
eθ1T (x) +

u2

Z(θ2)
eθ2T (x). (3.7)

We now split the proof into several cases:

• u1 ≤ 0 and u2 ≤ 0: The condition (3.7) always holds, so φ∗(x) ≡ 1 and the test is not unbiased.

• u1 > 0 and u2 ≤ 0: The condition (3.7) can be rewritten as

−u2

Z(θ2)
e(θ2−θ1)T (x) +

1

Z(θ′)
e(θ′−θ1)T (x) >

u1

Z(θ1)
.

The left-hand side is an increasing function in T (x), so the region of rejection of φ∗ is determined
by T (x) > c for a constant c. However, as we have seen in Theorem 1.2, such a test is known to
have a strictly increasing power function and cannot satisfy βφ∗(θ1) = βφ∗(θ2) = α.

• u1 ≥ 0 and u2 > 0: Rewriting the condition (3.7) as

−u1

Z(θ1)
e(θ1−θ2)T (x) +

1

Z(θ′)
e(θ′−θ2)T (x) >

u2

Z(θ2)
,

we can use a similar argument to show that this is impossible.

• u1 < 0 and u2 > 0: In view of the above reformulation of the condition (3.7), since the left-hand
side is convex, the test φ∗ must be of the form (3.6).

A similar analysis can be applied to maximizing the power at θ′ < θ1, and also to minimizing
the power at θ′ ∈ (θ1, θ2). The conclusion is that φ∗ of the form (3.6) maximizes the power outside
[θ1, θ2] and minimizes the power inside (θ1, θ2) subject to the constraints that the power is equal
to α at θ1 and θ2. This shows that φ∗ is the UMPU test at significance level α.
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There was a caveat in the above analysis: For different θ′, the constants τ1 and τ2 might not be
the same, so φ∗ is not well-defined. However, this is not a problem. It can be shown that we may
take

φ∗(x) =


1 if T (x) /∈ [τ1, τ2],

γ1 if T (x) = τ1,

γ2 if T (x) = τ2,

0 if T (x) ∈ (τ1, τ2),

for constants γ1, γ2 ∈ [0, 1]; furthermore, the constants τ1, τ2, γ1, γ2 are determined by the constraint
βφ∗(θ1) = βφ∗(θ2) = α (and thus do not depend on θ′).

3.3.3 Testing equality

We continue to consider the exponential family defined in the last subsection. The testing problem
between H0 : θ = θ0 and H1 : θ 6= θ0 is the limiting case of the two-sided testing problem above,
with θ1 = θ2 = θ0. It is possible to develop a UMPU test for this problem, where the power function
satisfies βφ(θ0) = α and β′φ(θ0) = 0. The power function is differentiable for any test in the case
of one-parameter exponential family, so the condition β′φ(θ0) = 0 is a consequence of the fact that
βφ(θ) is minimized at θ0. The following identity holds.

Proposition 3.12. For any test φ and any θ ∈ Θ, we have

β′φ(θ) = Covθ
(
φ(X), T (X)

)
.

Proof. We have

β′φ(θ) =
d

dθ

∫
φ pθ dµ

=
d

dθ

∫
φ(x)

1

Z(θ)
exp

(
θ T (x)

)
h(x) dµ(x)

=

∫
φ(x)

T (x)

Z(θ)
exp

(
θ T (x)

)
h(x) dµ(x)−

∫
φ(x)

Z ′(θ)

Z(θ)2
exp

(
θ T (x)

)
h(x) dµ(x)

=

∫
φT pθ dµ−

Z ′(θ)

Z(θ)

∫
φ pθ dµ

= Eθ[φ(X)T (X)]− Z ′(θ)

Z(θ)
Eθ[φ(X)].

Moreover,

Z ′(θ)

Z(θ)
=

1

Z(θ)
· d
dθ

∫
exp

(
θ T (x)

)
h(x) dµ(x) =

1

Z(θ)

∫
T (x) exp

(
θ T (x)

)
h(x) dµ(x) = Eθ[T (X)].

It follows that

β′φ(θ) = Eθ[φ(X)T (X)]−Eθ[T (X)] Eθ[φ(X)] = Covθ
(
φ(X), T (X)

)
.
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Therefore, the condition β′φ(θ0) = 0 is equivalent to saying that φ(X) and T (X) are uncorrelated
for X ∼ pθ0 . In addition, if βφ(θ0) = Eθ0 [φ(X)] = α, then

Eθ0 [φ(X)T (X)] = αEθ0 [T (X)]

or ∫
φT pθ0 dµ = α

∫
T pθ0 dµ.

To find a UMPU test at significance level α, we can solve the following optimization problem for
θ 6= θ0:

max
φ

∫
φ pθ dµ s.t.

∫
φ pθ0 dµ = α,

∫
φT pθ0 dµ = α

∫
T pθ0 dµ.

A similar analysis based on the generalized Neyman–Pearson lemma yields a UMPU test of the
form

φ∗(x) =


1 if T (x) /∈ [τ1, τ2],

γ1 if T (x) = τ1,

γ2 if T (x) = τ2,

0 if T (x) ∈ (τ1, τ2),

where the constants γ1, γ2 ∈ [0, 1] and τ1, τ2 are determined by the constraints in the above opti-
mization problem. The conclusion is stated as the following theorem.

Theorem 3.13. Let Pθ be a one-parameter exponential family, where θ belongs to an open interval
Θ ⊂ R. Let X ∼ Pθ. For θ0 ∈ Θ and α ∈ (0, 1), there exists a UMPU test φ∗ at significance level
α for testing H0 : θ = θ0 against H1 : θ 6= θ0. Moreover, φ∗ can be taken to have the above form.

We conclude this section by revisiting the one-sided problem of testing H0 : θ ≤ θ0 against
H1 : θ > θ0. Note that the one-sided test φ based on a statistic T (X) can be viewed as an
increasing function of T :

φ(T ) =


1 if T > τ,

γ if T = τ,

0 if T < τ,

where γ ∈ [0, 1]. Then we can show that such a test φ does not satisfy Cov(φ(T ), T ) = 0 using the
following result.

Proposition 3.14. Let T be a real-valued random variable, and let φ : R → R be an increasing
function. Then we have Cov(φ(T ), T ) ≥ 0. Moreover, the inequality is strict unless φ(T ) is constant
almost surely.

Proof. Since T −E[T ] is a random variable and φ(T )−E[φ(T )] is increasing in T −E[T ], we may
assume without loss of generality that E[T ] = 0 and E[φ(T )] = 0. Then we have

Cov(φ(T ), T ) =

∫
R

φ(t) · t dP(t) =

∫
R

(
φ(t)− φ(0)

)
t dP(t),

since
∫
R
t dP(t) = 0. As φ(t) is increasing, the integrand is nonnegative everywhere on R. The

conclusion follows.

Consequently, we have confirmed that the one-sided test is not UMPU for testing equality.
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3.4 Testing in higher dimensions

So far, our discussion has mainly focused on the case where the parameter θ is real-valued. Let us
now consider testing in higher dimensions.

3.4.1 Multivariate exponential family

We start with a technical lemma.

Lemma 3.15. Let U be a random vector in R` and T be a random vector in Rm. Under Hi for
i = 0, 1, let Pi be the joint distribution of (U, T ). Let Qi be the marginal distribution of T . Let Ri,t
be the conditional distribution of U given T = t. Let the corresponding lower-case letters denote
the densities of the above distributions. Suppose that

p1(u, t)

p0(u, t)
= a(u)b(t)

for functions a(u) > 0 and b(t). Then we have

q1(t)

q0(t)
= b(t)E0[a(U) | T = t],

r1,t(u)

r0,t(u)
=

a(u)

E0[a(U) | T = t]
. (3.8)

Proof. For any B ⊂ Rm, we have

P1{T ∈ B} = E0[1{T ∈ B} a(U) b(T )]

= E0

[
E0[a(U) | T ] · 1{T ∈ B} b(T )

]
=

∫
B
b(t) E0[a(U) | T = t] q0(t) dt,

so the first equation in (3.8) holds.
Moreover, for any C ⊂ R`, we have

P1{T ∈ B, U ∈ C} = E0[1{T ∈ B, U ∈ C} a(U) b(T )]

= E0

[
E0[1{U ∈ C} a(U) | T ] · 1{T ∈ B} b(T )

]
=

∫
B

(∫
C
a(u) r0,t(u) du

)
b(t) q0(t) dt

=

∫
B

(∫
C
a(u) r0,t(u) du

) q1(t)

E0[a(U) | T = t]
dt,

where the last equality follows from the first equation in (3.8). On the other hand, we have

P1{T ∈ B, U ∈ C} =

∫
B

(∫
C
r1,t(u) du

)
q1(t) dt.

The above two displays together imply that

r1,t(u) =
a(u) r0,t(u)

E0[a(U) | T = t]
,

proving the second equation in (3.8).
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Next, consider an (`+m)-parameter exponential family on Rn with densities

pθ,η(x) = h(x) exp
(
θ>U(x) + η>T (x)−A(θ, η)

)
, x ∈ Rn, (3.9)

where θ, U(x) ∈ R` and η, T (x) ∈ Rm. The following result gives the marginal and conditional
distributions of the sufficient statistics U and T .

Proposition 3.16. If X ∼ pθ,η, then there exist measures λθ on Rm and νt on R` such that:

• With θ ∈ R` fixed, the marginal distributions of T form an m-parameter exponential family
with densities

qθ,η(t) = exp
(
η>t−A(θ, η)

)
, t ∈ Rm,

with respect to the measure λθ.

• The conditional distributions of U given T = t form an `-parameter exponential family with
densities

rθ,t(u) = exp
(
θ>u−At(θ)

)
, u ∈ R`,

with respect to the measure νt for some function At(θ). In particular, these densities do not
depend on η ∈ Rm.

Proof. Let ωθ,η denote the joint distribution of (U, T ) under pθ,η. Fix parameters θ0 and η0. Then

ωθ,η
ωθ0,η0

=
pθ,η
pθ0,η0

= exp
(

(θ − θ0)>u+ (η − η0)>t+A(θ0, η0)−A(θ, η)
)
.

By the first equation in (3.8),

qθ,η(t)

qθ0,η0(t)
= exp

(
(η − η0)>t+A(θ0, η0)−A(θ, η)

)∫
exp

(
(θ − θ0)>u

)
rθ0,t(u) du

= exp
(
η>t−A(θ, η)

)∫
exp

(
(θ − θ0)>u− η>0 t+A(θ0, η0)

)
rθ0,t(u) du.

Therefore, qθ,η(t) is of the desired form once we take λθ to be the measure such that

1

qθ0,η0(t)
=

∫
exp

(
(θ − θ0)>u− η>0 t+A(θ0, η0)

)
rθ0,t(u) du.

Moreover, by the second equation in (3.8),

rθ,t(u)

rθ0,t(u)
=

exp
(
(θ − θ0)>u

)∫
exp

(
(θ − θ0)>w

)
rθ0,t(w) dw

= exp
(
θ>u−At(θ)

)
exp(−θ>0 u),

where

At(θ) := log

∫
exp

(
(θ − θ0)>w

)
rθ0,t(w) dw.

Then rθ,t(u) is of the desired form once we take νt to be the measure such that

1

rθ0,t(u)
= exp(−θ>0 u).

This completes the proof.
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3.4.2 UMPU tests in higher dimensions

Suppose that we observe data X from a full-rank exponential family with density (3.9), where θ ∈ R
(i.e., ` = 1) and η ∈ Rm. We now derive tests by conditioning on T . By the above proposition, the
condition distribution of U given T = t is from a one-parameter exponential family. According to
the theory that has been developed, a UMP conditional test for H0 : θ ≤ θ0 versus H1 : θ > θ0 is
given by

φ1(X) :=


1 if U > c(T ),

γ(T ) if U = c(T ),

0 if U < c(T ),

where c(·) and γ(·) are determined by the constraint

Eθ0,η[φ1 | T = t] = α.

Moreover, for H0 : θ = θ0 versus H1 : θ 6= θ0, a UMPU conditional test is given by

φ2(X) :=


1 if U /∈ [c1(T ), c2(T )]c,

γ1(T ) if U = c1(T ),

γ2(T ) if U = c2(T ),

0 if U ∈ (c1(T ), c2(T )),

where ci(·) and γi(·), i = 1, 2, are determined by the constraints

Eθ0,η[φ2 | T = t] = α, Eθ0,η[φ2 U | T = t] = αEθ0,η[U | T = t].

Theorem 3.17. The tests φ1 and φ2 are UMPU at significance level α for their respective testing
problems.

Proof. We provide a sketch of the proof. Consider the test φ1. Since Eθ0,η[φ1 | T ] = α, we have
Eθ0,η[φ1] = α. In addition, the conditional power function Eθ,η[φ1 | T ] is increasing in θ, so
the power function Eθ,η[φ1] is also increasing. It follows that φ1 is subject to significance level α.
Moreover, let φ be an unbiased test so that Eθ0,η[φ] = α. Using the completeness of the exponential
family with respect to T , one can show that in fact Eθ0,η[φ | T ] = α. Since φ1 is UMPU conditional
on T , it holds that Eθ,η[φ1 | T ] ≥ Eθ,η[φ | T ] for any θ > θ0. We then obtain Eθ,η[φ1] ≥ Eθ,η[φ] for
any θ > θ0. Therefore, φ1 is UMP among all unbiased tests, i.e., it is UMPU.

Next, consider the test φ2. Recall that

1 =

∫
pθ,η(x) dµ(x) =

∫
h(x) exp

(
θ>U(x) + η>T (x)−A(θ, η)

)
dµ(x),

so

eA(θ,η) =

∫
h(x) exp

(
θ>U(x) + η>T (x)

)
dµ(x).

Differentiating both sides with respect to θ yields

eA(θ,η)∂A(θ, η)

∂θ
=

∫
U(x) · h(x) exp

(
θ>U(x) + η>T (x)

)
dµ(x).
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As a result, we obtain

m(θ, η) :=
∂A(θ, η)

∂θ
=

∫
U(x) · pθ,η(x) dµ(x) = Eθ,η[U ].

Moreover,

∂Eθ,η[φ]

∂θ
=

∫
φ(x)

∂

∂θ
pθ,η(x) dµ(x)

=

∫
φ(x)

(
U(x)−m(θ, η)

)
pθ,η(x) dµ(x)

= Eθ,η

[
φ ·
(
U −m(θ, η)

)]
.

If φ is unbiased, then Eθ0,η[φ] = α and

0 = Eθ0,η

[
φ ·
(
U −m(θ0, η)

)]
= Eθ0,η[φU ]− αm(θ0, η) = Eθ0,η[(φ− α)U ].

By completeness again, the above equation holds even if the expectations are taken conditionally
on T , i.e.,

Eθ0,η[φ | T ] = α, Eθ0,η[φU | T ] = αEθ0,η[U | T ].

Under these constraints, we know that φ2 is UMP conditional on T :

Eθ,η[φ2 | T ] ≥ Eθ,η[φ | T ].

Therefore, we can conclude that Eθ,η[φ2] ≥ Eθ,η[φ], i.e., φ2 is UMPU.

3.4.3 Application to the t-test

Let us apply the general theory to the t-test for Gaussian means. Suppose that X1, . . . , Xn are
i.i.d. N (µ, σ2) random variables where µ and σ2 are unknown. Consider testing H0 : µ ≤ 0 against
H1 : µ > 0. The joint density of X = (X1, . . . , Xn) is

1

(2πσ2)n/2
exp

(−∑n
i=1(xi − µ)2

2σ2

)
=

1

(2π)n/2
exp

( µ
σ2
U(x)− 1

2σ2
T (x)− nµ2

2σ2
− n log σ

)
where U(x) =

∑n
i=1 xi and T (x) =

∑n
i=1 x

2
i . This is of the form (3.9) with θ = µ/σ2 and η =

−1/(2σ2). By the above general theory, a UMPU test is

φ(X) :=

{
1 if U ≥ c(T ),

0 if U < c(T ),

where c(·) is chosen so that

P0{U ≥ c(T ) | T} = α.

It is intuitive and can be shown rigorously that X conditional on T = t is uniform over the sphere
{x ∈ Rn : ‖x‖2 =

√
t}. Hence X/

√
T is uniform over the unit sphere in Rn. Let Q denote the

distribution of U/
√
T = 1>X/

√
T , and let qα denote the (1−α)-quantile ofQ. Define c(T ) := qα

√
T .

Then the above constraint is satisfied.
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This UMPU test is in fact equivalent to the t-test for Gaussian means:

φ(X) :=

{
1 if

√
nX̄/S ≥ tα,n−1,

0 if
√
nX̄/S < tα,n−1,

where tα,n−1 is the (1− α)-quantile of the t-distribution with n− 1 degrees of freedom. To see the
equivalence, note that the test statistic in the t-test is

X̄

S/
√
n

=
U/n

S/
√
n
,

where

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

n∑
i=1

X2
i −

n

n− 1
X̄2 =

T

n− 1
− U2

n(n− 1)
.

Thus we can rewrite the test statistic as

X̄

S/
√
n

=
U/n√

(T − U2/n)/(n− 1)
=

√
n− 1 sign(U)√
nT/U2 − 1

,

which is a strictly increasing function in U/
√
T . Thresholding X̄

S/
√
n

is therefore equivalent to

thresholding U/
√
T provided that the two tests both have power α under P0. We conclude that

the t-test is UMPU.
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Chapter 4

Large-sample theory

4.1 Hellinger distance and testing errors

4.1.1 Definitions and properties

Let p and q be two densities with respect to a measure µ on the sample space X , identified with
their respective distributions. Define

H2(p, q) :=

∫
X

(
√
p−√q)2 dµ.

Then H(p, q) =
√
H2(p, q) is called the Hellinger distance between p and q. Since

∫
p = 1, we can

think of
√
p as a function with unit norm in the Hilbert space L2(µ). Then H(p, q) is the natural

L2-distance between
√
p and

√
q. Moreover, we define

A(p, q) :=

∫
X

√
pq dµ,

which is called the Hellinger affinity between p and q. In other words, A(p, q) is the cosine of the
angle between

√
p and

√
q in the space L2(µ). The following properties hold:

• H2(p, q) = 2(1−A(p, q));

• 0 ≤ A(p, q) ≤ 1;

• 0 ≤ H2(p, q) ≤ 2;

• H2(p, q) = 0 if and only if A(p, q) = 1 if and only if p = q µ-almost everywhere;

• H2(p, q) = 2 if and only if A(p, q) = 0 if and only if pq = 0 µ-almost everywhere.

Furthermore, define

TV(p, q) :=
1

2

∫
X
|p− q| dµ,

which is called the total variation distance between p and q. Here we view a density p as a function
with unit norm in L1(µ). Up to a factor 2, the total variation distance is the natural L1-distance
between p and q.
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Proposition 4.1. We have

TV(p, q) ≤ H(p, q)

√
1− H2(p, q)

4
.

Proof. By the Cauchy–Schwarz inequality, we have

A(p, q)2 =
(∫ √

pq dµ
)2

=
(∫ √

min(p, q) ·max(p, q) dµ
)2

≤
(∫

min(p, q) dµ
)(∫

max(p, q) dµ
)

=
(∫ p+ q − |p− q|

2
dµ
)(∫ p+ q + |p− q|

2
dµ
)

=
(

1− 1

2

∫
|p− q| dµ

)(
1 +

1

2

∫
|p− q| dµ

)
= 1−

(1

2

∫
|p− q| dµ

)2
= 1− TV(p, q)2.

It follows that

TV(p, q) ≤
√

1−A(p, q)2 =
√

1−A(p, q)
√

1 +A(p, q)

=

√
H2(p, q)

2

√
2− H2(p, q)

2
= H(p, q)

√
1− H2(p, q)

4
.

4.1.2 Bounding errors in hypothesis testing

Consider a simple hypothesis testing problem between H0 : X ∼ p0 and H1 : X ∼ p1. The Hellinger
distance between p0 and p1 is closely related to the errors in this testing problem. For a test φ, let
αφ := E0[φ] and βφ := E1[φ]. Then max(αφ, 1 − βφ) is the maximum of the expected type I and
type II errors. We now bound this quantity using the Hellinger distance.

Proposition 4.2. Let L(X) := p1(X)/p0(X) be the likelihood ratio. The likelihood-ratio test

φc(X) :=

{
1 if L(X) ≥ c,
0 if L(X) < c,

(4.1)

satisfies

max(αφc , 1− βφc) ≤ max(
√
c, 1/
√
c)A(p0, p1) = max(

√
c, 1/
√
c)
(

1− H2(p0, p1)

2

)
.

Proof. We have

αφc = P0{L(X) ≥ c} ≤ E0

√
L(X)

c
≤ 1√

c

∫ √
p1

p0
p0 dµ =

1√
c
A(p0, p1).

Similarly, one can show that
1− βφc ≤

√
cA(p0, p1),

finishing the proof.
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On the other hand, we can prove a lower bound complementing the above upper bound.

Proposition 4.3. Let Φ denote the set of all tests based on the observation X. We have

inf
φ∈Φ

max(αφ, 1− βφ) ≥ 1

2

(
1− TV(p0, p1)

)
≥ 1

2

(
1−H(p0, p1)

√
1− H2(p0, p1)

4

)
.

Proof. For any test φ, we have

max(αφ, 1− βφ) ≥ 1

2
(αφ + 1− βφ) =

1

2
+

1

2
(αφ − βφ) =

1

2
+

1

2

∫
φ · (p0 − p1) dµ.

To minimize the right-hand side, we take the likelihood-ratio test φ1 defined in (4.1), which gives

max(αφ, 1− βφ) ≥ 1

2
− 1

2

∫
p1≥p0

(p1 − p0) dµ.

Since
∫
p0 dµ =

∫
p1 dµ = 1, we have∫

p1≥p0

(p1 − p0) dµ =

∫
p0>p1

(p0 − p1) dµ =
1

2

∫
|p0 − p1| dµ.

It follows that

2 max(αφ, 1− βφ) ≥ 1− 1

2

∫
|p0 − p1| dµ = 1− TV(p0, p1).

Applying Proposition 4.1 then completes the proof.

4.1.3 Tensorization and large-sample analysis

Let µ(n) denote the product measure µ× · · · × µ on the space X n = X × · · · × X . Let p(n) denote
the product density on X n defined by

p(n)(x1, . . . , xn) = p(x1) · · · p(xn).

Proposition 4.4. For any densities p and q and any integer n ≥ 1, we have

A(p(n), q(n)) = A(p, q)n, H2(p(n), q(n)) = 2

(
1−

(
1− H2(p, q)

2

)n)
.

In particular, if A(p, q) < 1 or equivalently H2(p, q) > 0, then we have A(p(n), q(n)) → 0 and
H2(p(n), q(n))→ 2 as n→∞.

Proof. We have

A(p(n), q(n)) =

∫
Xn

√
p(n)(x) q(n)(x) dµ(n)(x)

=

∫
X
· · ·
∫
X

√
p(x1) q(x1) · · · p(xn) q(xn) dµ(x1) · · · dµ(xn) = A(p, q)n.

Moreover,

H2(p(n), q(n)) = 2(1−A(p(n), q(n))) = 2(1−A(p, q)n) = 2

(
1−

(
1− H2(p, q)

2

)n)
.
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The above property is known as tensorization. We now discuss the consequence of tensorization
in hypothesis testing.

Given two densities pn and qn with respect to µ on X (that are allowed to depend on n), consider

testing H
(n)
0 : i.i.d. X1, . . . , Xn ∼ pn against H

(n)
1 : i.i.d. X1, . . . , Xn ∼ qn. A sequence of tests φ(n)

is called consistent if

αφ(n) → 0 and βφ(n) → 1 as n→∞.

Proposition 4.5. Let

Ln(X1, . . . , Xn) :=
qn(X1) · · · qn(Xn)

pn(X1) · · · pn(Xn)

be the likelihood ratio between the product densities. For any c ∈ (0,∞), define

φ(n)
c (X1, . . . , Xn) :=

{
1 if Ln(X1, . . . , Xn) ≥ c,
0 if Ln(X1, . . . , Xn) < c.

(4.2)

Then we have

max(α
φ

(n)
c
, 1− β

φ
(n)
c

) ≤ max(
√
c, 1/
√
c)A(pn, qn)n.

As a result, if H(pn, qn) > b for a constant b > 0, then the sequence of tests φ
(n)
c is consistent.

Proof. This follows immediately from above results.

Next, we turn to the case where

δn := H(pn, qn)→ 0 as n→∞.

Theorem 4.6. 1. If
√
n δn →∞ as n→∞, then there exists a sequence of test φ(n) such that

max(αφ(n) , 1− βφ(n))→ 0 as n→∞.

2. If
√
n δn ≤ B for a constant B > 0, then there exists a constant b > 0 such that

lim inf
n→∞

inf
φ(n)

max(αφ(n) , 1− βφ(n)) ≥ b,

where the infimum is taken over all test φ(n) based on the observations X1, . . . , Xn.

3. If
√
n δn → 0 as n→∞, then

lim inf
n→∞

inf
φ(n)

max(αφ(n) , 1− βφ(n)) = 1/2.

Proof. For the first claim, consider again the test (4.2). Then we have

max(α
φ

(n)
c
, 1− β

φ
(n)
c

) ≤ max(
√
c, 1/
√
c)A(pn, qn)n = max(

√
c, 1/
√
c)
(

1− δ2
n

2

)n
,

since A(pn, qn) = 1− H2(pn,qn)
2 . The above bound goes to 0 as n→∞ if

√
n δn →∞.
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For the other two claims, we apply Proposition 4.3 to obtain

inf
φ(n)

max(αφ(n) , 1− βφ(n)) ≥
1

2

(
1−H(p(n)

n , q(n)
n )

√
1− H2(p

(n)
n , q

(n)
n )

4

)
.

By tensorization, we have

H2(p(n)
n , q(n)

n ) = 2

(
1−

(
1− H2(pn, qn)

2

)n)
= 2

(
1−

(
1− δ2

n

2

)n)
.

If
√
n δn ≤ B, then

(
1 − δ2

n
2

)n ≥ (1 − B
2n

)n
, which is lower bounded by a positive constant for all

large n. Therefore, H2(p
(n)
n , q

(n)
n ) is bounded away from 2 for all large n. This in turn yields the

second claim.
Finally, if

√
n δn → 0 as n → ∞, then

(
1 − δ2

n
2

)n → 1, H2(p
(n)
n , q

(n)
n ) → 0, and the third claim

follows.

4.2 Revisiting likelihood-ratio tests

4.2.1 Setup

Let X1, . . . , Xn be i.i.d. observations from the distribution with density pθ∗ where θ∗ ∈ Θ. The
likelihood function is

Ln(θ) :=

n∏
i=1

pθ(Xi).

The maximum likelihood estimator (MLE) is

θ̂ := argmax
θ∈Θ

Ln(θ).

Consider the composite hypothesis testing problem between H0 : θ∗ ∈ Θ0 and H1 : θ∗ ∈ Θ1,
where Θ0 ⊂ Θ and Θ1 = Θ \Θ0. In this case, we can define the likelihood ratio to be

supθ∈Θ1
Ln(θ)

supθ∈Θ0
Ln(θ)

.

Let the MLEs under H0 and H1 be

θ̂0 := argmax
θ∈Θ0

Ln(θ), θ̂1 := argmax
θ∈Θ1

Ln(θ),

respectively. Then the likelihood ratio is

Ln(θ̂1)

Ln(θ̂0)
=
pθ̂1(X1) · · · pθ̂1(Xn)

pθ̂0(X1) · · · pθ̂0(Xn)
.

The log-likelihood ratio is

Λ̃n := log
supθ∈Θ1

Ln(θ)

supθ∈Θ0
Ln(θ)

= log
Ln(θ̂1)

Ln(θ̂0)
=

n∑
i=1

log
pθ̂1(Xi)

pθ̂0(Xi)
.
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Moreover, it is often more convenient to study a modified version of the log-likelihood ratio

Λn := 2 log
supθ∈Θ Ln(θ)

supθ∈Θ0
Ln(θ)

= 2 log
Ln(θ̂)

Ln(θ̂0)
= 2

n∑
i=1

log
pθ̂(Xi)

pθ̂0(Xi)
.

It is not hard to see that
Λn = 2 max{Λ̃n, 0}.

Similar to the cases discussed before, we will reject the null if Λn exceeds a threshold c. More
precisely, at significance level α ∈ (0, 1), we would like to have

Pθ∗{Λn ≥ c} ≤ α for all θ∗ ∈ Θ0.

This is more difficult to achieve than before because we now have a composite hypothesis. However,
we will show that under certain models, the asymptotic distribution of the log-likelihood can be
characterized for θ∗ ∈ Θ0, allowing us to overcome the aforementioned difficulty.

4.2.2 Examples

Before introducing the general theory, let us discuss two simple examples.

Gaussian Let X ∼ N (θ∗, Id) where θ∗ ∈ Θ ⊂ Rd. The likelihood is

L(θ) =
1

(2π)d/2
exp

(−‖X − θ‖22
2

)
,

and the log-likelihood is

logL(θ) = −d
2

log(2π)− 1

2
‖X − θ‖22.

Therefore, the MLE is
θ̂ = argmin

θ∈Θ
‖X − θ‖22 = ΠΘX,

where ΠΘ denotes the projection of X onto the set Θ. If Θ is closed and convex, then the projection
is well-defined. Then we have

logL(θ̂) = −d
2

log(2π)− 1

2
dist2(X,Θ),

where dist(X,Θ) denotes the `2-distance from X to the set Θ. It follows that

Λ = 2 log
L(θ̂)

L(θ̂0)
= dist2(X,Θ0)− dist2(X,Θ).

Consider the special case where Θ = R
d and Θ0 is a subspace of Rd of dimension k < d. In

this case,
Λ = dist2(X,Θ0) = ‖ΠΘ⊥0

X‖22,

where Θ⊥0 denotes the orthogonal complement of Θ0. Under H0 : θ ∈ Θ0, we have

Λ = ‖ΠΘ⊥0
(θ∗ + Z)‖22 = ‖ΠΘ⊥0

Z‖22 ∼ χ2
d−k,

where Z ∼ N (0, Id). Therefore, the distribution of Λ does not depend on θ∗ ∈ Θ0. To obtain a test
at significance level α, we can choose c to be the (1− α)-quantile of χ2

d−k and reject H0 if Λ ≥ c.
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Multinomial Let X = (X1, . . . , Xk) be from a multinomial distribution with parameters n ≥ 1
and θ∗ ∈ Θ, where the parameter space is the probability simplex

Θ :=
{
θ = (θ1, . . . , θk) : θi ≥ 0 for i ∈ [k],

k∑
i=1

θi = 1
}
.

The likelihood is

Ln(θ) =
n!

X1! · · ·Xk!
θX1

1 · · · θ
Xk
k .

The MLE is

θ̂ = argmax
θ∈Θ

(
log

n!

X1! · · ·Xk!
+X1 log θ1 + · · ·+Xk log θk

)
= argmin

θ∈Θ

(
−X1 log θ1 − · · · −Xk log θk

)
= argmin

θ∈Θ

(X1

n
log

X1/n

θ1
+ · · ·+ Xk

n
log

Xk/n

θk

)
.

For θ, θ′ ∈ Θ, the Kullback–Leibler (KL) divergence between θ′ and θ is defined as

KL(θ′, θ) :=

k∑
i=1

θ′i log
θ′i
θi
.

Then we have
θ̂ = argmin

θ∈Θ
KL(X/n, θ),

where X/n = (X1/n, . . . ,Xk/n) is the vector of frequencies. Moreover, it is not hard to use Jensen’s
inequality to show that

KL(θ′, θ) ≥ 0

with equality achieved if and only if θ = θ′. As a result, we see that θ̂ = X/n.
For a subset Θ0 ⊂ Θ, we have

θ̂0 = argmin
θ∈Θ0

KL(X/n, θ) = argmin
θ∈Θ0

KL(θ̂, θ).

The modified log-likelihood ratio is

Λn = 2 log
Ln(θ̂)

Ln(θ̂0)
= 2

k∑
i=1

Xi log
θ̂i

(θ̂0)i
= 2n

k∑
i=1

θ̂i log
θ̂i

(θ̂0)i
= 2nKL(θ̂, θ̂0) = 2n inf

θ∈Θ0

KL(θ̂, θ).

Consider the special case Θ0 = {θ(0)} where θ(0) has positive entries. Then

Λn = 2n

k∑
i=1

θ̂i log
θ̂i

θ
(0)
i

= 2n

k∑
i=1

θ̂i log

(
1 +

θ̂i − θ(0)
i

θ
(0)
i

)
.

The Taylor expansion gives

log(1 + x) = x− x2

2
+ x2 r(x)
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where r(x)→ 0 as x→ 0. Moreover, we have

θ̂i − θ(0)
i = Op(1/

√
n)

where Op means having an order in probability as n→∞. Combining these facts gives

log

(
1 +

θ̂i − θ(0)
i

θ
(0)
i

)
=
θ̂i − θ(0)

i

θ
(0)
i

− 1

2

(
θ̂i − θ(0)

i

θ
(0)
i

)2

+ op(1/n)

as n→∞. Therefore,

Λn = 2n

k∑
i=1

θ̂i
θ̂i − θ(0)

i

θ
(0)
i

− n
k∑
i=1

θ̂i

(
θ̂i − θ(0)

i

θ
(0)
i

)2

+ op(1)

= 2n
k∑
i=1

θ
(0)
i

θ̂i − θ(0)
i

θ
(0)
i

+ 2n

k∑
i=1

(θ̂i − θ(0)
i )2

θ
(0)
i

− n
k∑
i=1

(θ̂i − θ(0)
i )2

θ
(0)
i

− n
k∑
i=1

(θ̂i − θ(0)
i )3

(θ
(0)
i )2

+ op(1)

= n
k∑
i=1

(θ̂i − θ(0)
i )2

θ
(0)
i

+ op(1).

The main term is in fact the same statistic used for the goodness-of-fit in Section 2.4.1. We can
show that it converges to χ2

k−1. Therefore, the likelihood-ratio test is asymptotically equivalent to
Pearson’s chi-squared test in this case.

4.3 Asymptotic theory for likelihood-ratio tests

Let us first introduce the Kullback–Leibler (KL) divergence more generally. The KL divergence
between probability distributions with densities p and q is defined as

KL(p, q) := Ep log
p(X)

q(X)
.

Proposition 4.7. For any densities p and q, we have

KL(p, q) ≥ H2(p, q).

Proof. Since log x ≤ 2(
√
x− 1) for x ≥ 0, we obtain

log
q(X)

p(X)
≤ 2
(√q(X)

p(X)
− 1
)
.

Therefore,

−KL(p, q) = Ep log
q(X)

p(X)
≤ 2
(
Ep

√
q(X)

p(X)
− 1
)

= 2
(∫ √

pq dµ− 1
)

= 2(A(p, q)− 1) = −H2(p, q).
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4.3.1 Consistency of the MLE

We continue to use the same notation as in the previous section. Recall that the MLE is

θ̂n := argmax
θ∈Θ

Ln(θ) = argmax
θ∈Θ

1

n

n∑
i=1

log pθ(Xi).

Suppose that Eθ∗ | log pθ(X)| <∞ for all θ, θ∗ ∈ Θ. Then by the strong law of large numbers,

1

n

n∑
i=1

log pθ(Xi)→ Eθ∗ log pθ(X)

almost surely as n→∞. Moreover, we would like

θ∗ = argmax
θ∈Θ

Eθ∗ log pθ(X). (4.3)

To guarantee this, note that

Eθ∗ log pθ∗(X)−Eθ∗ log pθ(X) = KL(pθ∗ , pθ) ≥ H2(pθ∗ , pθ).

Therefore, if the model {pθ : θ ∈ Θ} is identifiable, i.e., H2(pθ, pθ′) > 0 for any distinct θ, θ′ ∈ Θ,
then θ∗ is the unique maximizer in (4.3). Furthermore, under some regularity assumptions of the
model, we can show that

θ̂n → θ∗

in probability or almost surely as n→∞, in which case we say that the MLE θ̂n is consistent.

4.3.2 Asymptotic normality of the MLE

We now briefly discuss a more refined property of the MLE θ̂n called asymptotic normality. Suppose
that Θ is an open subset ofRd. Suppose that the model {pθ : θ ∈ Θ} is quadratic mean differentiable
(QMD) at θ ∈ Θ, i.e., there is a function ψθ : X → R

d such that∥∥∥(√pθ+h −√pθ)− 〈ψθ, h〉∥∥∥
L2

= o(‖h‖2)

as ‖h‖2 → 0. Informally, for d = 1, this is saying that

lim
h→0

√
pθ+h −

√
pθ

h
= ψθ,

∂

∂θ

√
pθ = ψθ,

and furthermore,
∂

∂θ
pθ = 2

√
pθ ψθ,

∂

∂θ
log pθ =

2ψθ√
pθ
.

The Fisher information matrix is defined as

I(θ) := Eθ

[( ∂
∂θ

log pθ

)( ∂
∂θ

log pθ

)>]
= 4

∫
X
ψθψ

>
θ dµ.
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Define the log-likelihood ratio process as

Zn(θ;u) := log

∏n
i=1 pθ+ u√

n
(Xi)∏n

i=1 pθ(Xi)
=

n∑
i=1

(
log pθ+ u√

n
(Xi)− log pθ(Xi)

)
,

where u ∈ Rd and θ, θ + u√
n
∈ Θ. Then we have

ûn := argmax
u∈Rd

Zn(θ∗;u) =
√
n(θ̂n − θ∗).

The following result is due to Le Cam (see Chapter 7 of [vdV00]).

Theorem 4.8 (Local asymptotic normality). In the above setting, for any u ∈ Rd, we have

Zn(θ∗;u) = u>Yn(θ∗)− 1

2
u>I(θ∗)u+ op(1)

as n→∞, where

Yn(θ) :=
1√
n

n∑
i=1

∂

∂θ
log pθ(Xi).

Moreover, as a result the central limit theorem,

Yn(θ∗)
d−→ N (0, I(θ∗))

as n→∞, and for any u ∈ Rd,

Zn(θ∗;u)
d−→ u>I(θ∗)1/2Z − 1

2
u>I(θ∗)u

as n→∞, where Z ∼ N (0, Id).

The following heuristic derivation then yields the asymptotic normality of the MLE θ̂n:

√
n(θ̂n − θ∗) = ûn = argmax

u∈Rd
Zn(θ∗;u)

d
≈ argmax

u∈Rd

(
u>I(θ∗)1/2Z − 1

2
u>I(θ∗)u

)
= I(θ∗)−1/2 argmax

v∈Rd

(
v>Z − 1

2
‖v‖22

)
= I(θ∗)−1/2Z ∼ N (0, I(θ∗)−1),

provided that I(θ∗) is invertible, so we obtain

√
n(θ̂n − θ∗)

d−→ N (0, I(θ∗)−1).
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4.3.3 Wilks’ theorem

Let Θ be an open subset of Rd and L be a subspace of Rd of dimension k < d. Consider testing
H0 : θ∗ ∈ Θ ∩ L against H1 : θ∗ ∈ Θ \ L. Let θ̂n denote the MLE for the whole model and let θ̂n,0
denote the MLE under H0.

Theorem 4.9. In the above setting, under some additional regularity assumptions, we have that
for any θ∗ ∈ Θ ∩ L,

Λn := 2 log
Ln(θ̂n)

Ln(θ̂n,0)

d−→ χ2
d−k as n→∞.

Proof. We provide a sketch of the proof. Let

ûn := argmax
u∈Rd

Zn(θ∗;u) =
√
n(θ̂n − θ∗), ûn,0 := argmax

u∈L
Zn(θ∗;u) =

√
n(θ̂n,0 − θ∗).

Then

Λn = 2 log
Ln(θ̂n)

Ln(θ∗)
− 2 log

Ln(θ̂n,0)

Ln(θ∗)
= 2
(
Zn(θ∗; ûn)− Zn(θ∗; ûn,0)

)
.

By local asymptotic normality, we have

Zn(θ∗;u) = Qn(θ∗;u) + op(1), where Qn(θ;u) := u>Yn(θ)− 1

2
u>I(θ)u.

It follows that

Λn = 2 sup
u∈Rd

Zn(θ∗;u)− 2 sup
u∈L

Zn(θ∗;u) = 2 sup
u∈Rd

Qn(θ∗;u)− 2 sup
u∈L

Qn(θ∗;u) + op(1).

Furthermore, note that

2Qn(θ;u) = ‖I(θ)−1/2Yn(θ)‖22 − ‖I(θ)−1/2Yn(θ)− I(θ)1/2u‖22.

As a consequence,

2 sup
u∈Rd

Qn(θ∗;u) = ‖I(θ∗)−1/2Yn(θ∗)‖22

and

2 sup
u∈L

Qn(θ∗;u) = ‖I(θ∗)−1/2Yn(θ∗)‖22 − inf
u∈L
‖I(θ∗)−1/2Yn(θ∗)− I(θ∗)1/2u‖22.

We therefore obtain

Λn = inf
u∈L
‖I(θ∗)−1/2Yn(θ∗)− I(θ∗)1/2u‖22 + op(1) = dist2

(
I(θ∗)−1/2Yn(θ∗), L̃

)
+ op(1),

where L̃ denotes the k-dimensional subspace I(θ∗)1/2L = {I(θ∗)1/2x : x ∈ L}.
Local asymptotic normality also gives that I(θ∗)−1/2Yn(θ∗)

d−→ N (0, Id). We conclude that

Λn
d−→ dist2(Z, L̃) = ‖ΠL̃⊥Z‖

2
2 ∼ χ2

d−k,

where Z ∼ N (0, Id).
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4.4 Bahadur’s efficiency and Stein’s regime

4.4.1 Efficiency of likelihood-ratio tests

Given i.i.d. X1, . . . , Xn ∼ pθ, consider testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 where Θ0 and Θ1

are disjoint finite sets. Suppose that we use a test statistic Tn = Tn(X1, . . . , Xn) and reject H0 if
Tn exceeds some threshold t ∈ R. Define a function

αn(t) := sup
θ∈Θ0

Pθ{Tn ≥ t}

which is assumed to be continuous and decreasing. Define tn(α) to be threshold such that

αn(tn(α)) = sup
θ∈Θ0

Pθ{Tn ≥ tn(α)} = α.

Lemma 4.10. The random variable αn(Tn) is the p-value.

Proof. Recall that in general, the p-value is defined as inf{α : X ∈ S1(α)}, where S1(α) is the
region of rejection of the test at significance level α. Then the p-value for Tn is inf{α : Tn ≥ tn(α)}.
Note that Tn ≥ tn(α) if and only if supθ∈Θ0

P
′
θ{T ′n ≥ Tn} ≤ α, where T ′n is an i.i.d. copy of Tn and

the probability P′θ is with respect to T ′n. Hence we can write the p-value as

inf
{
α : sup

θ∈Θ0

P
′
θ{T ′n ≥ Tn} ≤ α

}
= sup

θ∈Θ0

P
′
θ{T ′n ≥ Tn} = αn(Tn).

Since αn(·) is decreasing, for θ ∈ Θ0, we have

Pθ{αn(Tn) ≤ α} = Pθ{Tn ≥ tn(α)} ≤ α.

In particular, the test that rejects H0 when αn(Tn) ≤ α has significance level α. Next, we would like
this test to be as powerful as possible. In other words, for θ ∈ Θ1, we would like Pθ{αn(Tn) ≤ α}
to be as small as possible.

The quality of a test based on Tn can be characterized by the rate of decay of αn(Tn) as n→∞
at θ ∈ Θ1. More precisely, given i.i.d. observations X1, . . . , Xn ∼ Pθ where θ ∈ Θ1, we define

Bθ(T ) := − lim
n→∞

1

n
logαn(Tn)

if the limit exists in probability. This quantity is called the Bahadur slope of the statistic Tn. The
larger the slope, the better the test. The test that has the largest slope is called Bahadur efficient.

Recall that the log-likelihood ratio is

Λ̃n = log
supθ∈Θ1

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

and the KL divergence between densities p and q is

KL(p, q) = Ep

[
log

p(X)

q(X)

]
.

The following theorem characterizes the optimal Bahadur slope using the KL divergence and shows
that the likelihood-ratio test is Bahadur efficient.
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Theorem 4.11. In the above setting, let Tn = Tn(X1, . . . , Xn) be a statistic. Then for any θ ∈ Θ1,

Bθ(T ) ≤ min
θ′∈Θ0

KL(pθ, pθ′)

almost surely, with the equality achieved for Tn = Λ̃n.

Proof. We sketch the proof for the case Θ0 = {θ′}. For θ ∈ Θ1, the log-likelihood ratio is

Λ′n(θ) = log
pθ(X1) · · · pθ(Xn)

pθ′(X1) · · · pθ′(Xn)
.

By the law of large numbers,

1

n
Λ′n(θ) =

1

n

n∑
i=1

log
pθ(Xi)

pθ′(Xi)
→ KL(pθ, pθ′).

Take constants B > A > KL(pθ, pθ′). We have

Pθ{αn(Tn) ≤ e−nB, Λ′n(θ) ≤ nA} = Eθ′
[
1{αn(Tn) ≤ e−nB, Λ′n(θ) ≤ nA} · eΛ′n(θ)

]
≤ enAPθ′{αn(Tn) ≤ e−nB} = en(A−B) → 0.

Consequently, as n→∞, we have αn(Tn) ≥ e−nB so that

− 1

n
logαn(Tn) ≤ B.

This holds for any B > KL(pθ, pθ′), so the desired inequality follows.
Moreover, for Tn = Λ̃n, we have

αn(t) = Pθ′{Λ̃n ≥ t}.

By a union bound and Markov’s inequality,

αn(t) ≤
∑
θ∈Θ1

Pθ′{Λ′n(θ) ≥ t} ≤
∑
θ∈Θ1

Pθ′{eΛ′n(θ) ≥ et} ≤
∑
θ∈Θ1

e−tEθ′ [e
Λ′n(θ)] = |Θ1| · e−t.

As a result, αn(Λ̃n) ≤ |Θ1| · e−Λ̃n , and it follows that

− 1

n
logαn(Λ̃n) ≥ − 1

n
log |Θ1|+

1

n
Λ̃n ≥ −

1

n
log |Θ1|+

1

n
Λ′n(θ)→ KL(pθ, pθ′).

4.4.2 Chernoff–Stein lemma

The above result is sometimes formulated in a different way. Suppose that X1, . . . , Xn are i.i.d.
observations from p under H0 and from q under H1. For a test φ(n), let αφ(n) = Ep[φ

(n)] and

βφ(n) = Eq[φ
(n)] as before. Then we define

Vα := − lim
n→∞

inf
φ(n):α

φ(n)≤α

1

n
log
(
1− βφ(n)

)
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provided that the limit exists. The limit

V := lim
α→0

Vα

is called Stein’s exponent. Note that the quantity Vα is very similar to the Bahadur slope, but
they are different. In particular, Vα is defined as the limit of a sequence of numbers (exponents of
expected type II errors), while the Bahadur slope is defined as the limit of a sequence of random
variables (exponents of p-values). Nevertheless, they are used to describe essentially the same
phenomenon. The following theorem, called the Chernoff–Stein lemma, is similar to the above
theorem about the Bahadur efficiency.

Theorem 4.12. In the above setting, we have

Vα = KL(p, q)

for all α ∈ (0, 1). Consequently,
V = KL(p, q).

Proof. The proof is similar to that of the above result about the Bahadur efficiency.

If n is large, the Chernoff–Stein lemma implies that

KL(p, q) = Vα ≈ −
1

n
log
(
1− βφ(n)

)
.

As a result, if we aim for 1 − β ≤ e−k for example, then we should take the sample size n to be
approximately k

KL(p,q) .

4.5 Chernoff’s regime and large deviation

In the last section, we fix the significance level α and study the rate of decay of the p-value or the
type II error. Recall that the decay is of the form e−nE where E is an exponent (the Bahadur slope
or the Stein exponent, which is equal to a KL divergence). We now turn to studying the decay
of expected type I and type II errors simultaneously: Suppose that α → 0 at a rate e−nE0 and
1 − β → 0 at a rate e−nE1 ; we aim to find E0 and E1. There is obviously a trade-off between E0

and E1 because we cannot make them large simultaneously. The previous section corresponds to
the case E0 = 0.

Before studying rates of decay of testing errors, we first analyze the tail probability of a sum of
independent random variables in this section.

4.5.1 Chernoff bound

For i.i.d. X1, . . . , Xn, large deviation theory focuses on obtaining inequalities of the form

P

{ 1

n

n∑
i=1

Xi ≥ γ
}

= e−nE(γ)+o(n),

where E(γ) is the rate function defined by

E(γ) = − lim
n→∞

1

n
logP

{ 1

n

n∑
i=1

Xi ≥ γ
}
.
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The usual Chernoff’s bound does the following: for any λ ≥ 0,

P

{ 1

n

n∑
i=1

Xi ≥ γ
}

= P

{
exp

(
λ

n∑
i=1

Xi

)
≥ exp(nλγ)

}
≤ exp(−nλγ) E

[
exp

(
λ

n∑
i=1

Xi

)]
= exp

(
− nλγ + n logE[exp(λX1)]

)
.

Minimizing this over λ ≥ 0 yields an upper bound. (We also need a matching lower bound, which
will be discussed in the next section.)

4.5.2 Cumulant generating function

The key quantity in the above upper bound is

ψX(λ) := logE[exp(λX)]

which is called the log moment generating function (log-MGF) or the cumulant generating function
(CGF) of a random variable X. We now state some facts about the CGF without proofs.

Theorem 4.13. Let X be a non-constant random variable. Suppose that the CGF ψX of X exists.
Then it has the following properties:

1. The CGF ψX is convex and continuous.

2. The CGF ψX is strictly convex and thus ψ′X is strictly increasing.

3. The CGF ψX is infinitely differentiable and

ψ′X(λ) =
E[XeλX ]

E[eλX ]
= e−ψX(λ)

E[XeλX ].

In particular, ψX(0) = 0 and ψ′X(0) = E[X].

4. If a ≤ X ≤ b almost surely, then a ≤ ψ′X ≤ b.

5. Conversely, if a ≤ ψ′X ≤ b, then a ≤ X ≤ b almost surely. Therefore, the essential support of
the distribution of X equals the closure of the range of ψ′X .

6. Given n i.i.d. copies of X, let X̄ be the sample mean. The Chernoff bound holds:

P{X̄ ≥ γ} ≤ exp(−n(λγ − ψX(λ))) for any λ ≥ 0.

Next, we define the rate function ψ∗X : R→ R ∪ {∞} as the Legendre–Fenchel transform (i.e.,
convex conjugate) of the CGF ψX :

ψ∗X(γ) = sup
λ∈R

(
λγ − ψX(λ)

)
.

Theorem 4.14. The rate function ψ∗X has the following properties:
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1. Let

a = inf
λ∈R

ψ′X(λ) = essinf(X), b = sup
λ∈R

ψ′X(λ) = esssup(X).

Then

ψ∗X(γ) =


λγ − ψX(λ) for λ s.t. γ = ψ′X(λ), if γ ∈ (a, b),

− logP{X = γ}, if γ = a or b,

∞, if γ /∈ [a, b].

2. The rate function ψ∗X(γ) is strictly convex and strictly positive except that ψ∗X(E[X]) = 0.

3. The rate function ψ∗X(γ) is decreasing for γ ∈ (a,E[X]) and increasing for γ ∈ (E[X], b).

4. Given n i.i.d. copies of X, let X̄ be the sample mean. The Chernoff bound implies that, for
γ ≥ E[X], we have

P{X̄ ≥ γ} ≤ exp(−nψ∗X(γ)).

We skip the proofs for all but the last statement. For the last statement, by the Chernoff bound,
it suffices to show that

ψ∗X(γ) = sup
λ∈R

(
λγ − ψX(λ)

)
= sup

λ≥0

(
λγ − ψX(λ)

)
.

To this end, note that the derivative of the objective function with respect to λ is γ − ψ′X(λ).
Recall that ψ′X(λ) is increasing and ψ′X(0) = E[X] ≤ γ. Thus the objective function in the above
optimization problem is increasing for λ ≤ 0. The result follows.

4.5.3 Tilted distribution

As a preparation for the following sections, let us formally introduce tilted distributions which have
already appeared above. For a random variable X ∼ P and a constant λ ∈ R, we define the tilted
distribution Pλ by

dPλ(x) =
eλx

E[eλX ]
dP(x) = eλx−ψX(λ)dP(x).

In other words, if P has density p, then the density of Pλ is given by pλ(x) = eλx−ψX(λ)p(x). Tilting
is also called exponential tilting, Esscher tilting, or the Esscher transform. In addition, note that
{pλ : λ ∈ R} is an exponential family.

Theorem 4.15. For X ∼ P, the tilted distribution Pλ has the following properties:

1. The CGF of Pλ is

ψλ(u) = ψX(λ+ u)− ψX(λ).

2. Tilting trades mean for divergence in the following sense:

Eλ[X] = ψ′X(λ) < E[X] for λ < 0,

Eλ[X] = ψ′X(λ) > E[X] for λ > 0,

KL(Pλ,P) = ψ∗X(ψ′X(λ)) = ψ∗X(Eλ[X]).
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3. If P{X < s} > 0 and P{X > t} > 0, then for any ε > 0,

Pλ{X ≥ s+ ε} → 0 as λ→ −∞,
Pλ{X ≤ t− ε} → 0 as λ→∞.

4. If Xλ ∼ Pλ, then

Xλ
d−→ essinf(X) = a as λ→ −∞,

Xλ
d−→ essinf(X) = b as λ→∞.

4.6 Information projection and large deviation exponent

In the previous section, we used the Chernoff bound to obtain an upper bound on the large deviation
probability. In particular, the exponent was expressed in terms of the Legendre–Fenchel transform
of the CGF. We now discuss a different method which gives a formula for the exponent in terms of
the information projection.

Theorem 4.16. For i.i.d. X1, . . . , Xn ∼ P, let X̄ := 1
n

∑n
i=1Xi. Then for any γ ∈ R, we have

− lim
n→∞

1

n
logP{X̄ ≥ γ} = min

Q:EQ[X]≥γ
KL(Q,P),

and the same conclusion holds with both ≥ replaced by >.

This theorem is in the same spirit as the Bahadur efficiency and the Chernoff–Stein lemma, and
so is its proof. The optimization problem minQ∈E KL(Q,P) is called the information projection,
where E denotes a convex set of distributions.

Theorem 4.17. Suppose that there exists Q∗ ∈ E such that KL(Q∗,P) = minQ∈E KL(Q,P). Then
for any Q ∈ E, we have

KL(Q,P) ≥ KL(Q,Q∗) + KL(Q∗,P).

Proof. We may assume without loss of generality that KL(Q,P) < ∞, which also implies that
KL(Q∗,P) <∞. For λ ∈ [0, 1], let Qλ := (1− λ)Q∗ + λQ. Assuming densities exist for simplicity,
we have

KL(Qλ,P) = Ep

[qλ
p

log
qλ
p

]
= Ep

[(1− λ)q∗ + λq

p
log

(1− λ)q∗ + λq

p

]
,

so
∂

∂λ
KL(Qλ,P) = Ep

[(1

p
log

(1− λ)q∗ + λq

p
+

1

p

)
(q − q∗)

]
.

Since Q∗ is the minimizer, the derivative at λ = 0 is nonnegative. Therefore,

0 ≤ Ep
[(1

p
log

q∗

p
+

1

p

)
(q − q∗)

]
= Eq

[
log

q∗

p

]
−Eq∗

[
log

q∗

p

]
= Eq

[
log

q

p

]
−Eq

[
log

q

q∗

]
−Eq∗

[
log

q∗

p

]
= KL(Q,P)− KL(Q,Q∗)− KL(Q∗,P).

The conclusion follows.
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To determine the large deviation exponent more explicitly, we need to solve the information
projection minQ∈E KL(Q,P) where E = {Q : EQ[X] ≥ γ}.
Theorem 4.18. Given X ∼ P, let b = supλ∈R ψ

′
X(λ) = esssup(X). The information projection

over {Q : EQ[X] ≥ γ} satisfies

min
Q:EQ[X]≥γ

KL(Q,P) =


0 if γ < E[X],

ψ∗X(γ) if E[X] ≤ γ < b,

− logP{X = b} if γ = b,

∞ if γ > b.

Moreover, if E[X] ≤ γ < b, then the minimizer Q is equal to the tilted distribution Pλ defined by
dPλ(x) = exp(λx− ψX(λ)) dP(x).

Proof. We assume for simplicity that P and Q have densities p and q respectively.
First case: Taking Q = P gives KL(Q,P) = 0.
Fourth case: We have q(x) > 0 and p(x) = 0 on a nontrivial subset of (b,∞), which gives that

Eq[log q
p ] =∞.

Third case: If Pp{X = b} = 0, then the situation is similar to the previous case, namely,
q(x) > 0 and p(x) = 0 on a nontrivial subset of (b,∞).

If Pp{X = b} > 0, then Pq{X ≤ b} = 1 because otherwise KL(Q,P) = ∞ by a similar
argument. To have Eq[X] = b, it must hold that Pq{X = b} = 1. Therefore, Eq[log q

p ] =

log 1
Pp{X=b} .

Second case: Let λ be such that γ = ψ′X(λ) = Eλ[X], where Eλ is with respect to the tilted
distribution pλ(x) = exp(λx− ψX(λ)) p(x). Moreover, the first-order optimality condition implies
that ψ∗X(γ) = λγ − ψX(λ). For any Q such that Eq[X] ≥ γ, we have

KL(Q,P) = Eq

[
log

q · pλ
p · pλ

]
= KL(Q,Pλ) +Eq

[
log

pλ
p

]
= KL(Q,Pλ) +Eq[λX − ψX(λ)]

≥ KL(Q,Pλ) + λγ − ψX(λ)

= KL(Q,Pλ) + ψ∗X(γ) ≥ ψ∗X(γ),

where both inequalities become equalities if Q = Pλ, and the last inequality is an equality if and
only if Q = Pλ. This not only proves the second case of claim 1 but also claims 2 and 3.

The above theorems combined yield the following result.

Corollary 4.19. For i.i.d. X,X1, . . . , Xn ∼ P, let X̄ := 1
n

∑n
i=1Xi. If E[X] ≤ γ < esssup(X),

then we have

− lim
n→∞

1

n
logP{X̄ ≥ γ} = ψ∗X(γ).

In particular, the Chernoff bound is tight.

This result is precisely the reason why the Legendre–Fenchel transform of the CGF is called
the rate function. Moreover, in retrospect, it is not surprising that the Chernoff bound is tight: It
employs the same type of change of measure as in the definition of the tilted distribution, and the
information projection argument shows that the tilted distribution is the best change of measure.

The tool of information projection also has the following more general consequence, called
Sanov’s theorem.
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Theorem 4.20. Consider i.i.d. random variables X1, . . . , Xn ∼ P. Let P̂ := 1
n

∑n
i=1 δXi be the

empirical distribution, where δXi denotes the delta measure (i.e., the point mass) at Xi. Let E be
a convex set of distributions. Then under some regularity assumptions on P and E, we have

− lim
n→∞

1

n
logP{P̂ ∈ E} = min

Q∈E
KL(Q,P).

For example, a sufficient set of regularity assumptions is the following: The sample space X is
a Polish space, and the set E is weakly closed and has a nonempty interior. We skip the proof.

4.7 Implication of large deviation on testing errors

Recall the setup where we observe i.i.d. X1, . . . , Xn from p under H0 and from q under H1. For
a test φ(n), we would like the expected type I error αφ(n) = Ep[φ

(n)] to decay as e−nE0 and the

expected type II error 1 − βφ(n) where βφ(n) = Eq[φ
(n)] to decay as e−nE1 . There is a trade-off

between E0 and E1 as they cannot be arbitrarily large at the same time.
Let us define

T = log
q(X)

p(X)
, Ti = log

q(Xi)

p(Xi)

so that the log-likelihood is

log
q(X1) · · · q(Xn)

p(X1) · · · p(Xn)
=

n∑
i=1

Ti.

The CGF of T under p is

ψp(λ) = logEp[e
λT ] = log

∫
X
p(x)1−λq(x)λ dµ(x),

and the rate function is
ψ∗p(γ) = sup

λ∈R

(
λγ − ψp(λ)

)
.

Note that ψp(0) = ψp(1) = 0. Since ψp(λ) is convex, it is finite for λ ∈ [0, 1].
The CGF ψp(λ) is related to the Rényi divergence, defined by

Dλ(p, q) :=
1

λ− 1
logEq

[(p(X)

q(X)

)λ]
=

1

λ− 1
log

∫
X
p(x)λq(x)1−λ dµ(x)

where λ 6= 1. It can be shown that Dλ(p, q) ≥ 0, and by L’Hôpital’s rule,

lim
λ→1

Dλ(p, q) = lim
λ→1

Eq[(p/q)
λ log(p/q)]

Eq[(p/q)λ]
= Ep[(p/q) log(p/q)] = KL(p, q).

Moreover, we have
ψp(λ) = (λ− 1)Dλ(q, p) = −λD1−λ(p, q).

This gives another explanation why ψp(0) = ψp(1) = 0 and ψp(λ) < 0 for λ ∈ (0, 1). It follows that

ψ′p(0) = lim
λ→0

ψp(λ)

λ
= − lim

λ→0
D1−λ(p, q) = −KL(p, q)

and similarly
ψ′p(1) = KL(q, p).
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Theorem 4.21. In the above setting, the best achievable exponents (E0, E1) are characterized by

E0(γ) = ψ∗p(γ), E1(γ) = ψ∗p(γ)− γ,

where γ ∈ [−KL(p, q),KL(q, p)]. Moreover, E0(γ) is increasing and E1(γ) is decreasing.

Proof. The idea is to apply large deviation theory to the sum T̄ = 1
n

∑n
i=1 Ti. First, consider the

likelihood-ratio test φ(n) which rejects H0 if T̄ ≥ γ for a constant γ ∈ R. Then the Chernoff bound
implies that

αφ(n) = Pp{T̄ ≥ γ} ≤ exp(−nψ∗p(γ))

if

γ ≥ Ep[T ] = Ep

[
log

q(X)

p(X)

]
= −KL(p, q).

Similarly, we have
1− βφ(n) = Pq{T̄ < γ} ≤ exp(−nψ∗q (γ))

if

γ ≤ Eq[T ] = Eq

[
log

q(X)

p(X)

]
= KL(q, p).

It remains to note that

ψq(λ) = logEq[e
λ log(q/p)] = logEp[e

λ log(q/p) · (q/p)] = logEp[e
(λ+1) log(q/p)] = ψp(λ+ 1)

and so
ψ∗q (γ) = sup

λ∈R

(
λγ − ψp(λ+ 1)

)
= sup

λ∈R

(
λγ − ψp(λ)

)
− γ = ψ∗p(γ)− γ.

Therefore, the exponents E0(γ) = ψ∗p(γ) and E1(γ) = ψ∗p(γ)− γ are achievable.
Conversely, it can be shown that the exponents achieved by the likelihood-ratio tests are in fact

optimal.

The above result has the following consequence in the Bayesian setting.

Corollary 4.22. Consider the prior Π = Ber(π1) over the two hypotheses for π1 ∈ (0, 1). Let
π0 = 1− π1. Define the optimal Bayes risk as

R∗n(Π) := min
φ(n)

(
π0 αφ(n) + π1 (1− βφ(n))

)
.

Then we have

− lim
n→∞

1

n
logR∗n(Π) = max

γ
min{E0(γ), E1(γ)} = ψ∗p(0) = − min

λ∈[0,1]
ψp(λ).

The quantity ψ∗p(0) is called the Chernoff exponent and does not depend on the prior.

We also have the following equivalent formulations of the optimal exponents for the testing
errors.

Theorem 4.23. In the above setting, the best exponents (E0, E1) can be stated in the following
equivalent forms:
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1. E0 = KL(pλ, p) and E1 = KL(pλ, q), where pλ denotes the tilted distribution obtained from tilting
p along T towards q for λ ∈ [0, 1], defined by

pλ(x) := eλT−ψp(λ)p(x) = p(x)1−λq(x)λe−ψp(λ).

2. E0 ∈ [0,KL(q, p)] and
E1 = E∗1(E0) = min

q′:KL(q′,p)≤E0

KL(q′, q).

Proof. We give a sketch of the proof.

1. Fix λ and define γ = γ(λ) = Epλ [T ]. Then it can be shown that

KL(pλ, p) = ψ∗p(γ)

whereas

KL(pλ, q) = Epλ [log(pλ/q)] = EPλ [log(pλ/p)− log(p/q)] = KL(pλ, p)−Epλ [T ] = ψ∗p(γ)− γ.

Moreover, as λ ∈ [0, 1], we have γ = Epλ [T ] ∈ [−KL(p, q),KL(q, p)].

2. For simplicity, suppose that q∗ achieves the minimum in the definition of E1, and that q∗ 6= p
and q∗ 6= q. Then we have

KL(q∗, q) ≤ KL(p, q)

in view of the objective of the minimization problem and

KL(q∗, p) ≤ E0 ≤ KL(q, p)

in view of the constraint of the minimization problem. It follows that

Eq∗ [T ] = Eq∗

[
log

q∗

p

q

q∗

]
= KL(q∗, p)− KL(q∗, q) ∈ [−KL(p, q),KL(q, p)].

It can be shown that there is a unique tilted distribution pλ satisfying

Epλ [T ] = Eq∗ [T ], KL(pλ, p) ≤ KL(q∗, p), KL(pλ, q) ≤ KL(q∗, q).

We then conclude that q∗ = pλ and the result follows from the first part.
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Chapter 5

Modern topics in testing and
inference

5.1 Multiple testing and FDR control

Suppose that we have m tests for testing between H0i and H1i for i = 1, . . . ,m. Let pi denote the
p-value of the ith test. Recall that for α ∈ (0, 1), each individual test is at significance level α if it
rejects the null when pi ≤ α. Instead, to have the overall probability of falsely rejecting any H0i for
i = 1, . . . ,m less than or equal to α, by a union bound, we need to reject H0i if pi ≤ α/m. This is
referred to as the Bonferroni method. However, the requirement that we do not falsely reject any
null is too strict when m is large.

5.1.1 False discovery rate

Rather than disallowing any false rejection of the null, a more practical idea is to control the rate
of false rejection. For the m tests indexed by i = 1, . . . ,m, let R denote the number of times we
reject the null H0i, and let V denote the number of times the rejection is wrong, i.e., the truth is
H0i. Then the false discovery proportion (FDP) is defined to be V/R, and the false discovery rate
(FDR) is defined to be E[V/R].

Before introducing a method to control the FDR, we first establish a basic fact about p-values.
For a family of tests φα each at significance level α ∈ (0, 1), consider the region of rejection
S1(α) := {x ∈ X : φα(x) = 1}. Recall that the p-value is defined as p̂(X) := inf{α : X ∈ S1(α)}.

Lemma 5.1. Suppose that under H0, we have P{X ∈ S1(α)} = α for all α ∈ (0, 1). Then,
under H0, we have P{p̂(X) ≤ t} = t for t ∈ (0, 1). In other words, the p-value p̂(X) is uniformly
distributed over (0, 1).

Proof. For any t ∈ (0, 1), we have p̂(X) ≤ t if and only if X ∈ S1(t), so the result follows.

Let us consider the following procedure, which is called the Benjamini–Hochberg method:

1. Let p(1) < p(2) < · · · < p(m) be the order statistics of the p-values.

2. Define `i := α i
mCm

where Cm = 1 if the p-values are independent and Cm =
∑m

j=1(1/j)
otherwise. Then define R∗ := max{i ∈ [m] : p(i) ≤ `i}.
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3. Reject all null hypotheses H0i for which pi ≤ p(R∗).

Theorem 5.2. Consider the Benjamini–Hochberg (BH) method described above. Let V ∗ denote the
number of times the rejection is wrong, i.e., the truth is H0i. The FDR is defined to be E

[
V ∗

max{R∗,1}
]
.

Then we have E
[

V ∗

max{R∗,1}
]
≤ α. In other words, the BH method achieves an FDR at most α.

This result is quite general—it does not rely on the underlying statistical model nor the number
of correct null hypotheses. We will prove the above theorem for the case where the p-values are
independent (and thus Cm = 1). Let us first discuss the intuition, assuming R∗ ≥ 1. Up to
a relabeling of the hypotheses, we may assume that the hypotheses H01, . . . ,H0m0 are true and
H1(m0+1), . . . ,H1m are true. The key to proving the above theorem is establishing the inequality

E[V ∗/R∗ | pm0+1, . . . , pm] ≤ m0

m
α,

which holds regardless of the values of pm0+1, . . . , pm. It then follows that E[V ∗/R∗] ≤ α. The
intuition of the above inequality simply lies in the critical condition R∗ αm ≈ V ∗ 1

m0
, which holds

because we reject at level R∗ αm and for the m0 null hypotheses, the p-values are uniform over (0, 1).

5.1.2 Analysis of the Benjamini–Hochberg method

One way to analyze the BH method is through continuous-time stochastic processes. To this end,
we first introduce martingales (informally, without using any measure theory). Let {Wt : t ≥ 0} be
a continuous-time stochastic process, i.e., an infinite collection of random variables Wt indexed by
t ≥ 0. The stochastic process {Wt : t ≥ 0} is called a martingale if E[|Wt|] <∞ and

E
[
Wt | {Wr : 0 ≤ r ≤ s}

]
= Ws

for any 0 ≤ s ≤ t. A random variable τ taking values in [0,∞) is called a stopping time if the event
{τ = t} only depends on {Ws : 0 ≤ s ≤ t}. The optional stopping theorem states that, if τ ≤ T for
a constant T , then E[Wτ ] = E[W0].

An equivalent formulation of the BH method For t ∈ [0, 1], define

R(t) := |{i ∈ [m] : pi ≤ t}|,

where | · | denotes the cardinality of a set. Moreover, define

Q(t) :=
mt

max{R(t), 1}
, tα := sup{t ∈ [0, 1] : Q(t) ≤ α}.

We claim that the BH method is equivalent to rejecting H0i for which pi ≤ tα.

First, suppose that the supremum tα satisfies R(tα) = 0. Then we have

tα = sup
{
t ∈ [0, 1] : mt ≤ α

}
= α/m.

In this case, pi > tα = α/m for all i ∈ [m] by the definition of R(tα), so we accept all null hypotheses
H0i according to the above rule. Then we need to show that the BH method does the same.
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To this end, note that we have already showed that p(1) > α/m. For any i = 2, . . . ,m, since
α i
m > tα = α/m, by the definition of tα, we obtain

α < Q(α i/m) =
α i

max{R(α i/m), 1}
.

It follows that i > R(α i/m) = |{j ∈ [m] : pj ≤ α i/m}|, and so p(i) > α i/m. Consequently, R∗ = 0
in the BH method and all null hypotheses are accepted.

Next, assume R(tα) ≥ 1. By the definition of R(tα), we have tα ≥ p(1), so at least one null
hypothesis is rejected. Moreover, by the definition of tα, we have α ≥ Q(p(1)) = mp(1) and thus
p(1) ≤ α/m. It follows that R∗ ≥ 1 and the BH method also rejects at least one null hypothesis.

To prove equivalence of the two rejection rules, it suffices to show that p(R∗) ≤ tα < p(R∗+1).
Towards this end, we note that

tα = sup
{
t ∈ [p(1), 1] :

mt

R(t)
≤ α

}
= sup

{
t ∈ [p(1), 1] : |{i ∈ [m] : pi ≤ t}| ≥ mt/α

}
by the definition of R(t). Since

|{i ∈ [m] : pi ≤ p(R∗)}| = R∗ ≥ mp(R∗)/α

by the definition of R∗, we obtain that p(R∗) ≤ tα. On the other hand, the definition of R∗ also
implies that

|{i ∈ [m] : pi ≤ p(R∗+1)}| = R∗ + 1 < mp(R∗+1)/α,

so p(R∗) > tα. This completes the proof of the claim.

Auxiliary stochastic processes Define I0 := {i ∈ [m] : H0i is true} and

V (t) := |{i ∈ [m] : pi ≤ t, H0i is true}| =
∑
i∈I0

1{pi ≤ t}, W (t) :=
V (t)

t
.

We claim that

E
[
W (t) | {W (r)}1r=s

]
= W (s)

for any 0 ≤ t ≤ s ≤ 1. In other words, {Wt}1t=0 is a backward martingale as t decreases from 1 to
0.

To see this, recall that pi for i ∈ I0 are i.i.d. uniform distributions over [0, 1]. For 0 ≤ t ≤ s ≤ 1,
let us condition on {V (r)}1r=s, i.e., condition on the set of p-values {pi : i ∈ I0, pi > s}. For the
remaining V (s) p-values, by symmetry, each of them is uniformly distributed over [0, s]. As a result,
the conditional expectation of 1{pi ≤ t} is t/s. We obtain that

E
[
V (t) | {V (r)}1r=s

]
= V (s) · t/s.

The claim then follows easily.
Since we are going backward in time from t = 1 to t = 0, the quantity tα is the first moment t

such that Q(t) falls below α. Therefore, tα is a stopping time. By the optional stopping theorem,

E[W (tα)] = E[W (1)] = |I0|.
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Finishing the proof By the definitions of Q(t) and tα, we have

α = Q(tα) =
mtα

max{R(tα), 1}

and so
V (tα)

max{R(tα), 1}
=
αV (tα)

mtα
.

In addition, note that R∗ = R(tα) and V ∗ = V (tα) in the BH method. Taking the expectation of
the above equation yields

E

[ V ∗

max{R∗, 1}

]
= E

[ V (tα)

max{R(tα), 1}

]
= E

[αV (tα)

mtα

]
=
α

m
E[W (tα)] =

α

m
|I0| ≤ α.

Therefore, we have proved Theorem 5.2.

5.1.3 False coverage rate

Recall that confidence regions are obtained by reformulating hypothesis testing in terms of a re-
gion covering the true parameter. In the same vein, when dealing with multiple testing, we can
reformulate the FDR to obtain a related notion called the false coverage rate (FCR).

To be more specific, suppose that we have m inference problems and would like to construct a
confidence region Ci such that θi ∈ Ci with high probability for i = 1, . . . ,m. Let Si ∈ {0, 1} be
the unknown indicator of whether i is selected for coverage. Then we can define R :=

∑m
i=1 Si and

V :=
∑m

i=1 Si ·1{θi /∈ Ci}. The false coverage proportion (FCP) is defined to be V/R, and the FCR
is defined to be E[V/R].

5.2 Variable selection

5.2.1 Conditional randomization testing

Consider the setting that a response Y may depend on a large number of covariates X1, . . . , Xd.
Our goal is to select a subset of variables that the response truly depends on. To formulate the
problem, we define a null variable Xi to be one such that

Y ⊥ Xi | X−i,

that is, Xi is independent of Y conditional on X−i = (Xj : j ∈ [d], j 6= i). For example, in a linear
model

Y =

d∑
i=1

βiXi + ε

where ε is random noise, the set of null variables is {Xi : i ∈ [d], βi = 0}.
There are many methods for such a variable selection or feature selection problem. We introduce

conditional randomization testing (CRT) in this section. Suppose that we know the conditional
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distribution of Xi | X−i. Then we can sample X̃i from this distribution (conditionally independently
from Xi). If Xi is a null variable, then

p(Xi, X−i, Y ) = p(Xi | X−i, Y ) · p(X−i, Y )

= p(Xi | X−i) · p(X−i, Y )

= p(X̃i | X−i) · p(X−i, Y ) = p(X̃i, X−i, Y ).

Therefore, given X̃i, we can test whether

(X1, . . . , Xi, . . . , Xd, Y )
d
= (X1, . . . , X̃i, . . . , Xd, Y )

to decide if Xi is a null variable.

Given a feature importance score T (·), the following procedure obtains the p-values for testing
whether Xi is null:

1. Compute the score t∗i := T (Xi, X−i, Y ).

2. For k = 1, . . . ,K, sample X̃
(k)
i ∼ Xi | X−i and compute the score t

(k)
i := T (X̃

(k)
i , X−i, Y ).

3. Compute the p-value

pi :=
|{k ∈ [K] : t

(k)
i ≥ t∗i }|+ 1

K + 1
.

Under the null, all the scores t∗i and t
(k)
i for k ∈ [K] are identically distributed. As a result, pi is

uniform over { 1
K+1 ,

2
K+1 , . . . , 1}. We reject the null if pi is too extreme.

For example, in a linear model, the score function may be defined as the magnitude of the
estimated coefficient for each coordinate.

Note that the p-values are not independent because the copies of X̃i are sampled conditional on
X−i. This can potentially be an issue if we would like to obtain finer properties of the test. A more
serious issue with CRT is its computational complexity. For example, in linear regression, if we use
the magnitude of a coefficient as the feature importance score (or any other usual choice), then we
would solve linear regression K×d times in total for testing all the variables X1, . . . , Xd. Moreover,
if d is large, we typically need K to be large as well, making the computational complexity even
worse.

5.2.2 Knockoffs

We continue the setup from above. Consider a simple example: d = 2 and

Y = X2 + ε, ε ∼ N (0, σ2), X1, X2 ∼ N (0, 1), E[X1X2] = 0.5.

For an estimator (β̂1, β̂2) of the coefficients, let us use |β̂i| as the score function. In this example,
X1 is a null variable, but |β1| may not be small. This is because X1 is correlated with X2 and may
influence Y through X2.

The knockoff approach proposed by [BC15] aims to resolve this in a way that is computationally
more efficient than CRT. More precisely, a set of variables X̃1, . . . , X̃d are called model-X knockoffs
if the following two statements hold:
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1. Pairwise exchangeability: If Xi is a null variable, then

(Xi, X−i, X̃i, X̃−i)
d
= (X̃i, X−i, Xi, X̃−i);

2. Response independence: Y ⊥ X̃ | X, where X = (X1, . . . , Xd) and X̃ = (X̃1, . . . , X̃d).

Having constructed X̃, we compute the importance scores

Zi = Ti(X, X̃, Y ), Z̃i = Td+i(X, X̃, Y ), i ∈ [d],

for the actual observed variables Xi and the knockoffs X̃i. For example, in a linear model, we
concatenate X and X̃ to obtain 2d covariates and regress Y on all of them; then we can define
Zi = |β̂i| and Z̃i = |β̂d+i| for some estimator β̂ of the coefficients. As a result of the pairwise

exchangeability, we have (Zi, Z̃i)
d
= (Z̃i, Zi) if Xi is a null variable.

Next, we construct knockoff-adjusted scores Wi = wi(Zi, Z̃i) via some anti-symmetric function
wi : Rd → R, i.e., wi(Zi, Z̃i) = −wi(Z̃i, Zi). For example, a simple choice is

Wi = wi(Zi, Z̃i) = Zi − Z̃i.

Lemma 5.3. For any null variable Xi, the distribution Wi is symmetric so that sign(Wi) is a
Rademacher random variable. Moreover, conditional on |W | = (|W1|, . . . , |Wd|), we have that
sign(W1), . . . , sign(Wd) are independent.

We now introduce a procedure for testing H1, . . . ,Hd while controlling the FDR, where Hi

denotes the null hypothesis that Xi is a null variable. For t > 0, define

S+(t) := {i ∈ [d] : Wi ≥ t}, S−(t) := {i ∈ [d] : Wi ≤ −t},

and

F̂ (t) :=
|S−(t)|+ 1

|S+(t)| ∨ 1
.

This is an estimator of the FDP F (t) defined by

F (t) :=
|{i ∈ [d] : Xi is null , Wi ≥ t}|

|S+(t)| ∨ 1
≈ |{i ∈ [d] : Xi is null , Wi ≤ −t}|

|S+(t)| ∨ 1
≤ F̂ (t).

Finally, for α ∈ (0, 1), we define

Ŝ := {i ∈ [d] : Wi ≥ τα}, τα := min
{
t > 0 : F̂ (t) ≤ α

}
.

Theorem 5.4. If we reject all i ∈ Ŝ, then the FDR is controlled below α.

The knockoff approach has some advantages over other methods. First, the approach and the
theoretical guarantee are model-free, as we put essentially no assumptions on (X,Y ). Second, it
requires only a regression of Y on (X, X̃) and is computationally more efficient than CRT.
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Proof. We provide a sketch of the proof of the theorem. Let H0 := {i ∈ [d] : Xi is null}. Then

F (τα) =
|H0 ∩ S+(τα)|
|S+(τα)| ∨ 1

≤ |H0 ∩ S+(τα)|
|H0 ∩ S−(τα)|+ 1

· |S
−(τα)|+ 1

|S+(τα)| ∨ 1
≤ α · |H0 ∩ S+(τα)|

|H0 ∩ S−(τα)|+ 1
.

To prove E[F (τα)] ≤ α, it suffices to show that

E

[ V +(τα)

V −(τα) + 1

]
≤ 1,

where V +(τα) := |H0 ∩ S+(τα)| and V −(τα) := |H0 ∩ S−(τα)|.
Similar to the proof for the Benjamini–Hochberg method in FDR control, we argue that V +(t)

V −(t)+1

is a supermartingale as t increases from 0 to 1. Therefore, the optional stopping theorem implies

E

[ V +(τα)

V −(τα) + 1

]
≤ E

[ V +(0)

V −(0) + 1

]
= E

[ V +(0)

|H0| − V +(0) + 1

]
.

Furthermore, by exchangeability, we have V +(0) ∼ Bin(|H0|, 1/2). Then it is not hard to do an
explicit computation to show that the above expectation is bounded by 1.

5.3 Selective inference

5.3.1 False coverage rate and confidence intervals

We consider the situation where we use data to select some parameters and then form confidence
intervals for the selected parameters. As a motivating example, consider the Gaussian sequence
model

Yi ∼ N (θi, 1), i = 1, . . . , n.

For α ∈ (0, 1) and each i ∈ [n], we can construct a confidence interval for θi at confidence level
1− α:

CIi(α) := (Yi − zα/2, Yi + zα/2),

where zα/2 is the (1 − α/2)-quantile of N (0, 1). Moreover, suppose that we would like to select a
subset of parameters θi that are nonzero. A natural selection is

S := {i ∈ [n] : 0 /∈ CIi(α)}.

For a selected variable, a measure of the quality of the confidence interval is the conditional coverage

P{θi ∈ CIi(α) | i ∈ S}.

Note that the conditioning distorts the coverage: If θi is close to 0, then the coverage is low. In
particular, regardless of how small α is, the conditional coverage goes to 0 as θi → 0. This shows
that it is impossible to achieve good conditional coverage for each individual parameter.

Instead, we consider the FCR introduced before, redefined here as

E

[ V

R ∨ 1

]
,
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where R = |S| is the number of selected parameters and V is the number of the selected parameters
that are not covered by the corresponding confidence intervals, i.e.,

V = |{i ∈ S : θi /∈ CIi(α)}|.

Two remarks about the FCR:

• If S = [n] and R = n (i.e., without selection), the FCR is automatically controlled:

E

[V
n

]
= E

[∑n
i=1 1{θi /∈ CIi(α)}

n

]
≤ α,

because by the definition of a confidence interval, we have P{θi /∈ CIi(α)} ≤ α.

• Bonferroni’s method replaces α by α/n and therefore controls the FCR:

E

[ V

R ∨ 1

]
≤ E[V ] ≤

n∑
i=1

P{θi /∈ CIi(α/n)} ≤ α.

Just as for FDR control, Bonferroni’s method is not desirable here, because it results in very
wide confidence intervals. Instead, we introduce a less conservative method. Suppose that each
parameter θi is associated with a test statistic Ti for i ∈ [n], and we let T = (T1, . . . , Tn). Consider
the following procedure [BY05]:

1. Apply any selection rule to obtain the selection set S = S(T ).

2. For i ∈ S, compute
Ri := min

t
{|S(T−i, t)| : i ∈ S(T−i, t)},

where T−i denotes the set of test statistics T without Ti.

3. For i ∈ S, define the FCR-adjusted confidence interval for θi to be CIi(Ri α/n).

The second step may appear to be complex, but it is often the case that Ri = R = |S| for reasonable
selection rules. Before establishing the general theorem, we consider two extreme cases:

• If R = n, then we make no adjustment and still use the confidence interval CIi(α).

• If R = 1, then we get Bonferroni’s method for the one selected confidence interval CIi(α/n).

Theorem 5.5. Suppose that the statistics Ti are independent for i ∈ [n]. The adjusted confidence
intervals defined in the above procedure achieve an FCR at most α.

Proof. We can write the FCR as

E

[ V

R ∨ 1

]
=

n∑
i=1

E[Xi], Xi :=
1{i ∈ S, θi /∈ CIi(Ri α/n)}

|S| ∨ 1
.

It suffices to prove that E[Xi] ≤ α/n. Since Ri ≤ |S| = |S(T )| by definition, we have

Xi =
n∑
k=1

1{i ∈ S, θi /∈ CIi(k α/n), Ri = k}
|S|

≤
n∑
k=1

1{θi /∈ CIi(k α/n), Ri = k}
k

.
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Conditional on T−i, it holds that

E[Xi | T−i] ≤
n∑
k=1

P{θi /∈ CIi(k α/n)} · 1{Ri = k}
k

≤
n∑
k=1

k α/n · 1{Ri = k}
k

≤ α/n.

It follows that E[Xi] = α/n and the proof is complete.

Back to the example of Yi ∼ N (θi, 1), we simply have Ti = Yi and Ri = R = |S|. Suppose that
θi = θ for all i ∈ [n]. If θ →∞, then R = n and the confidence interval are not adjusted. If θ = 0,
then R = 0 with probability 1− α. In both cases, the FCR is α. In between, it can be shown that
the FCR is lower bounded by α/2, so the procedure is not overly conservative.

5.3.2 Post-selection inference

Setup and classical confidence interval Consider the linear regression model

y = Xβ + ε,

where X ∈ Rn×d and ε ∼ N (0, σ2In). We assume that σ is known for simplicity. A subset M ⊂ [d]
is called a model. In the classical setting, we fix a model M and fit the model with data:

β̂M := (X>MXM )−1X>MY,

where XM denotes the matrix consisting of the columns of X with indices in M . With M fixed, it
is not hard to see that

β̂M ∼ N
(
βM , σ

2(X>MXM )−1
)
, where βM := (X>MXM )−1X>MXβ.

It follows that
(β̂M )i − (βM )i

σ
√

(X>MXM )−1
ii

=
((X>MXM )−1X>Mε)i

σ
√

(X>MXM )−1
ii

=
w>i ε

σ‖wi‖2
∼ N (0, 1),

where

wi := XM (X>MXM )−1ei.

As a result, we can construct a confidence interval(
(β̂M )i − zα/2 · σ‖wi‖2, (β̂M )i + zα/2 · σ‖wi‖2

)
that contains (βM )i with probability 1 − α. If we would like the above confidence interval to be
valid for all i ∈M , we can replace α by α/|M |.

POSI confidence interval In practice, we need to select a model M̂ = M̂(Y ) based on the
data. Then the above confidence interval may not be valid. Post-selection inference (POSI) is a
procedure that constructs confidence intervals CIi such that

P

{
(βM̂ )i ∈ CIi for all i ∈ M̂

}
≥ 1− α
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for any data-dependent selected model M̂ . The POSI confidence interval is of the form(
(β̂M̂ )i −Kα/2 · σ‖ŵi‖2, (β̂M̂ )i +Kα/2 · σ‖ŵi‖2

)
,

where Kα/2 = Kα/2(X) is a certain constant defined in POSI and

ŵi := XM̂ (X>
M̂
XM̂ )−1ei.

See [BBB+13] for more details. It turns out that if α is a small constant, then√
2 log d . Kα(X) .

√
d.

If the design matrix X is orthogonal or consists of i.i.d. Gaussian entries, then Kα(X) is close to
the lower bound. An advantage of POSI is that it is valid for any model selection process, while
disadvantages include that it is very conservative and that it is difficult to compute Kα/2 in practice.

POSI for LASSO (This part is non-rigorous and contains some errors.) To obtain confidence in-
tervals that are narrower than those from POSI, we can restrict our attention to specific procedures
for model selection M̂ . Let us consider the LASSO estimator

β̂ := argmin
β′

(1

2
‖Y −Xβ′‖22 + λ‖β′‖1

)
and set

M̂ := {i ∈ [d] : β̂i 6= 0}.

We would like to construct confidence intervals for entries of

βM̂ := (X>
M̂
XM̂ )−1X>

M̂
Xβ

Towards this end, the paper [LSST16] studies the estimate

(β̂M̂ )i = ŵ>i Y ∼ N (ŵ>i Xβ, σ
2‖ŵi‖22), where ŵi = XM̂ (X>

M̂
XM̂ )−1ei.

For post-selection inference, we need to figure out the conditional distribution of ŵ>i Y given that
i ∈ M̂ . This is difficult, but we can further condition on other events to make the conditional
distribution tractable. Namely, we first condition on M̂ and also the signs of entries of β̂. This
conditioning can be expressed as a set of linear constraints AY ≤ b for a matrix A and a vector
b using the KKT conditions. As a result, β̂M̂ | {M̂, sign(β̂)} is a truncated multivariate Gaussian.
Furthermore, to focus on ŵ>i Y , we can condition on the projection of Y onto ŵ⊥i . It turns out that
the distribution of the univariate truncated Gaussian

ŵ>i Y |
{
M̂, sign(β̂),Πŵ⊥i

(Y )
}

can be described explicitly. Consequently, confidence intervals can be constructed around (β̂M̂ )i =

ŵ>i Y to cover (βM̂ )i for i ∈ M̂ .
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5.4 e-value

5.4.1 Definition and the associated test

We introduce a new concept called the e-value, which is closely related to the p-value. The moti-
vation for e-values is to address the optional continuation problem, i.e., deciding whether to collect
new data and do further testing based on previous test outcomes. In such a sequential setting,
p-values can often be misleading because tests at different stages are not independent.

Suppose that we observe data X ∼ P and would like to test a null hypothesis H0 : P ∈ H0. A
nonnegative random variable E = E(X) is called an e-variable for testing H0 if

sup
P∈H0

EP [E(X)] ≤ 1.

The value that an e-variable takes is called an e-value. To compare this to the p-value, we can
define the p-value in the following way. A random variable P is called a p-random variable for
testing H0 if

sup
P∈H0

PP{P (X) ≤ α} ≤ α for all α ∈ (0, 1).

The value that a p-variable takes is called a p-value. In other words, a p-variable is a variable that
stochastically dominates a uniform variable over (0, 1).

Lemma 5.6. If E(X) is an e-variable, then 1/E(X) is a p-variable.

Proof. We have
P{1/E(X) ≤ α} = P{E(X) ≥ 1/α} ≤ αE[E(X)] ≤ α

by Markov’s inequality.

Recall that we reject H0 if P (X) ≤ α at significance level α ∈ (0, 1). Therefore, we can reject
H0 if E(X) ≥ 1/α. This is called the safe test, in the following sense. Since Markov’s inequality is
often not tight, P{E(X) ≥ 1/α} may be much smaller than α. That is, E(X) rarely exceeds 1/α,
so we rarely reject H0. Therefore, the safe test given by the e-value is usually conservative.

5.4.2 Bayes factor

Given X ∼ Pθ, consider testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. Let Π0 and Π1 denote prior
distributions over Θ0 and Θ1 respectively. Define the marginal densities as

pΠr(x) :=

∫
θ∈Θr

pθ(x) dΠr(θ), r = 0, 1.

The ratio between marginal likelihoods is called the Bayes factor:

pΠ1(x)

pΠ0(x)
.

We can reject H0 if the Bayes factor is large.
The Bayes factor is not an e-value in general. However, in the case where Θ0 = {θ0}, if

E(X) :=
pΠ1(x)

pθ0(x)
,
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then

Eθ0 [E(X)] =

∫
X
pΠ1(x) dµ(x) = 1.

Hence the Bayes factor E(X) is an e-value. The safe test rejects H0 if E(X) ≥ 1/α.
Note that the safe test is not the Neyman–Pearson likelihood-ratio test in general. Recall that

the likelihood-ratio test rejects H0 if E(X) ≥ τ , where τ is defined so that

Pθ0{E(X) ≥ τ} = α.

The safe test is, again, more conservative typically. Consider the following examples.

Simple Gaussian mean testing Suppose that we observe i.i.d. X1, . . . , Xn ∼ N (θ, 1). Consider
testing H0 : θ = 0 against H1 : θ = θ1 > 0. Let X = (X1, . . . , Xn). The e-variable is the likelihood
ratio

E(X) =

n∏
i=1

exp
(
θ1Xi −

θ2
1

2

)
.

Fix α = 0.05. Then the safe test rejects H0 if

E(X) ≥ 20 ⇐⇒
n∑
i=1

(
θ1Xi −

θ2
1

2

)
≥ log 20 ≈ 3 ⇐⇒ X̄ ≥ θ1

2
+

log 20

θ1
.

This is much more conservative than the likelihood-ratio test, i.e., the Z-test in this case, which
rejects H0 if

X̄ ≥ z0.05√
n
, z0.05 ≈ 1.64.

Composite Gaussian mean testing Continuing with the above setting, suppose that we now
have H1 : θ ∈ R \ {0} with a prior Π1 = N (0, 1). The Bayes factor is given by

E(x) =

∫
R
pθ(x)p0(θ) dθ

p0(x)
,

where pθ(x) denotes the density of N (θ, 1). It is not hard to compute

logE(X) = − log(n+ 1)

2
+

n2

2(n+ 1)
X̄2.

The safe test rejects H0 if

|X̄| ≥
√

2(n+ 1)

n2

( log(n+ 1)

2
+ log 20

)
≈
√

6 + log n

n

for n large. This is slightly more conservative than the Z-test, which rejects H0 if

|X̄| ≥ z0.025√
n
, z0.025 ≈ 1.96.

While e-values are more conservative, they come with several statistical advantages:
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• It is easier to compute e-values than p-values for high-dimensional problems with more compli-
cated models;

• e-values allow us to perform sequential inference as we will see in the next section;

• e-values are more robust to model misspecification than p-values;

• e-values rely on expectations, which are robust to data dependence, whereas p-values rely on tail
probabilities, which are not.

5.4.3 Composite null

In the above Bayesian setup, suppose that we have a composite null H0 : θ ∈ Θ0 where |Θ0| > 1.

Recall that
pΠ1

(x)

pθ0 (x) is an e-variable for any parameter θ0, but the Bayes factor E(X) =
pΠ1

(x)

pΠ0
(x) is not

necessarily an e-variable. To obtain an e-variable in this case, we consider the reverse information
projection

θ∗0 := argmin
θ∈Θ0

KL(pΠ1 , pθ).

(Recall that the KL divergence is not symmetric and the information project is defined with respect
to the first argument.) An e-variable achieving

sup
E
EpΠ1

[logE] s.t. sup
θ∈Θ0

Epθ [E] ≤ 1

is said to be optimal relative to pΠ1 .

Theorem 5.7. Suppose that the above reverse information projection θ∗0 exists. Then

E(X) :=
pΠ1(X)

pθ∗0 (X)

is an e-variable. Furthermore, it is optimal relative to pΠ1.

See [GdHK20]. Maximizing logE has an advantage over maximizing E: It avoids E taking
values close to 0 since log(·) tends to −∞ near 0. This is important because, as we will see in the
next section, we often take the product of multiple e-values.

5.5 Applications of e-values

5.5.1 Optional continuation with e-values

Suppose that data (X1, Z1), (X2, Z2), . . . are collected sequentially. For example, Xi may denote
the outcome of an experiment and Zi may denote the cost of the experiment. We will compute an
e-value once in a while, after obtaining a batch of data. Let the batch sizes be n1, n2, . . . , and let
Nt :=

∑t
i=1 ni for any integer t ≥ 0. Let Ei denote an e-value computed after obtaining the i-th

batch of data, i.e., up to observing (XNi , ZNi), such that

E
[
Ei | (X1, Z1), . . . , (XNi−1 , ZNi−1)

]
≤ 1.
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We define

Vt :=
t∏
i=1

Ei, t ≥ 0.

For any stopping rule (that may depend on the data up to the present), let τ be the number of
batches collected when we stop. We report the final result Vτ .

Proposition 5.8. The discrete-time stochastic process {Vt}∞t=0 is a nonnegative supermartingale.
Moreover, for any stopping time τ , we have E[Vτ ] ≤ 1 so that Vτ is an e-value.

Proof. For any integer t ≥ 0, let Ft denote the filtration at time t. Then we have

E[Vt | Ft−1] = E[Vt−1Et | Ft−1] = Vt−1E[Et | Ft−1] ≤ Vt−1,

since Et is an e-value computed for the t-th batch of data. This says that Vt is a supermartingale
by definition. By the optional stopping theorem, we obtain E[Vτ ] ≤ E[V0] = 1.

Corollary 5.9. (Ville’s inequality) For any α ∈ (0, 1), we have

P

{
sup
t≥0

Vt ≥ 1/α
}
≤ α.

Proof. Define a stopping time τ := inf{t ≥ 0 : Vt ≥ 1/α}. Then we have supt≥0 Vt ≥ 1/α if and
only if Vτ ≥ 1/α. By Markov’s inequality and the optional stopping theorem,

P{Vτ ≥ 1/α} ≤ αE[Vτ ] ≤ αE[V0] = α.

In summary, regardless of how Ei depends on the past and what stopping rule we use, the
e-value Vτ gives a test at significance level α, i.e., the safe test that rejects H0 if Vτ ≥ 1/α. We
now consider an example.

Multi-armed bandit Suppose that there are K arms. The reward returned by arm k at time
i, if pulled, is denoted by Xk,i. We employ strategy (ki)i≥1 which pulls arm ki at time i ≥ 1. This
strategy gives independent rewards Xki,i for i ≥ 0. The goal is to quickly detect arms with means
greater than 1 to maximize the profit. For k ∈ [K], the null hypothesis H0 is that arm k has mean
reward at most 1. The running reward for arm k at time t is

Mk,t =
∏

i∈[t]:ki=k

Xk,i.

Since the strategy may depend on past outcomes, the process Mk,t can be very complicated. How-
ever, we still have a valid e-value Mk,τ for any stopping time τ and any k ∈ [K]. We can reject the
null if Mk,t ≥ 1/α.
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5.5.2 FDR control with e-values

Suppose that we are interested in testing multiple null hypotheses H1, . . . ,Hn and have obtained
respective e-values e1, . . . , en. Denote the order statistics as e(1) ≥ · · · ≥ e(n). To control the

FDR at level α ∈ (0, 1), the e-Benjamini–Hochberg method rejects hypotheses with the largest k̂
e-values, where

k̂ := max
{
i ∈ [n] :

i e(i)

n
≥ 1

α

}
.

This is essentially the same as the Benjamini–Hochberg method, except that pi is replaced by 1/ei.

Theorem 5.10. The e-Benjamini–Hochberg method achieves an FDR at most αn0/n ≤ α, where
n0 is the number of true null hypotheses.

Proof. As before, we let R denote the number of hypotheses that are rejected, and let V denote
the number of null hypotheses that are rejected. The FDP is equal to

V

R ∨ 1
=
∑
i∈H0

Vi
R ∨ 1

,

where H0 is the set of indices of null hypotheses and Vi is the indicator of the event that the i-th
hypothesis is rejected. Suppose that R ≥ 1 without loss of generality. For any H(i) rejected (which
corresponds to e(i)), we have

1

R
≤ 1

i
≤
α e(i)

n
.

It follows that
V

R
≤
∑
i∈H0

V(i) α e(i)

n
≤
∑
i∈H0

α e(i)

n
=
α

n

∑
i∈H0

e(i).

Since each e(i) is an e-value so that E[e(i)] ≤ 1, we have

E

[V
R

]
≤ α

n

∑
i∈H0

E[e(i)] ≤
α

n
n0.

Note that the proof does not require independence of the e-values. Similar to the case of simple
hypothesis testing, using e-values is safer than using p-values but may not be as powerful.

5.6 Conformal inference

5.6.1 Prediction interval

Suppose that data (X,Y ) follows a joint distribution P, where X ∈ Rd and Y ∈ R. For α ∈ (0, 1),
a (1 − α) prediction interval for Y is a set C(X) such that P{Y ∈ C(X)} ≥ 1 − α. Typically, we
observe a training set of data {(Xi, Yi)}ni=1 and use it to construct a prediction interval C(Xn+1)
for Yn+1 for a test point (Xn+1, Yn+1) not in the training set.
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For a regression function µ(x; θ) and a regularizer R(θ), we can consider the regularized least
squares fit

µ̂(x) := µ(x; θ̂), θ̂ := argmin
θ

1

n

n∑
i=1

(
Yi − µ(Xi; θ)

)2
+R(θ).

This gives a prediction µ̂(Xn+1) of Yn+1.
To obtain a prediction interval, let us consider a potential procedure:

1. Fit any regression model to obtain µ̂ : Rd → R using the training set {(Xi, Yi)}ni=1.

2. For i ∈ [n], set Ri := |Yi − µ̂(Xi)|.

3. Let ∆ be the d(n+ 1)(1− α)e-th smallest value of {Ri}ni=1.

4. Define the prediction interval to be C(Xn+1) := [µ̂(Xn+1)−∆, µ̂(Xn+1) + ∆].

Unfortunately, this simple method does not give a valid prediction interval due to dependence issue.

5.6.2 Split conformal

To fix the above method, we can split the data into a training set (in-sample data) and a hold-out
set (out-of-sample data). Then the following method, which we refer to as the split conformal
method, can be applied:

1. Partition [n] into two disjoint sets I1 and I2 of sizes n1 and n2 respectively.

2. Fit any regression model to obtain µ̂ : Rd → R using the set {(Xi, Yi)}i∈I1 .

3. For i ∈ I2, set Ri := |Yi − µ̂(Xi)|.

4. Let ∆ be the d(n2 + 1)(1− α)e-th smallest value of {Ri}i∈I2 .

5. Define the prediction interval to be C(Xn+1) := [µ̂(Xn+1)−∆, µ̂(Xn+1) + ∆].

A set of random variables {Zi}ni=1 is called exchangeable if for any permutation π : [n] → [n],
we have

(Z1, . . . , Zn)
d
= (Zπ(1), . . . , Zπ(n)).

If the random variables are i.i.d., then they are obviously exchangeable. Moreover, if Z is a random
variable and εi are i.i.d. random variables, then Zi := Z + εi are exchangeable, where i ∈ [n].

Theorem 5.11. If the data points {(Xi, Yi)}n+1
i=1 are exchangeable, then the interval constructed by

the split conformal method is a valid prediction interval, i.e., P{Yn+1 ∈ C(Xn+1)} ≥ 1− α.

A conformity score s(z) ∈ R is a quantity that measures how much z corresponds to previous
observations. For example, given Z1, . . . , Zn+1, a high score s(Zn+1) means that Zn+1 conforms to
Z1, . . . , Zn, while a low score means the opposite.

Proposition 5.12. Let Z1, . . . , Zn+1 be exchangeable observations. Suppose that we have confor-
mity scores s(Z1), . . . , s(Zn+1) which are distinct almost surely. Then the conformal p-value

p(Zn+1) :=
|{i ∈ [n] : s(Zi) ≤ s(Zn+1)}|+ 1

n+ 1

is uniform over { 1
n+1 ,

2
n+1 , . . . , 1}. As a result, p(Zn+1) is a valid p-value.
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Proof. Since Z1, . . . , Zn+1 are exchangeable, so are the conformity scores s(Z1), . . . , s(Zn+1). This
implies that the rank of s(Zn+1) is uniform over [n+ 1], so the result follows.

Proof of Theorem 5.11. Let Zi = (Xi, Yi) and define the conformity score

s(Zi) = −|Yi − µ̂(Xi)|.

Note that implicitly µ̂ and s are functions of {Zi}i∈I1 . It is not hard to see that {s(Zi)}i∈I2∪{n+1}
are exchangeable. Then setting

p(Zn+1) :=
|{i ∈ I2 : s(Zi) ≤ s(Zn+1)}|+ 1

n2 + 1

gives the conformal p-value. We have

Yn+1 /∈ C(Xn+1) ⇐⇒ Rn+1 := |Yn+1 − µ̂(Xn+1)| > ∆,

i.e., Rn+1 is larger than the d(n2 +1)(1−α)e-th smallest value of {Ri}i∈I2 . In other words, s(Zn+1)
is smaller than the d(n2 + 1)(1− α)e-th largest value of {s(Zi)}i∈I2 . It follows that

p(Zn+1) ≤ n2 − d(n2 + 1)(1− α)e+ 1

n2 + 1
≤ 1− (1− α) = α.

We conclude that
P{Yn+1 /∈ C(Xn+1)} ≤ P{p(Zn+1) ≤ α} ≤ α

by Proposition 5.12.

5.6.3 Quantile regression

Before presenting an improved method, let us first introduce a way to produce a quantile estimate.
Consider a continuous random variable Y with CDF F and a quantile qα := F−1(α) for α ∈ (0, 1).
Define the pinball loss

ρα(z) := z
(
α− 1{z < 0}

)
=

{
αz if z ≥ 0,

(1− α)(−z) if z < 0.

We claim that

qα = argmin
u

E[ρα(Y − u)] = argmin
u

(
(1− α)

∫ u

−∞
(u− y) dF (y) + α

∫ ∞
u

(y − u) dF (y)

)
.

To see this, it suffices to check the first-order condition

(1− α)

∫ u

−∞
dF (y)− α

∫ ∞
u

dF (y) = (1− α)F (u)− α(1− F (u)) = F (u)− α,

which yields u = F−1(α) = qα. Thus, minimizing the expected pinball loss recovers the quantile.
Motivated by this fact, we consider the following estimator of a quantile in a regression model.

For a quantile regression function f(x; θ) and a regularizer R(θ), define

q̂α(x) := f(x; θ̂), θ̂ := argmin
θ

1

n

n∑
i=1

ρα
(
Yi − f(Xi, θ)

)
+R(θ).
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5.6.4 Conformal quantile regression

A more recently proposed method, conformal quantile regression [RPC19], improves on the split
conformal method. The algorithm is as follows:

1. Partition [n] into two disjoint sets I1 and I2 of sizes n1 and n2 respectively.

2. Apply any quantile regression method to obtain lower and upper quantiles q̂αl and q̂αu using the
set {(Xi, Yi)}i∈I1 .

3. For i ∈ I2, set Ei := max{q̂αl(Xi)− Yi, Yi − q̂αu(Xi)}.

4. Let ∆ be the d(n2 + 1)(1− α)e-th smallest value of {Ei}i∈I2 .

5. Define the prediction interval to be C(Xn+1) := [q̂αl(Xn+1)−∆, q̂αu(Xn+1) + ∆].

The second sample {(Xi, Yi)}i∈I2 is called the calibration set, which is used to conformalize the
prediction interval obtained from the training set {(Xi, Yi)}i∈I1 .

Theorem 5.13. If the data points {(Xi, Yi)}n+1
i=1 are exchangeable, then the interval constructed by

conformal quantile regression is a valid prediction interval, i.e., P{Yn+1 ∈ C(Xn+1)} ≥ 1− α.

Proof. Let
En+1 := max{q̂αl(Xn+1)− Yn+1, Yn+1 − q̂αu(Xn+1)}.

It is not hard to see that {Ei}i∈I2∪{n+1} are exchangeable. By the construction of the prediction
interval, we have Yn+1 /∈ C(Xn+1) if and only if En+1 > ∆. The latter condition means that En+1

is larger than the d(n2 + 1)(1 − α)e-th smallest value of {Ei}i∈I2 . This happens with probability
at most α by virtue of exchangeability (in a way similar to the proof of Theorem 5.11).

Moreover, if the non-conformity scores Ei are distinct almost surely, then the prediction interval
is nearly perfectly calibrated in the sense that

1− α ≤ P{Yn+1 ∈ C(Xn+1)} ≤ 1− α+
1

n2 + 1
.

Conformal quantile regression produces adaptive intervals, while the split conformal method
produces intervals of constant width. As a result, the intervals produced by conformal quantile
regression are typically narrower and have better conditional coverage.
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Chapter 6

Testing in networks

6.1 Detection of a planted clique in a graph

6.1.1 The planted clique model

Consider an undirected graph on n vertices. Let the vertex set be denoted by [n] = {1, . . . , n} and
the adjacency matrix be denoted by A ∈ {0, 1}n×n. We identify the adjacency matrix A with the
graph itself. We say that A is an Erdős–Rényi graph with edge density 1/2 and write A ∼ G(n, 1/2),
if the edges (Aij)i<j are independent Ber(1/2) random variables.

A clique is a complete subgraph in a graph. In other words, the induced subgraph of A with
vertex set K ⊂ [n] is a clique if Aij = 1 for any distinct i, j ∈ K. The planted clique model
G(n, 1/2, k) can be described as follows: In an Erdős–Rényi graph, take a uniformly random subset
K ⊂ [n] of size k and replace the subgraph with vertex set K with a clique. As a result, we obtain
a graph A with

Aij =

{
1 if i, j ∈ K,
Ber(1/2) otherwise,

where the random edges are independent Ber(1/2) variables. In particular, the Erdős–Rényi model
G(n, 1/2) is equivalent to the planted clique model G(n, 1/2, 0) with no clique.

Detection of a planted clique refers to the problem of determining whether the observed graph
contains a planted clique of size k. In the language of hypothesis testing, we test the null hypothesis
H0 : A ∼ G(n, 1/2, 0) against the alternative hypothesis H1 : A ∼ G(n, 1/2, k). Let us consider the
asymptotic regime where n→∞ and use o(1) to denote a vanishing quantity. The difficulty of this
detection problem is clearly related to the size k of the planted clique:

• If k = 0 or k is too small, then it is impossible to distinguish H1 from H0.

• If k = n or k is sufficiently large, then it is easy to distinguish H1 from H0.

• What is the threshold k above which we can distinguishH1 fromH0 with probability 1−o(1) given
infinite computational power? We call this threshold the statistical (or information-theoretic)
threshold.

• What is the threshold k above which we can distinguish H1 from H0 with probability 1 − o(1)
using a polynomial-time algorithm? We call this threshold the computational threshold.

• Are the above two thresholds the same?
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6.1.2 Statistical threshold

Under H0, each edge is present with probability 1/2 independently in the graph A. There are 45
possible edges of A between vertices 1, . . . , 10, so the induced subgraph of A on the vertex set [10]
is a clique with probability 2−45. As n→∞, there are infinitely many groups of 10 vertices in A,
so A contains a clique of size 10 with probability 1 − o(1). Therefore, if under H1 a clique of size
k = 10 is planted in addition, there is no significant difference between H0 and H1.

This motivates us to study the clique number ω(A) which is defined to be the size of the largest
clique in A. If ω(A) is bounded by k0 with probability 1− o(1) under H0 and k is larger than k0,
then detection of the planted clique of size k is possible under H1.

Theorem 6.1. Let A ∼ G(n, 1/2). For any constant ε > 0, we have

P{ω(A) ≤ (2 + ε) log2 n} → 1 as n→∞.

Proof. For any fixed subset S ⊂ [n] of size k, it holds that

P{Aij = 1 for all distinct i, j ∈ S} = 2−(k2).

Since there are
(
n
k

)
subsets of [n] of size k, we obtain

P{ω(A) ≥ k} ≤ P{A contains a clique of size k} ≤
(
n

k

)
· 2−(k2) ≤ nk 2−

k(k−1)
2 .

For k := b(2 + ε) log2 nc, we have

log2(nk2−
k(k−1)

2 ) = k log2 n− k(k − 1)/2→ −∞

as n→∞, so the conclusion holds.

This result immediately implies that there is a consistent test for distinguishing H1 from H0.

Corollary 6.2. Suppose that k > (2 + ε) log2 n for a constant ε > 0. Then

P0{ω(A) > (2 + ε) log2 n}+P1{ω(A) ≤ (2 + ε) log2 n} → 0 as n→∞.

In other words, the test that rejects H0 if and only if ω(A) > (2 + ε) log2 n achieves vanishing type
I and type II errors.

Later we will show that if k ≤ (2 − ε) log2 n for a constant ε > 0, then there is no test that
achieves vanishing type I and type II errors. Thus the statistical threshold for planted clique
detection is tightly characterized.

6.2 Spectral methods

Let us continue considering the planted clique model. The issue with the above test based on
the clique number ω(A) is that it cannot be efficiently computed: In general, finding the largest
clique in A entails an exhaustive search which takes exponential time. We now consider an efficient
spectral method that succeeds in detecting the planted clique for much larger k.
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Define an affine transform W of the adjacency matrix A by

Wij :=

{
2Aij − 1 if i 6= j,

0 if i = j.

Then under H0, the entries (Wij)i<j are i.i.d. Rademacher variables, while under H1, for i < j,

Wij =

{
1 if i, j ∈ K,
Rademacher otherwise,

where K ⊂ [n] denotes the vertex set of the planted clique. We will use the spectral norm ‖W‖
(i.e., the largest singular value of W ) as the test statistic.

6.2.1 Spectral norm of the noise

We first assume H0 and study ‖W‖.

Theorem 6.3. Under H0, there is an absolute constant C > 0 such that

P{‖W‖ ≤ C
√
n} ≥ 1− exp(−n)→ 1 as n→∞.

We say that N ⊂ Bn is an ε-net of the unit ball Bn := {u ∈ Rn : ‖u‖2 ≤ 1}, if for any u ∈ Bn,
there exists v ∈ N such that ‖u− v‖2 ≤ ε.

Lemma 6.4. If N is a ε-net of Bn, then

‖W‖ ≤ 1

1− 2ε
max
v∈N

v>Wv.

Proof. There exists u ∈ Bn such that ‖W‖ = u>Wu. Choose v ∈ N such that ‖u− v‖2 ≤ ε. Then
we have

‖W‖ = u>Wu = v>Wv + (u− v)>Wv + u>W (u− v) ≤ v>Wv + ε‖W‖+ ε‖W‖.

Rearranging this inequality finishes the proof.

Lemma 6.5. For ε ∈ (0, 1), there exists an ε-net N of Bn that has cardinality |B| ≤ (1 + 2/ε)n.

Proof. We successively pick points in Bn that are at least distance ε away from each other until we
cannot do so; call this set of points N . (The set N is called a maximal ε-packing of Bn.) Note that
for any other point u ∈ Bn, there must exist v ∈ N such that ‖u − v‖2 ≤ ε because otherwise we
can still add u in N . Hence, by definition, N is an ε-net.

Next, consider the balls Dv of radius ε/2 centered at v ∈ N . These balls are disjoint because
different points in N are at least distance ε away from each other. Moreover, the union of all Dv

for v ∈ N is contained in the ball A of radius 1 + ε/2 centered at the origin. Consequently,

|N | ≤ Vol(A)

Vol(Dv)
=
(1 + ε/2

ε/2

)n
=
(
1 + 2/ε

)n
,

finishing the proof.
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Lemma 6.6. Suppose that X1, . . . , XN are i.i.d. Rademacher random variables. For any fixed
vector z ∈ RN , we have

P{z>X > t} ≤ exp
( −t2

2‖z‖22

)
.

Proof. It is not hard to check

E[eγXi ] = cosh(γ) ≤ exp(γ2/2).

Then, by Chernoff’s bound, we have

P

{ n∑
i=1

ziXi ≥ t
}

= P

{
exp

(
λ

N∑
i=1

ziXi

)
≥ exp(λt)

}
≤ exp(−λt) E

[
exp

(
λ

N∑
i=1

ziXi

)]
= exp(−λt)

N∏
i=1

exp(λ2z2
i /2).

Choosing λ = t/‖z‖22 yields the conclusion.

Proof of Theorem 6.3. For a fixed vector v ∈ Bn, we have

v>Wv =
n∑

i,j=1

Wijvivj = 2
∑
i<j

Wijvivj .

By Lemma 6.6 and
∑

i<j v
2
i v

2
j ≤ 1

2

∑n
i,j=1 v

2
i v

2
j ≤ 1

2 , it holds

P{v>Wv > 2t} ≤ exp(−t2).

Then Lemmas 6.4 and 6.5 with ε = 1/4 imply that

P{‖W‖ > 4t} ≤ P
{

max
v∈N

v>Wv > 2t
}
≤ 9n exp(−t2).

Choosing t = C
√
n for a large constant C > 0 completes the proof.

6.2.2 The spectral test

As a result of Theorem 6.3, if ‖W‖ is larger than C
√
n under H1, then we can distinguish H1 from

H0. Too see how large ‖W‖ is under H1, consider its expectation E[W ] specified by

E[Wij ] =

{
1 if i, j ∈ K, i 6= j,

0 otherwise.

Let ξ := 1√
k
1K ∈ {0, 1}n be the unit vector defined by ξi = 1√

k
if i ∈ K and ξi = 0 if i /∈ K. Then

E[W ] can by obtained from k ξξ> by replacing its diagonal entries with zeros. Consequently,

‖E[W ]‖ ≥ ‖k ξξ>‖ − ‖E[W ]− k ξξ>‖ = k − 1.

94



Moreover, the matrix W −E[W ] has Rademacher entries except that Wij −E[Wij ] = 0 if i, j ∈ K
or i = j. Similar to Theorem 6.3, we have

P{‖W −E[W ]‖ ≤ C
√
n} → 1 as n→∞

for an absolute constant C > 0 under H1. By the triangle inequality

‖W‖ ≥ ‖E[W ]‖ − ‖W −E[W ]‖,

we obtain the following theorem.

Theorem 6.7. Under H1, there is an absolute constant C > 0 such that if k > 2C
√
n+ 1, then

P{‖W‖ > C
√
n} → 1 as n→∞.

Combining Theorems 6.3 and 6.7 immediately yields a consistent test.

Corollary 6.8. There is an absolute constant C > 0 such that the following holds. Suppose that
k > 2C

√
n+ 1. Then

P0{‖W‖ > C
√
n}+P1{‖W‖ ≤ C

√
n} → 0 as n→∞.

In other words, the test that rejects H0 if ‖W‖ > C
√
n is consistent.

It is widely conjectured that the computational threshold C
√
n is in fact tight up to a constant

factor even though it is significantly larger than the statistical threshold 2 log2 n. That is to say, if
k ≤ c

√
n for a certain absolute constant c > 0, then there may be no polynomial-time algorithm

that can distinguish H1 from H0 with vanishing type I and type II errors. If this is indeed the case,
we say that there is a statistical-to-computational gap for planted clique detection.

6.3 Lower bounds for testing in random graphs

In this section, we introduce tools for proving statistical and computational lower bounds for testing
problems involving random graphs.

6.3.1 Fourier basis of functions on a random graph

Define a standardized version of the adjacency matrix Ā ∈ Rn×n by

Āij := 2Aij − 1

for i, j ∈ [n]. For A ∼ G(n, 1/2), we have

E[Āij ] = 0, Var(Āij) = 1.

We now define a Fourier basis of functions of (Aij)i<j (or, equivalently, functions of (Āij)i<j). Let

S ⊂
(

[n]
2

)
denote an edge set; S can also be viewed as the subgraph of the complete graph Kn

induced by this edge set. Next, define

φS(A) :=
∏

(i,j)∈S

Āij .
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Proposition 6.9. The set {φS : S ⊂
(

[n]
2

)
} forms an orthonormal basis of the set of real-valued

functions of (Aij)i<j with respect to the inner product 〈f, g〉 := E[f(A) g(A)], where A ∼ G(n, 1/2).
Furthermore, let V≤D denote the set of polynomials in (Aij)i<j that have degrees at most D.

Then {φS : S ⊂
(

[n]
2

)
, |S| ≤ D} forms an orthonormal basis of V≤D.

Proof. It is not hard to check that

E[φS(A)φT (A)] = E

[ ∏
(i,j)∈S

Āij ·
∏

(i′,j′)∈T

Āi′j′

]
=

{
1 if S = T,

0 if S 6= T.

Moreover, there are 2(n2) possible values that the graph (Aij)i<j can take, so the set of real-valued
functions of A has dimension

(
n
2

)
. There are precisely

(
n
2

)
functions in the defined basis, so this

proves the first claim. The second claim holds by the orthogonality and the fact that the set
{φS : S ⊂

(
[n]
2

)
, |S| ≤ D} spans V≤D.

In the sequel, we also use the norm ‖ · ‖ associated with the above inner product 〈·, ·〉.

6.3.2 Statistical lower bounds

Consider testing between two distributions P0 = G(n, 1/2) and P1 of random graphs (we will set
P1 = G(n, 1/2, k) later). Recall that whether there exists a consistent test depends on the total
variation distance between P0 and P1: For any fixed adjacency matrix B ∈ {0, 1}n×n, let pr(B) be
the probability that Pr generates B where r = 0, 1. Then we have

TV(P0,P1) =
1

2

∑
B

|p0(B)− p1(B)| = 1−
∑
B

min
{
p0(B), p1(B)

}
where the sum is over all possible adjacency matrices B, and

inf
φ

(
P0{φ = 1}+P1{φ = 0}

)
= 1− TV(P0,P1)

where the infimum is taken over all possible tests φ.

Proposition 6.10. Let L(A) := p1(A)
p0(A) be the likelihood ratio, and consider its norm ‖L‖ defined by

‖L‖2 := E0

[(p1(A)

p0(A)

)2
]
.

If ‖L‖ ≤ C for a constant C > 0, then there exists c > 0 such that TV(P0,P1) ≤ 1− c. As a result,
there exists no consistent test that distinguishes P1 from P0 as n→∞.

Proof. For brevity, we write sums as integrals. Then 1− TV(P0,P1) =
∫

min(p0, p1). We have(∫
√
p0p1

)2

=

(∫ √
min(p0, p1) ·max(p0, p1)

)2

≤
∫

min(p0, p1) ·
∫

max(p0, p1)

≤
∫

min(p0, p1) ·
∫

(p0 + p1) = 2

∫
min(p0, p1),
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where we used the Cauchy–Schwarz inequality. Moreover,(∫
√
p0p1

)2

= exp

(
2 log

∫
√
p0p1

)
= exp

(
2 log

∫
p0p1>0

p1

√
p0

p1

)
≥ exp

(
2

∫
p0p1>0

p1 log

√
p0

p1

)
= exp

(
−
∫
p0p1>0

p1 log
p1

p0

)
,

where we used Jensen’s inequality. Applying Jensen’s inequality again, we obtain∫
p0p1>0

p1 log
p1

p0
≤ log

∫
p0p1>0

p1
p1

p0
= log

∫
p0

(p1

p0

)2
= log ‖L‖2.

Combining everything, if ‖L‖2 ≤ C, then
∫ √

p0p1 ≥ c′ and so
∫

min(p0, p1) ≥ c for constants
c, c′ > 0. We conclude that TV(P0,P1) ≤ 1− c.

6.3.3 Computational lower bounds

By the above result, to establish a statistical lower bound against all tests, it suffices to control the
norm ‖L‖. Next, we show that, if the goal is to establish a lower bound against polynomial tests of
degrees at most D, it suffices to consider the norm of the projected likelihood ratio ‖L≤D‖. To be
more precise, recall that V≤D denotes the set of polynomials in (Aij)i<j that have degrees at most
D. Define the function L≤D(A) to be the projection of the likelihood ratio L(A) onto V≤D. Then
we have

‖L≤D‖ = max
f∈V≤D, ‖f‖≤1

E0[L(A)f(A)] = max
f∈V≤D, ‖f‖≤1

E1[f(A)].

We say that a polynomial f(A) in the entries (Aij)i<j strongly separates P0 and P1 if√
max

{
Var0(f(A)),Var1(f(A))

}
= o
(∣∣∣E1[f(A)]−E0[f(A)]

∣∣∣)
as n→∞; see [BAH+22]. Note that if the above condition holds, say, with E1[f(A)] > E0[f(A)],
then we can take τ := 1

2

(
E1[f(A)] +E0[f(A)]

)
, and by Chebyshev’s inequality,

P0{f(A) > τ} ≤ P0

{∣∣f(A)−E0[f(A)]
∣∣ > 1

2

(
E1[f(A)]−E0[f(A)]

)}
≤ 4Var0(f(A))

(E1[f(A)]−E0[f(A)])2
= o(1).

Similarly, P1{f(A) ≤ τ} = o(1), so the test that rejects P0 if f(A) > τ is consistent.

Proposition 6.11. If ‖L≤D‖ ≤ C for a constant C > 0, then there exists no polynomial f ∈ V≤D
that strongly separates P0 and P1.

Proof. Suppose there is a polynomial f(A) that strongly separates P0 and P1. Without loss of
generality, we can standardize f(A) under P0. Then E0[f(A)] = 0, Var0(f(A)) = ‖f‖2 = 1, and
|E1[f(A)]| → ∞ as n→∞ by the strong separation. This contradicts ‖L≤D‖ ≤ C.

6.4 Statistical-to-computational gap for detecting a planted clique

Using tools from the last section, we provide evidence supporting the conjectured statistical-to-
computational gap for detection of a planted clique.
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6.4.1 Low-degree polynomials

Let us first answer the question: To predict the computational threshold of a problem, what degree
D should we consider? It is conjectured in the literature that taking D = polylog(n) will yield a
good prediction. One rationale behind this conjecture is that polynomials of logarithmic degrees
approximate spectral methods sufficiently well.

Proposition 6.12. Let P0 = G(n, 1/2) and P1 = G(n, 1/2, k), where k ≥ 4C
√
n for a large

constant C > 0. For D = d10 log2 ne, there is a degree-D polynomial f(A) such that

P0{f(A) > τ}+P1{f(A) ≤ τ} → 0 as n→∞

for a threshold τ . Furthermore, f(A) strongly separates P0 and P1.

Proof. Suppose that A ∼ P1 = G(n, 1/2, k). Recall that ‖E[Ā]‖ ≥ k − 1 and ‖Ā−E[Ā]‖ ≤ C
√
n

for a constant C > 0 with high probability. We used the statistic ‖Ā‖ to distinguish between P0

and P1, but ‖Ā‖ is not a polynomial in the entries of A. Nevertheless, we introduce a degree-D
polynomial that can be used as a test statistic in replace of ‖Ā‖.

Let λi(M) denotes the ith largest eigenvalue of M . Consider the polynomial

f(A) := tr(ĀD) =
n∑
i=1

λi(Ā)D = λ1(Ā)D
[
1 +

n∑
i=2

(λi(Ā)

λ1(Ā)

)D]
.

By Weyl’s inequality,

λ1(Ā) ≥ λ1(E[Ā])− ‖Ā−E[Ā]‖ ≥ k − 1− C
√
n ≥ 2.9C

√
n

and

|λi(Ā)| ≤ |λi(E[Ā])|+ ‖Ā−E[Ā]‖ ≤ 1 + C
√
n ≤ 1.1C

√
n.

Therefore, λ1(Ā) ≥ 2|λi(Ā)| for any i ≥ 2. If D ≥ 10 log2 n, then
( |λi(Ā)|
λ1(Ā)

)D ≤ n−10 for i ≥ 2. It

follows that

f(A) ≥ λ1(Ā)D(1− n−9) ≥ (2C
√
n )D.

On the other hand, suppose A ∼ G(n, 1/2). Then

f(A) =

n∑
i=1

λi(Ā)D ≤ n‖Ā‖D ≤ n(C
√
n )D,

since we showed that ‖Ā‖ ≤ C
√
n with high probability. Note that 2D ≥ n10 > n for D ≥ 10 log2 n,

so the degree-D polynomial f(A) gives a consistent test between P0 and P1.

We omit the proof of strong separation between P0 and P1 by f(A). In fact, strong separation
is only a second-moment condition, while we have already shown exponential tail bounds for λ1(Ā)
and thus can control f(A) under either P0 or P1.
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6.4.2 Establishing the lower bounds

In view of Propositions 6.10 and 6.11, to prove statistical and computational lower bounds for the
planted clique problem, it suffices to bound ‖L‖ and ‖L≤D‖ respectively. Recall that V≤D denotes

the set of polynomials in (Aij)i<j that have degrees at most D, and {φS : S ⊂
(

[n]
2

)
, |S| ≤ D} is an

orthonormal basis of V≤D. As a result,

‖L≤D‖2 =
∑

S⊂([n]
2 ), |S|≤D

〈L, φS〉2 =
∑

S⊂([n]
2 ), |S|≤D

E0[L(A)φS(A)]2 =
∑

S⊂([n]
2 ), |S|≤D

E1[φS(A)]2.

Moreover, the degree D is at most
(
n
2

)
, and {φS : S ⊂

(
[n]
2

)
} is an orthonormal basis of the set of

all functions of A. Hence we have ‖L‖ = ‖L≤(n2)
‖.

Theorem 6.13. Let P0 = G(n, 1/2) and P1 = G(n, 1/2, k). Consider the likelihood ratio L(A) =
p1(A)
p0(A) . Then we have the following results:

• If k ≤ (2− ε) log2 n for ε > 0, then ‖L‖2 ≤ 2.

• If k ≤ n1/2−ε for ε > 0 and D = o
(
( logn

log logn)2
)
, then ‖L≤D‖2 ≤ 4.

Proof. Since ‖L≤D‖2 =
∑

S⊂([n]
2 ), |S|≤DE1[φS(A)]2, we study E1[φS(A)]. Let K ⊂ [n] denote the

vertex set of the clique under P1. If either i or j is not in K, then Aij ∼ Ber(1/2) and E[Āij | z] = 0;
otherwise, Aij = 1 and Āij = 1. Therefore, by the independence of Aij conditional on K, we have

E1[φS(A)] = E

[ ∏
(i,j)∈S

E1[Āij | K]

]
= P{i, j ∈ K for all (i, j) ∈ S}

which is precisely the probability that the clique K contains all vertices of S viewed as a graph.
Let v(S) denote the number of vertices of S. Note that we must have v(S) ≤ k for otherwise the
above probability is zero. Since K is by definition a uniformly random subset of [n] of size k under
P1, we obtain that for v(S) ≤ k,

E1[φS(A)] =

(n−v(S)
k−v(S)

)(
n
k

) =
k(k − 1) · · · (k − v(S) + 1)

n(n− 1) · · · (n− v(S) + 1)
≤ (k/n)v(S).

• First, consider the case D =
(
n
2

)
so that ‖L‖ = ‖L≤D‖. Then we have

‖L‖2 =
∑

S⊂([n]
2 )

E1[φS(A)]2 ≤
∑

S:v(S)≤k

(k/n)2v(S) =

k∑
m=0

∑
S:v(S)=m

(k/n)2m ≤
k∑

m=0

nm2km/2(k/n)2m,

where the last step holds because there are at most
(
n
m

)
2(m2 ) ≤ nm2m

2/2 ≤ nm2km/2 graphs S
with v(S) = m. Furthermore, if k ≤ (2− ε) log2 n, then

n2k/2(k/n)2 ≤ nn1−ε/2
(2 log2 n

n

)2
=

(2 log2 n)2

nε/2
≤ 1/2.

We conclude that

‖L‖2 ≤
k∑

m=0

(1/2)m ≤ 2.
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• Next, consider the low-degree case where D = o
(
( logn

log logn)2
)
. For brevity, we assume

√
D is an

integer. For m ≤ 2
√
D, there are at most

(
n
m

)
2(m2 ) ≤ nm2m

2 ≤ nm2m
√
D graphs S such that

v(S) = m. For 2
√
D < m ≤ 2D, there are at most

(
n
m

)(
m
2

)D ≤ nmm2D graphs S such that
v(S) = m and |S| ≤ D. It follows that

‖L≤D‖2 =
∑

S⊂([n]
2 ), |S|≤D

(k/n)2v(S) =

2D∑
m=0

∑
v(S)=m, |S|≤D

(k/n)2m

≤
2
√
D∑

m=0

nm2m
2
(k/n)2m +

2D∑
2
√
D

nmm2D(k/n)2m.

For the first term, note that for D = o
(
( logn

log logn)2
)

and k ≤ n1/2−ε, we have

n22
√
D(k/n)2 ≤ neo(logn)(k/n)2 ≤ n1+o(1)n−1−2ε ≤ 1/2.

Therefore,
2
√
D∑

m=0

nm2m
2
(k/n)2m ≤

2
√
D∑

m=0

(n22
√
D(k/n)2)m ≤ 2.

For the second term, note that for m = 2
√
D, we have

n2
√
D(2
√
D)2D(k/n)4

√
D =

(
n(k/n)2(2

√
D)
√
D
)2√D

≤
(
(k2/n)(log n)

o( logn
log logn

))2√D ≤ (n−2εno(1)
)2√D ≤ 1.

Moreover, for 2
√
D ≤ m < 2D, we have

nm+1(m+ 1)2D(k/n)2(m+1)

nmm2D(k/n)2m
≤ n(k/n)2

(
1 +

1

2
√
D

)2D

≤ (k2/n) e
√
D ≤ n−2εeo(logn) ≤ n−2εno(1) ≤ 1/2.

We conclude that
2D∑

2
√
D

nmm2D(k/n)2m ≤ 2.

The two terms combined yield that ‖L≤D‖2 ≤ 4.

We summarize the statistical-to-computational gap for planted clique detection as follows.

Corollary 6.14. Consider testing between P0 = G(n, 1/2) and P1 = G(n, 1/2, k).

• If k ≥ (2 + ε) log2 n for ε > 0, then there is a consistent test.

• If k ≤ (2− ε) log2 n for ε > 0, then there is no consistent test.

• If k ≥ Cn1/2 for a large constant C > 0, then there is a polynomial of degree O(log n) that
strongly separates P0 and P1.

• If k ≤ n1/2−ε for ε > 0, then there is no polynomial of degree o
(
( logn

log logn)2
)

that strongly separates
P0 and P1.
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