Announcements Nov 11

- Please turn on your camera if you are able and comfortable doing so
- WeBWorK on 5.4, 5.5 due Thursday night
- Quiz on Sections 5.4, 5.5 Friday 8 am - 8 pm EDT
- Third Midterm Friday Nov 20 8 am - 8 pm on §4.1-5.6
- Writing assignment due Nov 24 (make sure to read the emails I sent)
- Office hours this week Tuesday 4-5, Thursday 1-2, and by appointment
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4

- Studio on Friday
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- Counseling center: https://counseling.gatech.edu

Note: Part of 5.5 got cut
Dynamics
Block diag.
Chapter 6
Orthogonality
Section 6.1
Dot products and Orthogonality
Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can’t solve $Ax = b$? How can we solve it as closely as possible?

The answer relies on orthogonality.

\hat{b} is closest pt to b in $\text{Col}(A)$

Can’t solve $Ax = b$. Solve $Ax = \hat{b}$ instead.
Outline

- Dot products
- Length and distance
- Orthogonality
Dot product

Say \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) are vectors in \(\mathbb{R}^n \)

\[
\begin{align*}
\mathbf{u} \cdot \mathbf{v} &= \sum_{i=1}^{n} u_i v_i \\
&= u_1v_1 + \cdots + u_n v_n \\
&= \mathbf{u}^T \mathbf{v}
\end{align*}
\]

Example. Find \((1, 2, 3) \cdot (4, 5, 6) \).

\[
= (1 \quad 2 \quad 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}
\]

\[
= 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6
\]
Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $(u + v) \cdot w = u \cdot w + v \cdot w$
- $(cu) \cdot v = c(u \cdot v)$
- $u \cdot u \geq 0$
- $u \cdot u = 0 \iff u = 0$

$u \cdot u = u_1^2 + u_2^2 + \ldots + u_n^2$
Length

Let \(v \) be a vector in \(\mathbb{R}^n \)

\[
\|v\| = \sqrt{v \cdot v} \quad \text{and} \quad \|v\|^2 = v \cdot v.
\]

\(= \) length of \(v \)

Why? Pythagorean Theorem

Fact. \(\|cv\| = |c| \cdot \|v\| \)

\(v \) is a unit vector of \(\|v\| = 1 \)

Problem. Find the unit vector in the direction of \((1, 2, 3, 4)\).

\[
\text{answer:} \quad \frac{V}{\|V\|} = \frac{1}{\sqrt{1^2+2^2+3^2+4^2}} \left(\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right) = \frac{1}{\sqrt{30}} \left(\begin{array}{c} 2 \\ 3 \\ 4 \end{array} \right) = \left(\begin{array}{c} \frac{1}{\sqrt{30}} \\ \frac{2}{\sqrt{30}} \\ \frac{3}{\sqrt{30}} \end{array} \right)
\]
Distance

The distance between v and w is the length of $v - w$ (or $w - v$).

Problem. Find the distance between $(1, 1, 1)$ and $(1, 4, -3)$.

\[
\| (1, 1, 1) - (1, 4, -3) \| = \| (0, 3, 4) \| = \sqrt{0^2 + 3^2 + 4^2} = \sqrt{25} = 5
\]
Orthogonality

Fact. \(u \perp v \iff u \cdot v = 0 \)

Why? Pythagorean theorem again!

\[
\begin{align*}
 u \perp v & \iff \|u\|^2 + \|v\|^2 = \|u - v\|^2 \\
 & \iff u\cdot u + v\cdot v = u\cdot (u - 2u \cdot v) + v\cdot v \\
 & \iff u \cdot v = 0
\end{align*}
\]

Problem. Find a vector in \(\mathbb{R}^3 \) orthogonal to \((1, 2, 3)\).

\[
\begin{pmatrix}
 -1 \\
 3 \\
 2 \\
\end{pmatrix} \perp \begin{pmatrix}
 1 \\
 2 \\
 3 \\
\end{pmatrix}
\]

Since
\[
\begin{pmatrix}
 -13 \\
 2 \\
 3 \\
\end{pmatrix} \cdot \begin{pmatrix}
 1 \\
 2 \\
 3 \\
\end{pmatrix} =
\]

\[
-13 + 4 + 9 = 0.
\]
Summary of Section 6.1

- \(u \cdot v = \sum u_i v_i \)
- \(u \cdot u = \|u\|^2 \) (length of \(u \) squared)
- The unit vector in the direction of \(v \) is \(v/\|v\| \).
- The distance from \(u \) to \(v \) is \(\|u - v\| \)
- \(u \cdot v = 0 \iff u \perp v \)
Section 6.2
Orthogonal complements
Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements
Orthogonal complements

$W = \text{subspace of } \mathbb{R}^n = \text{plane thru } 0$.

$W^\perp = \{v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W\}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3?
Orthogonal complements

$W = \text{subspace of } \mathbb{R}^n$

$W^\perp = \{v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$

Facts.

1. W^\perp is a subspace of \mathbb{R}^n
2. $(W^\perp)^\perp = W$
3. $\dim W + \dim W^\perp = n$
4. If $W = \text{Span}\{w_1, \ldots, w_k\}$ then
 $W^\perp = \{v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
5. The intersection of W and W^\perp is $\{0\}$.

$\begin{align*}
 u \cdot w = 0 & \quad \implies \quad cu \cdot w = 0 \\
 u \cdot w = 0 & \quad \& \quad v \cdot w = 0 \quad \implies \quad (u+v) \cdot w = 0.
\end{align*}$
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1)\}$. Find the equation of the plane W^\perp.

What equation(s) are we solving?

(x, y, z) in W^\perp means: $(1, 1, -1) \cdot (x, y, z) = 0$.

$x + y - z = 0$.

Find a basis for W^\perp.

$x = -y + 2z$
$y = y$
$z = z$

$y \begin{pmatrix} -1 \\ 1 \\ 6 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$\{\begin{pmatrix} -1 \\ 1 \\ 6 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\}$
Orthogonal complements

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^\perp.

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } W^\perp \text{ means: } \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0
\]

Find a basis for W^\perp.

\[
\begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{cases} x = \frac{7}{2} \\ y = 0 \\ z = 7 \end{cases}
\]
Orthogonal complements
Finding them

Recipe. To find (basis for) W^\perp, find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A

\[
\begin{pmatrix}
1 & 1 & -1 \\
-1 & 2 & 1
\end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{0}
\]
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^\perp.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A

Theorem. $A = m \times n$ matrix

\[(\text{Row } A)^\perp = \text{Nul } A\]

Geometry \leftrightarrow Algebra

(The row space of A is the span of the rows of A.)
Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n. Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^\perp}$$

where v_W is in W and v_{W^\perp} is in W^\perp.

Why? Say that $w_1 + w'_1 = w_2 + w'_2$ where w_1 and w_2 are in W and w'_1 and w'_2 are in W^\perp. Then $w_1 - w_2 = w'_2 - w'_1$. But the former is in W and the latter is in W^\perp, so they must both be equal to 0.

Next time: Find v_W and v_{W^\perp}.
Orthogonal Projections

Many applications, including:
Summary of Section 6.2

- \(W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \} \)

- **Facts:**
 1. \(W^\perp \) is a subspace of \(\mathbb{R}^n \)
 2. \((W^\perp)^\perp = W\)
 3. \(\dim W + \dim W^\perp = n \)
 4. If \(W = \text{Span}\{w_1, \ldots, w_k\} \) then
 \(W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \} \)
 5. The intersection of \(W \) and \(W^\perp \) is \(\{0\} \).

- To find \(W^\perp \), find a basis for \(W \), make those vectors the rows of a matrix, and find the null space.

- Every vector \(v \) can be written uniquely as \(v = v_W + v_{W^\perp} \) with \(v_W \) in \(W \) and \(v_{W^\perp} \) in \(W^\perp \)
Typical Exam Questions 6.2

- What is the dimension of W if W is a line in \mathbb{R}^{10}?
- What is W if W is the line $y = mx$ in \mathbb{R}^2?
- If W is the x-axis in \mathbb{R}^2, and $v = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$, write v as $v_W + v_{W^\perp}$.
- If W is the line $y = x$ in \mathbb{R}^2, and $v = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$, write v as $v_W + v_{W^\perp}$.
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ in \mathbb{R}^3.
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ in \mathbb{R}^4.
- What is the orthogonal complement of x_1x_2-plane in \mathbb{R}^4?