Announcements Sep 23

- WeBWorK on Section 2.6 due Thursday night
- Quiz on Section 2.6 Friday 8 am - 8 pm EDT
- My Office Hours Tue 11-12, Thu 1-2, and by appointment
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4
- Regular Studio on Friday
- Second Midterm Friday Oct 16 8 am - 8 pm on §2.6-3.6 (not §2.8)
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- For general questions, post on Piazza
- Find a group to work with - let me know if you need help
- Counseling center: https://counseling.gatech.edu
Section 2.7

Bases
Bases

$V = \text{subspace of } \mathbb{R}^n$

A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1. $V = \text{Span}\{v_1, \ldots, v_k\}$
2. v_1, \ldots, v_k are linearly independent

Equivalently, a basis is a *minimal spanning set*, that is, a spanning set where if you remove any one of the vectors you no longer have a spanning set.

Q. What is one basis for \mathbb{R}^2? \mathbb{R}^n? How many bases are there?
Dimension

$V = \text{subspace of } \mathbb{R}^n$

$\dim(V) = \text{dimension of } V = k = \text{the number of vectors in the basis}$

(What is the problem with this definition of dimension?)
Basis theorem

Basis Theorem
If V is a k-dimensional subspace of \mathbb{R}^n, then

- any k linearly independent vectors of V form a basis for V
- any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

- spans V, linearly independent, k vectors

We are skipping Section 2.8 this semester. But remember: the whole point of a basis is that it gives coordinates (like latitude and longitude) for a subspace. Every point has a unique address.
Section 2.9
The rank theorem
Rank Theorem

On the left are solutions to $Ax = 0$, on the right is $\text{Col}(A)$:
Rank Theorem

\[\text{rank}(A) = \dim \text{Col}(A) = \# \text{ pivot columns} \]
\[\text{nullity}(A) = \dim \text{Nul}(A) = \# \text{ nonpivot columns} \]

Rank Theorem. \(\text{rank}(A) + \text{nullity}(A) = \# \text{cols}(A) \)

This ties together everything in the whole chapter: rank \(A \) describes the \(b \)'s so that \(Ax = b \) is consistent and the nullity describes the solutions to \(Ax = 0 \). So more flexibility with \(b \) means less flexibility with \(x \), and vice versa.

Example. \(A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \)
About names

Again, why did we need all these vocabulary words? One answer is that the rank theorem would be harder to understand if it was:

The size of a minimal spanning set for the set of solutions to $Ax = 0$ plus the size of a minimal spanning set for the set of b so that $Ax = b$ has a solution is equal to the number of columns of A.

Compare to: $\text{rank}(A) + \text{nullity}(A) = n$

“A common concept in history is that knowing the name of something or someone gives one power over that thing or person.” –Loren Graham
http://philoctetes.org/news/the_power_of_names_religion_mathematics
Section 2.9 Summary

- **Rank Theorem.** \(\text{rank}(A) + \dim \text{Nul}(A) = \#\text{cols}(A) \)
Typical exam questions

- Suppose that A is a 5×7 matrix, and that the column space of A is a line in \mathbb{R}^5. Describe the set of solutions to $Ax = 0$.
- Suppose that A is a 5×7 matrix, and that the column space of A is \mathbb{R}^5. Describe the set of solutions to $Ax = 0$.
- Suppose that A is a 5×7 matrix, and that the null space is a plane. Is $Ax = b$ consistent, where $b = (1, 2, 3, 4, 5)$?
- True/false. There is a 3×2 matrix so that the column space and the null space are both lines.
- True/false. There is a 2×3 matrix so that the column space and the null space are both lines.
- True/false. Suppose that A is a 6×2 matrix and that the column space of A is 5 dimensional. Is it possible for $(1, 0)$ and $(1, 1)$ to be solutions to $Ax = b$ for some b in \mathbb{R}^6?
Sections 3.1
Matrix Transformations
Section 3.1 Outline

- Learn to think of matrices as functions, called matrix transformations
- Learn the associated terminology: domain, codomain, range
- Understand what certain matrices do to \mathbb{R}^n
From matrices to functions

Let A be an $m \times n$ matrix.

We define a function

$$T : \mathbb{R}^n \to \mathbb{R}^m$$

$$T(v) = Av$$

This is called a matrix transformation.

The domain of T is \mathbb{R}^n.

The co-domain of T is \mathbb{R}^m.

The range of T is the set of outputs: $\text{Col}(A)$

This gives us another point of view of $Ax = b$.

Example: range of $f(x) = x^2$ in Calc 1 is $[0, \infty)$. Co-domain is \mathbb{R}.
Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \), \(u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \), \(b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \).

What is \(T(u) \)?

\[
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix}
\]

Find \(v \) in \(\mathbb{R}^2 \) so that \(T(v) = b \)

\[
v = \begin{pmatrix} 2 \\ 5 \end{pmatrix}
\]

Find a vector in \(\mathbb{R}^3 \) that is not in the range of \(T \).

any vector with different \(1^{st} \) and \(3^{rd} \) entries.

since \[
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 4 \end{pmatrix} = \begin{pmatrix} x+y \\ y \\ x+y \end{pmatrix}
\]
Square matrices

For a square matrix we can think of the associated matrix transformation

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^n \]

as doing something to \(\mathbb{R}^n \).

Example. The matrix transformation \(T \) for

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\]

What does \(T \) do to \(\mathbb{R}^2 \)?

Reflection about \(y \)-axis

Input: \((x, y) \)

Output: \((-x, y) \)
Square matrices

What does each matrix do to \mathbb{R}^2?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\]

Input: \((x, y)\)

Output: \((y, x)\)

(Reflection about \(y=x\).

\[
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix}
\]

Input: \((x, y)\)

Output: \((x, 0)\)

(Orthogonal projection to \(x\)-axis)

\[
\begin{pmatrix}
3 & 0 \\
0 & 3 \\
\end{pmatrix}
\]

Input: \((x, y)\)

Output: \((3x, 3y)\)

(Dilation by 3)

What is the range in each case?

Range: \mathbb{R}^2
Poll

What does $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ do to this letter F?
Square matrices

What does each matrix do to \mathbb{R}^2?

Hint: if you can’t see it all at once, see what happens to the x- and y-axes.

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]

Input: \((x, y) \)
Output: \((x+y, y) \)

\[
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}
\]

\(\theta = \text{some fixed number} \)

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

Input: \((1, 0) \)
Output: \((\cos \theta, \sin \theta) \)

Input: \((0, 1) \)
Output: \((-\sin \theta, \cos \theta) \)
Examples in \mathbb{R}^3

What does each matrix do to \mathbb{R}^3?

1. Matrix:
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
Input: (x, y, z)
Output: $(x, y, 0)$

2. Matrix:
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Input: (x, y, z)
Output: $(x, -y, z)$

3. Matrix:
\[
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Input: (x, y, z)
Output: $(0, y, z)$

Orthogonal Projection to xy plane

Range: xy-plane

Reflection about xz-plane

Range: \mathbb{R}^3

Rotation by 90° about z-axis

Range: \mathbb{R}^3
Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\text{Col}(A)$.

- If A is $n \times n$ then T does something to \mathbb{R}^n; basic examples: reflection, projection, scaling, shear, rotation.

Key example: Rabbits

- $\frac{1}{2}$ first years survive
- $\frac{1}{2}$ second yrs survive
- 2nd have 6 babies
- 3rd yrs have 8 babies

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$

First day slides

First day slides

Input: Population in a given year (#1st years, #2nd, #3rd)

Output: Population for following year

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} F \\ S \\ F \end{pmatrix} = \begin{pmatrix} 6S + 8T \\ \frac{1}{2}F \\ \frac{1}{2}S \end{pmatrix}$$

No!
Typical exam questions

- What does the matrix \(
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}
\) do to \(\mathbb{R}^2\)?

- What does the matrix \(
\begin{pmatrix}
1/\sqrt{2} & 1/\sqrt{2} \\
-1/\sqrt{2} & 1/\sqrt{2}
\end{pmatrix}
\) do to \(\mathbb{R}^2\)?

- What does the matrix \(
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\) do to \(\mathbb{R}^3\)?

- What does the matrix \(
\begin{pmatrix}
0 & 0 \\
1 & 0 \\
0 & 1
\end{pmatrix}
\) do to \(\mathbb{R}^2\)?

- True/false. If \(A\) is a matrix and \(T\) is the associated matrix transformation, then the statement \(Ax = b\) is consistent is equivalent to the statement that \(b\) is in the range of \(T\).

- True/false. There is a matrix \(A\) so that the domain of the associated matrix transformation is a line in \(\mathbb{R}^3\).
Sections 3.2

One-to-one and onto transformations
Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto
One-to-one

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

In other words: different inputs have different outputs.

Theorem. Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is one-to-one
- the columns of \(A \) are linearly independent
- \(Ax = 0 \) has only the trivial solution
- \(A \) has a pivot in each column
- the range of \(T \) has dimension \(n \)

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is one-to-one?

Draw a picture of the range of a one-to-one matrix transformation \(\mathbb{R} \to \mathbb{R}^3 \).
Onto

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is onto if the range of \(T \) equals the codomain \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the output for at least one input \(v \) in \(\mathbb{R}^m \).

Theorem. Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is onto
- the columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a pivot in each row
- \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \)
- the range of \(T \) has dimension \(m \)

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is onto?

Give an example of an onto matrix transformation \(\mathbb{R}^3 \to \mathbb{R} \).
One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

\[
\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 2 \\
0 & 0 & 9
\end{pmatrix} \quad \begin{pmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{pmatrix} \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 1
\end{pmatrix} \quad \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\]
One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \text{ reflection}
\]

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} \text{ projection}
\]

\[
\begin{pmatrix}
3 & 0 \\
0 & 3
\end{pmatrix} \text{ scaling}
\]

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \text{ shear}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix} \text{ rotation}
\]