What does \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) do to this letter F?

\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}
\]

"shear"
Announcements Sep 28

- WeBWorK on Sections 2.7, 2.9, 3.1 due Thursday night
- Quiz on Section 2.7, 2.9, 3.1 Friday 8 am - 8 pm EDT
- My Office Hours Tue 11-12, Thu 1-2, and by appointment
- TA Office Hours
 - Umar Fri 4:20-5:20
 - Seokbin Wed 10:30-11:30
 - Manuel Mon 5-6
 - Pu-ting Thu 3-4
 - Juntao Thu 3-4
- Studio on Friday
- Second Midterm Friday Oct 16 8 am - 8 pm on §2.6-3.6 (not §2.8)
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- For general questions, post on Piazza
- Find a group to work with - let me know if you need help
- Counseling center: https://counseling.gatech.edu
Sections 3.1
Matrix Transformations

Chapter 3: reframing Chaps 1 & 2 in terms of algebra
From matrices to functions

Let A be an $m \times n$ matrix.

We define a function $T : \mathbb{R}^n \to \mathbb{R}^m$

$$T(v) = Av$$

This is called a matrix transformation.

The domain of T is \mathbb{R}^n.

The co-domain of T is \mathbb{R}^m.

The range of T is the set of outputs: $\text{Col}(A)$

This gives us another point of view of $Ax = b$
Why are we learning about matrix transformations?

Sample applications:

- Cryptography (Hill cypher)
- Computer graphics (Perspective projection is a linear map!)
- Aerospace (Control systems - input/output)
- Biology
- Many more!
Applications of Linear Algebra

Biology: In a population of rabbits...

- half of the new born rabbits survive their first year
- of those, half survive their second year
- the maximum life span is three years
- rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and third year rabbits), then what is the population in 2017?

These relations can be represented using a matrix.

\[
\begin{pmatrix}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 10 \\
0 & \frac{1}{2} & 0
\end{pmatrix}
\begin{pmatrix}
4 \\
6 \\
7
\end{pmatrix}
=
\begin{pmatrix}
92 \\
2 \\
3
\end{pmatrix}
\]

How does this relate to matrix transformations?
Section 3.2

One-to-one and onto transformations
Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto

In Calculus:

One-to-one

- Horizontal line test: each horizontal line crosses graph at most 1 pt.
- Each input has one output

Onto

- Each horizontal line crosses graph at least 1 pt.
- All possible outputs are actual outputs
- Codomain = range

Example: \(f(x) = x^2 \) not onto.
- \(-1\) is not in the range
One-to-one

A matrix transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n.

In other words: different inputs have different outputs.

Do not confuse this with the definition of a function, which says that for each input x in \mathbb{R}^n there is at most one output b in \mathbb{R}^m.
One-to-one

\(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

Theorem. Suppose \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is one-to-one
- the columns of \(A \) are linearly independent
- \(Ax = 0 \) has only the trivial solution
- \(A \) has a pivot in each column
- the range of \(T \) has dimension \(n \)

\[\text{Col}(A) \]

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is one-to-one?

\[m \geq n \text{ tall or square, not wide} \]

Draw a picture of the range of a one-to-one matrix transformation \(\mathbb{R} \rightarrow \mathbb{R}^3 \).
Onto

A matrix transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m, that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m.
Onto

\[T : \mathbb{R}^n \to \mathbb{R}^m \text{ is onto} \] if the range of \(T \) equals the codomain \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the output for at least one input \(v \) in \(\mathbb{R}^m \).

Theorem. Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is onto
- the columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a pivot in each row
- \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \)
- the range of \(T \) has dimension \(m \)

\[\text{Col}(A) = \mathbb{R}^m \]

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is onto?

\[m \leq n \quad \text{wide or square, not tall} \]

Give an example of an onto matrix transformation \(\mathbb{R}^3 \to \mathbb{R}^2 \).

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

projection
One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

\[
\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 2 \\
0 & 0 & 9
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
1 & 0
\end{pmatrix}
\]

one-to-one ✓ ✓ ✓ ✓
onto ✓ ✓ ✓ ✓

By the way: onto \iff \text{rows lin ind.}
One-to-one and Onto

Which of the previously-studied matrix transformations of \(\mathbb{R}^2 \) are one-to-one? Onto?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]
reflection about \(y = x \)

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]
projection onto \(x\)-axis

\[
\begin{pmatrix}
3 & 0 \\
0 & 3
\end{pmatrix}
\]
scaling

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]
shear

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]
rotation
Which are one to one / onto?

Poll

Which give one to one-to-one / onto matrix transformations?

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
1 & -1 & 2 \\
-2 & 2 & -4
\end{pmatrix}
\]

\(f(x) = x^2\) is one-to-one

Like \(f(x) = x^2\)

Inputs: 2, -2

Same output: 4

Not one-to-one

Find 2 inputs with same output for

Inputs: \((0, 0), (-2, 0), (-1, 0)\)

Same Output \(\begin{pmatrix} 0 \\ 0 \end{pmatrix}\)

Not one-to-one
Consider the robot arm example from the book.

There is a natural function f here (not a matrix transformation). The input is a set of three angles and the co-domain is \mathbb{R}^2. Is this function one-to-one? Onto?
Summary of Section 3.2

- \(T : \mathbb{R}^n \to \mathbb{R}^m \) is **one-to-one** if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

- **Theorem.** Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:
 - \(T \) is one-to-one
 - the columns of \(A \) are linearly independent
 - \(Ax = 0 \) has only the trivial solution
 - \(A \) has a pivot in each column
 - the range has dimension \(n \)

- \(T : \mathbb{R}^n \to \mathbb{R}^m \) is **onto** if the range of \(T \) equals the codomain \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the output for at least one input \(v \) in \(\mathbb{R}^n \).

- **Theorem.** Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:
 - \(T \) is onto
 - the columns of \(A \) span \(\mathbb{R}^m \)
 - \(A \) has a pivot in each row
 - \(Ax = b \) is consistent for all \(b \) in \(\mathbb{R}^m \).
 - the range of \(T \) has dimension \(m \).
Typical exam questions

- True/False. It is possible for the matrix transformation for a 5×6 matrix to be both one-to-one and onto.
- True/False. The matrix transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by projection to the yz-plane is onto.
- True/False. The matrix transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by rotation by π is onto.
- Is there an onto matrix transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^3$? If so, write one down, if not explain why not.
- Is there an one-to-one matrix transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^3$? If so, write one down, if not explain why not.
Section 3.3

Linear Transformations
Section 3.3 Outline

- Understand the definition of a linear transformation
- Linear transformations are the same as matrix transformations
- Find the matrix for a linear transformation
Linear transformations

A function \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation if

- \(T(u + v) = T(u) + T(v) \) for all \(u, v \) in \(\mathbb{R}^n \).
- \(T(cv) = cT(v) \) for all \(v \) in \(\mathbb{R}^n \) and \(c \) in \(\mathbb{R} \).

First examples: matrix transformations.

\[
A(u + v) = Au + Av
\]
\[
A(cu) = cAu
\]
Linear transformations

A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** if

- $T(u + v) = T(u) + T(v)$ for all u, v in \mathbb{R}^n.
- $T(cv) = cT(v)$ for all v in \mathbb{R}^n and c in \mathbb{R}.

Notice that $T(0) = 0$. *Why?*

We have the standard basis vectors for \mathbb{R}^n:

- $e_1 = (1, 0, 0, \ldots, 0)$
- $e_2 = (0, 1, 0, \ldots, 0)$
- \vdots

If we know $T(e_1), \ldots, T(e_n)$, then we know every $T(v)$. *Why?*

In engineering, this is called the principle of superposition.
Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

This means that for any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ there is an $m \times n$ matrix A so that

$$T(v) = Av$$

for all v in \mathbb{R}^n.

The matrix for a linear transformation is called the **standard matrix**.
Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ the standard matrix is:

$$A = \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{pmatrix}$$

Why? Notice that $Ae_i = T(e_i)$ for all i. Then it follows from linearity that $T(v) = Av$ for all v.
The identity

The identity linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is

$$T(v) = v$$

What is the standard matrix?

This standard matrix is called I_n or I.
Linear transformations are matrix transformations

Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is the function given by:

$$T \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x + y \\ y \\ x - y \end{array} \right)$$

What is the standard matrix for T?

In fact, a function $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is linear exactly when the coordinates are linear (linear combinations of the variables, no constant terms).
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the x-direction and 3 in the y-direction, and then reflects over the line $y = x$.
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that projects onto the y-axis and then rotates counterclockwise by $\pi/2$.
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.
Discussion

Find a matrix that does this.
Summary of 3.3

- A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if
 - $T(u + v) = T(u) + T(v)$ for all u, v in \mathbb{R}^n.
 - $T(cv) = cT(v)$ for all $v \in \mathbb{R}^n$ and c in \mathbb{R}.

- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).

- The standard matrix for a linear transformation has its ith column equal to $T(e_i)$.