Math 1553 Worksheet §§3.4, 3.5, 3.6

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
 a) $A - B$
 b) AB
 c) $A^T B$
 d) $B^T A$
 e) A^2

2. Consider the following linear transformations:
 $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ T projects onto the xy-plane, forgetting the z-coordinate
 $U: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ U rotates clockwise by 90°
 $V: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ V scales the x-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.
 a) Compute A, B, C.
 b) Compute the matrix for $V \circ U \circ T$.
 c) Compute the matrix for $U \circ V \circ T$.
 d) Describe U^{-1} and V^{-1}, and compute their matrices.
3. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.

a) If \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times p \) matrix, then each column of \(AB \) is a linear combination of the columns of \(A \).

b) If \(A \) and \(B \) are \(n \times n \) and both are invertible, then the inverse of \(AB \) is \(A^{-1}B^{-1} \).

c) If \(A^T \) is not invertible, then \(A \) is not invertible.

d) If \(A \) is an \(n \times n \) matrix and the equation \(Ax = b \) has at least one solution for each \(b \) in \(\mathbb{R}^n \), then the solution is unique for each \(b \) in \(\mathbb{R}^n \).

e) If \(A \) and \(B \) are invertible \(n \times n \) matrices, then \(A+B \) is invertible and \((A+B)^{-1} = A^{-1} + B^{-1} \).

f) If \(A \) and \(B \) are \(n \times n \) matrices and \(ABx = 0 \) has a unique solution, then \(Ax = 0 \) has a unique solution.

4. Suppose \(A \) is an invertible \(3 \times 3 \) matrix with the following equations hold. Find \(A \).

\[
A^{-1}e_1 = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}, \quad A^{-1}e_2 = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}, \quad A^{-1}e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
\]