NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
Ivanov’s Metaconjecture

Tara Brendle
Dan Margalit

No Boundaries: Groups in Algebra, Geometry, and Topology
University of Chicago
October 27, 2017
Automorphisms of the Curve Complex

Theorem (Ivanov). \(\text{Aut } C(S_g) = \text{MCG}(S_g) \)

Application. \(\text{Aut } \text{MCG}(S_g) = \text{MCG}(S_g) \)
Rigidity for Complexes

- Systole Complex
 Schmutz-Schaller
- Nonseparating Curve Complex
 Irmak
- Pants Complex
 Margalit
- Complex of Separating Curves
 Brendle-Margalit
- Complex of Domains
 McCarthy-Papadopoulos
- Torelli Geometry
 Farb-Ivanov
- Arc Complex
 Irmak
- Arc and Curve Complex
 Irmak-Korkmaz
- Ideal Triangulation Graph
 Korkmaz
- Strongly sep. curve complex
 Bowditch
- Asymptotic Pants Complex
 Fossas-Nguyen
- Hole-bounding Curves and Pairs Complex
 Irmak-Ivanov-McCarthy
- Complex of Shirts and Straightjackets
 Bridson-Pettet-Souto
Rigidity for Groups

Mapping Class Group
Ivanov

Torelli Group
Farb-Ivanov

Johnson Kernel
Brendle-Margalit

Terms of Johnson Filtration
Bridson-Pettet-Souto
Ivanov’s Metaconjecture

Any object naturally associated to a surface S and having a sufficiently rich structure has $\text{MCG}(S)$ as its group of automorphisms.
Rigidity for Groups

- Mapping Class Group
 - Ivanov

- Torelli Group
 - Farb-Ivanov

- Johnson Kernel
 - Brendle-Margalit

- Terms of Johnson Filtration
 - Bridson-Pettet-Souto

- Other Normal Subgroups?

- Dahmani-Guirardel-Osin examples
Main Theorem

If $N \triangleleft \text{MCG}(S_g)$ has an element with small support then:

$$\text{Aut } N = \text{MCG}(S_g).$$
Normal Subgroups of MCG

\[
\text{Aut} \gg \text{MCG} \quad \text{Aut} = \text{MCG}
\]

- Infinitely generated RAAGs
- Terms of Johnson filtration, Magnus filtration, etc.
Normal Subgroups of MCG

Aut >> MCG

Infinitely generated RAAGs

Aut = MCG

Terms of Johnson filtration, Magnus filtration, etc.
NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
The Primitive Torsion Problem

Khalid Bou-Rabee
Joint with Patrick W. Hooper
The Primitive Torsion Problem

• Let F_r be the free group of rank r. A *primitive element* is an element that is part of a basis for F_r.

• Let P_k be the group generated by kth powers of all primitive elements in F_r.

The Primitive Torsion Problem: When is F_r/P_k finite? Finitely presented? Solvable? Nilpotent?

• Similar questions for other groups may be asked...
Known results

• **Theorem** (Thomas Koberda and Ramanujan Santharoubane, 2015) For some \(k \geq 10 \), the group \(F_r/P_k \) is infinite.

• **Theorem** (Andrew Putman and Justin Malestein, 2017) Same result. Different proof.

• **Theorem** (Patrick W. Hooper and Bou-Rabee, 2017) The group \(F_2/P_k \) is finite if and only if \(k = 1,2,3 \). **Moreover**, \(F_2/P_4 \) is virtually nilpotent (we construct an explicit integral representation), and \(F_2/P_k \) is finitely presented for \(k = 1,2,3,4,5 \).
The Farey triangulation:
Normal generators for F_2/P_2

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Generator of P_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>a^2</td>
</tr>
<tr>
<td>0</td>
<td>b^2</td>
</tr>
<tr>
<td>1</td>
<td>$(ab)^2$</td>
</tr>
</tbody>
</table>
Normal generators for F_2/P_3

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Generator of P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>a^3</td>
</tr>
<tr>
<td>0</td>
<td>b^3</td>
</tr>
<tr>
<td>1</td>
<td>$(ab)^3$</td>
</tr>
<tr>
<td>-1</td>
<td>$(ab^{-1})^3$</td>
</tr>
</tbody>
</table>
Normal generators for F_2/P_4

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Generator of P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>a^4</td>
</tr>
<tr>
<td>0</td>
<td>b^4</td>
</tr>
<tr>
<td>1</td>
<td>$(ab)^4$</td>
</tr>
<tr>
<td>-1</td>
<td>$(ab^{-1})^4$</td>
</tr>
<tr>
<td>2</td>
<td>$(a^2b)^4$</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$(ab^2)^4$</td>
</tr>
</tbody>
</table>
Normal generators for F_2/P_5

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Generator of P_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>a^5</td>
</tr>
<tr>
<td>0</td>
<td>b^5</td>
</tr>
<tr>
<td>1</td>
<td>$(ab)^5$</td>
</tr>
<tr>
<td>-1</td>
<td>$(ab^{-1})^5$</td>
</tr>
<tr>
<td>2</td>
<td>$(a^2b)^5$</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$(ab)^5$</td>
</tr>
<tr>
<td>-2</td>
<td>$(a^2b^{-1})^5$</td>
</tr>
<tr>
<td>$-\frac{1}{2}$</td>
<td>$(ab^{-2})^5$</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>$(a^2bab)^5$</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$(ab^{-1}ab^{-2})^5$</td>
</tr>
<tr>
<td>$\frac{3}{5}$</td>
<td>$(a^3ba^2b)^5$</td>
</tr>
<tr>
<td>$\frac{2}{5}$</td>
<td>$(ab^{-2}ab^{-3})^5$</td>
</tr>
</tbody>
</table>
New notion

• A representation of F_2 is *characteristic* if for any automorphism ψ of F_2, there is an automorphism Ψ of $GL(n, \mathbb{C})$ so that $\Psi \circ \rho \circ \psi^{-1}(g) = \rho(g)$ for all $g \in F_2$.

• We say $\rho: F_2 \to GL(n, \mathbb{C})$ is an *oriented characteristic representation* if:

 • For each $\psi \in Aut_+(F_2)$ there is an $M \in GL(n, \mathbb{C})$ so that $M \rho \circ \psi^{-1}(g)M^{-1} = \rho(g)$ for all $g \in F_2$.

 • For each $\psi \in Aut_-(F_2)$ there is an $M \in GL(n, \mathbb{C})$ so that $M \cdot \rho \circ \psi^{-1}(g) \cdot M^{-1} = \rho(g)$ for all $g \in F_2$.
Improvement scheme

• Assume $\rho: F_2 \to GL(n, \mathbb{C})$ is an oriented characteristic representation factoring through G_k. We produce an oriented characteristic representation $\tilde{\rho}: F_2 \to GL(n + m, \mathbb{C})$ factoring through G_k (hopefully with $m > 0$) so that there is a short exact sequence of the form $1 \to \mathbb{Z}^d \to \tilde{\rho}(F_2) \to \rho(F_2) \to 1$ where $d \geq 0$ is the rank of the abelian image $\tilde{\rho}(\ker \rho)$ (hopefully $d > 0$).

• Using this scheme we get an explicit faithful representation for F_2 / P_4 and infinite representations for F_2 / P_k for $k \geq 4$.

• What will this scheme give us for F_2 / P_5? We are working on it.
NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
Algebraic Characterizations in the Mapping Class Group

Victoria Akin
An Example

The Point-Pushing Subgroup

\[1 \to P(S_g) \to \text{Mod}(S_g, \ast) \to \text{Mod}(S_g) \to 1 \]
An Example

Algebraic Characterization

- Abstractly isomorphic to $\pi_1(S_g)$
- Normal in $\text{Mod}(S_g)$
An Example

(Ivanov-McCarthy) $\text{Out}(\text{Mod}^\pm(S_g, *)) \cong 1$
An Example

(Ivanov-McCarthy) $\text{Out}(\text{Mod}^{\pm}(S_g, *)) \cong 1$

- Burnside:
 If a centerless group G is characteristic in $\text{Aut}(G)$, then $\text{Aut}(\text{Aut}(G)) \cong \text{Aut}(G)$. That is, $\text{Out}(\text{Aut}(G)) \cong 1$.
An Example

(Ivanov-McCarthy) $\text{Out}(\text{Mod}^{\pm}(S_{g,*})) \cong 1$

- Burnside:
 If a centerless group G is characteristic in $\text{Aut}(G)$, then $\text{Aut}(\text{Aut}(G)) \cong \text{Aut}(G)$. That is, $\text{Out}(\text{Aut}(G)) \cong 1$.

- Dehn-Nielsen-Baer:
 $\text{Aut}(\pi_1(S_g)) \cong \text{Mod}^{\pm}(S_{g,*})$.
An Example

(Ivanov-McCarthy) $\text{Out}(\text{Mod}^\pm(S_g, *)) \cong 1$

- **Burnside:**
 If a centerless group G is characteristic in $\text{Aut}(G)$, then $\text{Aut}(\text{Aut}(G)) \cong \text{Aut}(G)$. That is, $\text{Out}(\text{Aut}(G)) \cong 1$.

- **Dehn-Nielsen-Baer:**
 $\text{Aut}(\pi_1(S_g)) \cong \text{Mod}^\pm(S_g, *)$.

- **Uniqueness of Point-Pushing:**
 $\text{Out}(\text{Aut}(\pi_1(S_g))) \cong \text{Out}(\text{Mod}^\pm(S_g, *)) \cong 1$.

In General

For $H < G$ geometrically/topologically defined, can we find a purely algebraic characterization?
In General

For $H < G$ geometrically/topologically defined, can we find a purely algebraic characterization?

- Braid group?

$$1 \rightarrow \pi_1(\text{Conf}_n(S_g)) \rightarrow \text{Mod}(S_{g,n}) \rightarrow \text{Mod}(\Sigma_g) \rightarrow 1$$

- Disk pushing?
- Handle pushing?
In General

What other normal/non-normal subgroups are unique?
In General

What other normal/non-normal subgroups are unique?

- (with D. Margalit) Torelli? Johnson Kernel? Higher terms in the Johnson Series?
Thank you
NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
Representation stability for Finitely Generate Arrangements

No Boundaries
Oct 2017

Nir Gadish
Linear subspace arrangements

A collection $\bigcup_{i=1}^{n} L_i \subset \mathbb{C}^d$

linear subspaces
Linear subspace arrangements

A collection \(\bigcup_{i=1}^{n} L_i \subset \mathbb{C}^d \)

Determines \(M_A = \mathbb{C}^d \setminus \bigcup_{i=1}^{n} L_i \)
Linear subspace arrangements

A collection \(\bigcup_{i=1}^{n} L_i \subset \mathbb{C}^d \) is linear subspaces

Determines \(M_A = \mathbb{C}^d \setminus \bigcup_{i=1}^{n} L_i \)

Fundamental problem: compute \(H^*(M_A) \).
Linear subspace arrangements

A collection \(\bigcup_{i=1}^{n} L_i \subset \mathbb{C}^d \)

Determines \(M_A = \mathbb{C}^d \setminus \bigcup_{i=1}^{n} L_i \)

Fundamental problem: compute \(H^*(M_A) \).

Arno'ld, Orlik-Solomon, Goresky-MacPherson...
Linear subspace arrangements

A collection \(\bigcup_{i=1}^{n} L_i \subset \mathbb{C}^d \)

Determines \(M_A = \mathbb{C}^d \setminus \bigcup_{i=1}^{n} L_i \)

Fundamental problem: compute \(H^*(M_A) \).

Arno'ld, Orlik-Solomon, Goresky-MacPherson...
(and Farb!)
Examples
Examples

1) Configurations: $\mathbb{C}^n \setminus \bigcup_{i \neq j} \{z_i = z_j\}$

"the braid arrangement".
Examples

1) Configurations: \[\mathbb{C}^n \setminus \bigcup \bigcup_{i \neq j} \{ z_i = z_j \} \]
"the braid arrangement".

2) Rational maps: \[\mathbb{C}^n \times \mathbb{C}^n \setminus \bigcup \bigcup_{i,j} \{ z_i = p_j \} \]
Examples

1) **Configurations:** \(C^n \setminus \bigcup_{i \neq j} \{ z_i = z_j \} \)

"the braid arrangement".

2) **Rational maps:** \(C^n \times C^n \setminus \bigcup_{i,j} \{ z_i = p_j \} \)

3) **Type B:** \(C^n \setminus \bigcup \{ z_i = \pm z_j \} \)
Examples

1) Configurations: \(\mathbb{C}^n \setminus \bigcup_{i \neq j} \{ z_i = z_j \} \)
 "the braid arrangement".

2) Rational maps: \(\mathbb{C}^n \times \mathbb{C}^n \setminus \bigcup_{i,j} \{ z_i = p_j \} \)

3) Type B: \(\mathbb{C}^n \setminus \bigcup \{ z_i = \pm z_j \} \)

Notice: (a) group actions!
Examples

1) Configurations: \[\mathbb{C}^n \setminus \bigcup_{i \neq j} \{ z_i = z_j \} \]
 "the braid arrangement".

2) Rational maps: \[\mathbb{C}^n \times \mathbb{C}^n \setminus \bigcup_{i,j} \{ z_i = p_j \} \]

3) Type B: \[\mathbb{C}^n \setminus \bigcup \{ z_i = \pm z_j \} \]

Notice: (a) group actions!
(b) come in families!
Examples

1) Configurations: \[\mathbb{C}^n \setminus \bigcup_{i \neq j} \{ z_i = z_j \} \]
 "the braid arrangement".

2) Rational maps: \[\mathbb{C}^n \times \mathbb{C}^n \setminus \bigcup_{i,j} \{ z_i = p_j \} \]

3) Type B: \[\mathbb{C}^n \setminus \bigcup \{ z_i = \pm z_j \} \]

Notice: (a) group actions!
(b) come in families!

Goal: Understand $H^*(M_A)$ in this context.
Mechanism: C-subspace arrangements
Mechanism: C-subspace arrangements

Family = functor!
Mechanism: C-subspace arrangements

Family = functor!

e.g. \textbf{FI} = \textbf{Finite set and Injective functions}.

\[
\begin{align*}
\{1\} & \rightarrow \{1, 2\} \rightarrow \{1, 2, 3\} \rightarrow \ldots \rightarrow \{1, \ldots, n\} \rightarrow \ldots \\
S_1 & \rightarrow S_2 \rightarrow S_3 \rightarrow \ldots \rightarrow S_n
\end{align*}
\]
Mechanism: C-subspace arrangements

Family = functor!

e.g. \(\text{FI} = \text{Finite set and Injective functions.} \)

\[
\begin{align*}
\{1\} & \rightarrow \{1, 2\} & \rightarrow \{1, 2, 3\} & \rightarrow & \cdots & \rightarrow & \{1, \ldots, n\} & \rightarrow & \cdots \\
& \circlearrowleft \\
S_1 & \rightarrow & S_2 & \rightarrow & S_3 & \rightarrow & \cdots & \rightarrow & S_n \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{A}_1 & \rightarrow \mathcal{A}_2 & \rightarrow \mathcal{A}_3 & \rightarrow & \cdots & \rightarrow & \mathcal{A}_n & \rightarrow & \cdots \\
& \circlearrowleft \\
S_1 & \rightarrow & S_2 & \rightarrow & S_3 & \rightarrow & \cdots & \rightarrow & S_n \\
\end{align*}
\]
Mechanism: \(C\)-subspace arrangements

Family = functor!

e.g. \(\text{FI} = \text{Finite set and Injective functions.}\)

\[
\begin{align*}
\{1\} & \rightarrow \{1, 2\} \rightarrow \{1, 2, 3\} \rightarrow \ldots \rightarrow \{1, \ldots, n\} \rightarrow \ldots \\
& \downarrow \quad \downarrow \quad \downarrow \\
S_1 & \quad \quad S_2 \quad \quad S_3 \\
& \quad \downarrow \\
& \quad \quad S_n \\
A_1 & \rightarrow A_2 \rightarrow A_3 \rightarrow \ldots \rightarrow A_n \rightarrow \ldots \\
& \downarrow \quad \downarrow \quad \downarrow \\
& \quad \quad S_1 \quad \quad S_2 \quad \quad S_3 \\
& \quad \downarrow \\
& \quad \quad S_n
\end{align*}
\]

One object! e.g. braid arrangements.

\[
\mathbb{C}^* \setminus \bigcup_{i \neq j} \{z_i = z_j\}
\]
Mechanism: C-subspace arrangements

Family = functor!

e.g. $\textbf{FI} = \text{Finite set and Injective functions.}$

$\{1\} \rightarrow \{1, 2\} \rightarrow \{1, 2, 3\} \rightarrow \ldots \rightarrow \{1, \ldots, n\} \rightarrow \ldots$

$\circ \quad \circ \quad \circ \quad \circ \quad \circ$
$S_1 \quad S_2 \quad S_3 \quad \ldots \quad S_n$

$\mathcal{A}_1 \rightarrow \mathcal{A}_2 \rightarrow \mathcal{A}_3 \rightarrow \ldots \rightarrow \mathcal{A}_n \rightarrow \ldots$

$\circ \quad \circ \quad \circ \quad \circ \quad \circ$
$S_1 \quad S_2 \quad S_3 \quad \ldots \quad S_n$

One object! e.g. braid arrangements.

$\mathbb{C}^* \setminus \bigcup_{i \neq j} \{z_i = z_j\}$ only "one equation" (?)
Representation stability
Representation stability

Applying cohomology:

\[
\begin{array}{c}
\text{Arr} \\
\downarrow H^i \\
\text{FI} \longrightarrow \text{Vect}
\end{array}
\]
Representation stability

Applying cohomology:

\[
\begin{array}{ccc}
\text{FI} & \longrightarrow & \text{Vect} \\
\downarrow & & \downarrow \\
\text{Arr} & \longrightarrow & A.
\end{array}
\]

get an \textbf{FI}-module -

\[[n] \mapsto H^i(M_{A_n}). \]
Representation stability

Applying cohomology:

\[
\begin{array}{ccc}
\text{Arr} & \rightarrow & A. \\
\downarrow & & \downarrow \text{H}^i \\
\text{FI} & \rightarrow & \text{Vect}
\end{array}
\]

get an **FI**-module -

\[[n] \mapsto \text{H}^i(M_{A^n}). \]

Theorem [G]: the **C**-module \(H^*(M_A) \) of a finitely generated **C**-arrangement exhibits representation stability.
Representation stability

Applying cohomology:

\[
\begin{array}{ccc}
\text{Arr} & \downarrow \text{H}^i \\
A. & \downarrow \\
\text{FI} \rightarrow \text{Vect}
\end{array}
\]

get an \textbf{FI}-module - \quad \quad [n] \leftrightarrow H^i(M_{A_n}).

Theorem [G]: the \textbf{C}-module $H^\ast(M_A)$ of a finitely generated \textbf{C}-arrangement exhibits representation stability.

(a) Polynomial dimensions.
Representation stability

Applying cohomology:

\[
\begin{array}{ccc}
\text{FI} & \rightarrow & \text{Vect} \\
\downarrow & & \downarrow \\
\text{Arr} & \rightarrow & H^i
\end{array}
\]

get an \(\text{FI} \)-module -

\[
[n] \mapsto H^i(M_{\mathcal{A}_n}).
\]

Theorem [G]: the \(\mathcal{C} \)-module \(H^*(M_{\mathcal{A}}) \) of a finitely generated \(\mathcal{C} \)-arrangement exhibits representation stability.

(a) Polynomial dimensions.
(b) Polynomial characters.
Representation stability

Applying cohomology:

\[\text{FI} \rightarrow \text{Vect} \]

get an \(\text{FI} \)-module -

\[[n] \rightarrow H^i(M_{A^n}). \]

Theorem [G]: the \(\mathcal{C} \)-module \(H^*(M_A) \) of a finitely generated \(\mathcal{C} \)-arrangement exhibits representation stability.

(a) Polynomial dimensions.
(b) Polynomial characters.
(c) Inductive description.
Concrete consequences
Concrete consequences

1. Configuration space

\[\chi_{H^2(PConf^n(\mathbb{C}))} = 3\binom{X_1}{1} + \binom{X_1}{2}X_2 - \binom{X_2}{2} - X_4 + 2\binom{X_1}{3} - X_3 \]
Concrete consequences

1. Configuration space

$$\chi_{H^2(PConf^n(\mathbb{C}))} = 3\binom{X_1}{1} + \binom{X_1}{2}X_2 - \binom{X_2}{2} - X_4 + 2\binom{X_1}{3} - X_3$$

$$X_k(\sigma) = \# k\text{-cycles in } \sigma$$
Concrete consequences

1. Configuration space

\[\chi_{H^2(PConf^n(C))} = 3 \binom{X_1}{1} + \binom{X_1}{2} X_2 - \binom{X_2}{2} - X_4 + 2 \binom{X_1}{3} - X_3 \]

\[X_k(\sigma) = \# k\text{-cycles in } \sigma \]

2. Rational maps

\[\dim H^3(Prat^n(C)) = 12 \binom{n}{2} \binom{n}{3} + 2n \binom{n}{3} + 3 \binom{n}{2} \binom{n}{2} \]
Concrete consequences

1. Configuration space

\[\chi_{H^2(PConf^n(\mathbb{C}))} = 3 \binom{X_1}{1} + \binom{X_1}{2} X_2 - \binom{X_2}{2} - X_4 + 2 \binom{X_1}{3} - X_3 \]

\[X_k(\sigma) = \# k \text{-cycles in } \sigma \]

2. Rational maps

\[\dim H^3(PRat^n(\mathbb{C})) = 12 \binom{n}{2} \binom{n}{3} + 2n \binom{n}{3} + 3 \binom{n}{2} \binom{n}{2} \]

Applications

• SET-free sets [Harman].
Concrete consequences

1. Configuration space

\[\chi_{H^2(PConf^n(\mathbb{C}))} = 3 \binom{X_1}{1} + \binom{X_1}{2} X_2 - \binom{X_2}{2} - X_4 + 2 \binom{X_1}{3} - X_3 \]

\[X_k(\sigma) = \# k\text{-cycles in } \sigma \]

2. Rational maps

\[\dim H^3(PRat^n(\mathbb{C})) = 12 \binom{n}{2} \binom{n}{3} + 2n \binom{n}{3} + 3 \binom{n}{2} \binom{n}{2} \]

Applications

- SET-free sets [Harman].
- Arithmetic statistics of rational maps.

via Étale cohomology.
Thank you!

Any questions?
NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
Bounding the cohomology of configuration spaces and rationality of Poincaré series

Kevin Casto
Configuration spaces

- \(\text{PConf}_n(M) = \{(m_i) \in M^n \mid m_i \neq m_j\} \)

- \(\text{Conf}_n(M) = \text{PConf}_n(M)/S_n \)

- So \(H^i(\text{PConf}_n(M); \mathbb{Q}) \) is an \(S_n \)-representation, and
 \(H^i(\text{PConf}_n(M))^{S_n} = H^i(\text{Conf}_n(M)) \)

\[\in \text{Conf}_4(\Sigma_2) \]
Representation stability

- Recall that irreps of S_n are parameterized by partitions: $\{S^\lambda | \lambda \vdash n\}$

- If $m \geq n + \lambda_1$, can extend to $\lambda[m] = (m - n, \lambda_1, \ldots, \lambda_k) \vdash m$

- Given $\{V_n\}$ with V_n an S_n-rep, satisfies representation stability [CF] if $\langle V_n, S^{\lambda[n]} \rangle_{S_n}$ is eventually constant

- Church [Ch] proved $H^i(\text{PConf}_n(M))$ satisfies repr. stability for a “nice” manifold M.

- Taking the trivial rep, this means $H^i(\text{Conf}_n(M))$ satisfies homological stability
What about varying i?

- In applications, need to bound $\langle H^i(P\text{Conf}_n(X)), S^\lambda[n] \rangle$ as i varies

- *A priori*, rep stability doesn’t help, since that’s only about each fixed i

- **Theorem ([Ca]).** For M “nice”,

 $$|\langle H^i(P\text{Conf}_n(M)), S^\lambda[n] \rangle| \leq P(i)$$

 where $P(i)$ is a polynomial independent of n
Poincaré series rationality

- Put

\[F_{M,\lambda}(x) = \sum_{i \geq 0} \langle H^i(\text{PConf}(M)), S^{\lambda[n]} \rangle t^i \]

- Basic fact: if a power series is rational and has poles at roots of unity, its coefficients are a quasipolynomial

- Means there are poly’s \(p_0, \ldots, p_{d-1} \) s.t. \(a_i = p_i \mod d(i) \), so \(a_i \) bounded by a polynomial

- **Question:** Is \(F_{M,\lambda}(x) \) always rational with poles roots of unity (for \(M \) nice)?
Partial results

- Question inspired by W. Chen [Che] – using work of [KL], showed answer is “yes” for $M = \mathbb{C}$ (explicit formula)

- Farb-Wolfson-Wood [FWW] prove answer is yes for the trivial rep $(\lambda = \emptyset)$ if M is a conn. open submanifold of \mathbb{R}^{2r}

- In this case $(\lambda = \emptyset)$ we are just looking at power series of stable Betti numbers of $\text{Conf}_n(X)$

- Orlik-Solomon [OS] says that

$$H^*(\text{PConf}_n(\mathbb{C})) = \Lambda^* \langle e_{ij} \rangle / (e_{ij}e_{jk} + e_{jk}e_{ik} + e_{ik}e_{ij})$$

If we don’t quotient by ideal, calculations suggest analogous question for exterior algebra fails!
References

NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION
Discretizing group actions (Vigolo, ’16)

- Γ f.g. group
- M closed Riem. manifold
- $\Gamma \curvearrowright M$ (bi-Lipschitz)

\Rightarrow

Family of graphs $(X_t)_{t>0}$
Discretizing group actions (Vigolo, ’16)

- Γ f.g. group
- M closed Riem. manifold
- $\Gamma \curvearrowright M$ (bi-Lipschitz)

$\Gamma \curvearrowright M \xrightarrow{\text{Mesh}} (X_t)_{t>0}$

Action $\Gamma \curvearrowright M$

Graphs X_t

Vertices: Regions R_i
Edges: $sR_i \cap R_j \neq \emptyset$.
Discretizing group actions (Vigolo, ’16)

- Γ f.g. group
- M closed Riem. manifold
- $\Gamma \curvearrowright M$ (bi-Lipschitz)

\leadsto Family of graphs $(X_t)_{t>0}$

Action $\Gamma \curvearrowright M$

Mesh $< t^{-1}$

Roe’s Warped Cone

Assembles all X_t

$\leadsto \mathcal{C}(\Gamma \curvearrowright M)$.
Dynamics and coarse geometry

Dynamics of $\Gamma \curvearrowright M$

Coarse geometry of graphs $(X_t)_t$
Or Warped Cone $C(\Gamma \curvearrowright M)$

Theorem (Vigolo, '16)
Spectral gap for $\Gamma \curvearrowright M = \Rightarrow (X_n)_n$ expander.

Sawicki \iff Subgroups of compact Lie groups \mapsto Spectral gap
Margulis, Sullivan, Drinfeld, Gamburd–Jakobson–Sarnak, Bourgain–Gamburd ($\times 2$), Benoist-De Saxc´ e, ...

From now on: $M = G$ compact semisimple Lie
$\Gamma \subseteq G$ dense, fin. pres.
Dynamics and coarse geometry

Dynamics of $\Gamma \curvearrowright M$ \iff Coarse geometry of graphs $(X_t)_t$

Or Warped Cone $C(\Gamma \curvearrowright M)$

Theorem (Vigolo, ’16)

Spectral gap for $\Gamma \curvearrowright M$ \implies $(X_n)_n$ expander.
Dynamics and coarse geometry

Dynamics of $\Gamma \curvearrowright M$

Coarse geometry of graphs $(X_t)_t$
Or Warped Cone $\mathscr{C}(\Gamma \curvearrowright M)$

Theorem (Vigolo, ’16)

Spectral gap for $\Gamma \curvearrowright M$
$\implies (X_n)_n$ expander.

Sawicki
Dynamics and coarse geometry

Dynamics of $\Gamma \curvearrowright M$ \iff Coarse geometry of graphs $(X_t)_t$

Or Warped Cone $\mathcal{C}(\Gamma \curvearrowright M)$

Theorem (Vigolo, ’16)

Spectral gap for $\Gamma \curvearrowright M$ \implies $(X_n)_n$ expander.

Sawicki

Subgroups of compact Lie groups \rightsquigarrow Spectral gap

Margulis, Sullivan, Drinfeld, Gamburd–Jakobson–Sarnak, Bourgain–Gamburd ($\times 2$), Benoist-De Saxcé, ...
Dynamics and coarse geometry

Dynamics of $\Gamma \curvearrowright M$ \iff Coarse geometry of graphs $(X_t)_t$
Or Warped Cone $\mathcal{C}(\Gamma \curvearrowright M)$

Theorem (Vigolo,'16)

Spectral gap for $\Gamma \curvearrowright M$ \implies $(X_n)_n$ expander.
Sawicki

Subgroups of compact Lie groups \hookrightarrow Spectral gap
Margulis, Sullivan, Drinfeld, Gamburd–Jakobson–Sarnak, Bourgain–Gamburd ($\times 2$), Benoist-De Saxcé, ...

From now on:

- $M = G$ compact semisimple Lie
- $\Gamma \subseteq G$ dense, fin. pres.
Theorems

Coarse geometry of cones \iff Dynamics of $\Gamma \bowtie M$

Theorem (De Laat–Vigolo, Sawicki, '17)
Warped cones are $\text{QI} \iff$ Groups are Stably QI

$C(\Gamma \bowtie M) \cong \text{QI} C(\Lambda \bowtie N) \iff \Gamma \times \mathbb{R} \text{dim } M \cong \text{QI} \Lambda \times \mathbb{R} \text{dim } N$

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, '17)
Warped cones are $\text{QI} \iff$ actions are commensurable

Similar result for graphs \iff

Theorem (Fisher–Nguyen–vL, '17)
There exist continua of QI disjoint expanders.
Theorems

Coarse geometry of cones \leftrightarrow Dynamics of $\Gamma \curvearrowright M$

Theorem (De Laat–Vigolo, Sawicki ’17)

Warped cones are QI \implies Groups are Stably QI

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, ’17)

Warped cones are QI \implies actions are commensurable

Similar result for graphs \implies

Theorem (Fisher–Nguyen–vL, ’17)

There exist continua of QI disjoint expanders.
Theorems

Coarse geometry of cones \[\iff \] Dynamics of \(\Gamma \acts M \)

Theorem (De Laat–Vigolo, Sawicki, ’17)

Warped cones are QI \[\implies \] Groups are \textit{Stably} QI

\[\mathcal{C}(\Gamma \acts M) \simeq_{QI} \mathcal{C}(\Lambda \acts N) \implies \Gamma \times \mathbb{R}^{\dim M} \simeq_{QI} \Lambda \times \mathbb{R}^{\dim N}. \]

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, ’17)

Warped cones are QI \[\implies \] actions are commensurable

Similar result for graphs \[\implies \] Theorem (Fisher–Nguyen–vL, ’17) There exist continua of QI disjoint expanders.
Theorems

Coarse geometry of cones \[\leftrightarrow\] Dynamics of $\Gamma \curvearrowright M$

Theorem (De Laat–Vigolo, Sawicki, ’17)

Warped cones are $\text{QI} \implies$ Groups are Stably QI

$\mathcal{C}(\Gamma \curvearrowright M) \simeq_{\text{QI}} \mathcal{C}(\Lambda \curvearrowright N) \implies \Gamma \times \mathbb{R}^{\dim M} \simeq_{\text{QI}} \Lambda \times \mathbb{R}^{\dim N}$.

Does the QI type of the cone capture any of the action?
Theorems

Coarse geometry of cones \leftrightarrow Dynamics of $\Gamma \curvearrowright M$

Theorem (De Laat–Vigolo, Sawicki, ’17)

Warped cones are QI \implies Groups are Stably QI

$\mathcal{C}(\Gamma \curvearrowright M) \simeq_{QI} \mathcal{C}(\Lambda \curvearrowright N) \implies \Gamma \times \mathbb{R}^{\dim M} \simeq_{QI} \Lambda \times \mathbb{R}^{\dim N}$.

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, ’17)

Warped cones are QI \implies actions are commensurable
Theorems

Coarse geometry of cones ⇔ Dynamics of $\Gamma \bowtie M$

Theorem (De Laat–Vigolo, Sawicki, ’17)

Warped cones are QI \implies *Groups are Stably QI*

$C(\Gamma \bowtie M) \simeq_{QI} C(\Lambda \bowtie N) \implies \Gamma \times \mathbb{R}^{\dim M} \simeq_{QI} \Lambda \times \mathbb{R}^{\dim N}$.

Does the QI type of the cone capture any of the action?

Theorem (Fisher–Nguyen–vL, ’17)

Warped cones are QI \implies *actions are commensurable*

Similar result for graphs \implies

Theorem (Fisher–Nguyen–vL, ’17)

There exist continua of QI disjoint expanders.
NO BOUNDARIES
LIGHTNING TALKS
FRIDAY SESSION