Rigidity implies geometricity for surface group representations

Kathryn Mann
Brown University

&

Maxime Wolff
Inst. Math. Jussieu
Rigidity

Γ discrete group (e.g. \(\pi_1(\Sigma_g) = \Gamma_g \)), \(G \) topological group
Study representations \(\rho : \Gamma \to G \).

think: \(G \) linear (rep. theory) or \(G = \text{Homeo}(M), \text{Diff}(M) \) (dynamics)

Definition: \(\rho : \Gamma \to G \) is rigid if “only trivial deformations”
\[
\rho \in \text{Hom}(\Gamma, G)/G \text{ is an isolated point.}
\]

Problem: quotient space typically not Hausdorff
e.g. \(\text{Hom}(\mathbb{Z}, \text{SL}(2, \mathbb{C}))/\text{SL}(2, \mathbb{C}) \leftrightarrow \text{trace except } \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

Solution: Define “character space”
\(X(\Gamma, G) := \text{largest Hausdorff quotient of } \text{Hom}(\Gamma, G)/G \)
for \(\text{SL}(n, \mathbb{C}) \) this *is* characters; for \(G \) complex, reductive Lie group, it is GIT quotient

Change definition: Rigid means isolated point in \(X(\Gamma, G) \).
Rigidity from geometry

Mostow rigidity (Calabi): \(\Gamma = \pi_1(M^n) \) hyperbolic manifold
\(\Gamma \to \text{SO}(n,1) \) embedding as cocompact lattice is rigid in \(X(\Gamma, \text{SO}(n,1)) \)

Analog in non-linear setting?

Definition: \(\rho : \Gamma \to \text{Homeo}(M) \) is *geometric* if factors through
\(\Gamma \hookrightarrow G \twoheadrightarrow \text{Homeo}(M) \)
cocompact lattice
transitive Lie group

Example 1. \(\pi_1(\Sigma_g) \to \text{PSL}(2,\mathbb{R}) \to \text{Homeo}(S^1) \)

Theorem (Matsumoto ’87)
The example above is *rigid* in \(X(\pi_1(\Sigma_g), \text{Homeo}(S^1)) \).
Geometric reps to $\text{Homeo}(S^1)$

Fact: Connected, transitive Lie groups in $\text{Homeo}(S^1)$ are
- $\text{SO}(2)$
- finite cyclic extensions of $\text{PSL}(2, \mathbb{R})$

$\mathbb{Z}/k\mathbb{Z} \to G \to \text{PSL}(2, \mathbb{R})$

Cor.: can describe all geometric actions of $\pi_1(\Sigma_g) = \Gamma_g$ on S^1.
(lifts of Fuchsian actions)

Theorem (Mann, 2014)
If $\rho : \Gamma_g \to \text{Homeo}(S^1)$ is geometric, then it is rigid.

Theorem (Mann–Wolff, 2017)
Converse: if $\rho \in X(\Gamma_g, \text{Homeo}_+(S^1))$ is rigid, then it is geometric.
Plan:

1. What is $X(\Gamma_g, \text{Homeo}_+(S^1))$?

2. Idea of proof for rigid \Rightarrow geometric.
What is $X(\Gamma_g, \text{Homeo}_+(S^1))$?

- Space of flat (foliated), topological S^1 bundles over Σ_g
- Points are semi-conjugacy classes of actions
- Parametrized by rotation numbers of elements. analog of trace coordinates for $X(\Gamma, \text{SL}(2, \mathbb{R}))$
- Topologically... complicated

Not known:
- Finitely many connected components?
- How different from $X(\Gamma_g, \text{Diff}_+(S^1))$? (see work of J. Bowden)
Proof ideas for “Rigid ⇒ Geometric”

Dynamical lemma: \(\rho \) rigid \(\Rightarrow \) \(\rho(\gamma) \) has rational rotation number for every simple closed curve \(\gamma \).

Key tool: \textit{Bending deformations} works in \(\text{Hom}(\Gamma_g, G) \) for any \(G \)

\[\Gamma_g = A \ast \langle c \rangle \ast B \]

Bending \(\rho \) along \(c \): take \(c_t \) commuting with \(\rho(c) \).
Define \(\rho_t = c_t \rho c_t^{-1} \) on \(B \),
\[\rho_t = \rho \text{ on } A. \]

\[\Gamma_g = F \ast \langle a \rangle \]

Bending \(\rho \) along \(a \): similar, define \(\rho_t(b) = a_t \rho(b) \).
if \(a_1 = \rho(a) \), like Dehn twist

Headaches: • based curves. • centralizers. • 1-parameter subgroups.
Proof ideas for “Rigid ⇒ Geometric”

Main idea: \(\rho(\gamma) \) has periodic points (lemma), so take bending \(\rho_t \) and study movement of periodic points of \(\rho_t(\gamma) \).

\(\rho \) rigid ⇒ combinatorial structure of \(\text{Per}(\rho_t(a)), \text{Per}(\rho_t(b)) \)

“won’t change” e.g. having common point, cyclic order of points

From this, “reconstruct” the structure of geom. rep.
Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics.
Baby version of main idea

Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics:

Claim: ρ rigid \Rightarrow axes cross.
Suppose $\rho(a)$ and $\rho(b)$ have hyperbolic dynamics:

Claim: ρ rigid \Rightarrow axes cross. “reconstruct topology of Σ_g”

Proof: Suppose $\rho_t(b) = a_t\rho(b)$

$\rho_t(a) = a$

Picture: axis of $a^{-N}\rho(b)$ for $N \gg 0$:

repelling point near $\rho(b)^{-1}(a_+)$

deformation gives non-conjugate picture, contradiction \(\square\)
This line of argument “works” if $|\text{Per}(\rho(a))| < \infty$.

- “axes” of SCC’s “intersect” only when (based) curves do.
- w/ combinatorial technique of Matsumoto (2015), get geometricity.

Much work to arrive at deformation so that $|\text{Per}(\rho(a))| < \infty$, build machinery to modify and track combinatorics of periodic sets.

Many open questions remain...
Thanks!