Let \(S_g \) denote a closed, connected, orientable surface of genus \(g \), and let \(\text{Mod}(S_g) \) denote its mapping class group, that is, the group of homotopy classes of orientation preserving homeomorphisms of \(S_g \).

Fact. If \(g \geq 2 \), then every Dehn twist in \(\text{Mod}(S_g) \) has a nontrivial root.

It follows from the classification of elements in \(\text{Mod}(S_1) \cong \text{SL}(2,\mathbb{Z}) \) that Dehn twists are primitive in the mapping class group of the torus.

For Dehn twists about separating curves, the fact is well-known: if \(c \) is a separating curve then a square root of the Dehn twist \(T_c \) is obtained by twisting one side of \(c \) through an angle of \(\pi \). In the case of nonseparating curves, the issue is more subtle. We give two equivalent constructions of roots below.

Geometric construction. Fix \(g \geq 2 \). Let \(P \) be a regular \((4g-2)\)-gon. Glue opposite sides to obtain a surface \(T \cong S_{g-1} \). The rotation of \(P \) about its center through angle \(2\pi g/(2g-1) \) induces a periodic map \(f \) of \(T \). Notice that \(f \) fixes the points \(x,y \in T \) that are the images of the vertices of \(P \). Let \(T' \) be the surface obtained from \(T \) by removing small open disks centered at \(x \) and \(y \). Define \(f' = f|T' \).

Let \(A \) and \(B \) be annular neighborhoods of the boundary components of \(T' \). Modify \(f' \) by an isotopy supported in \(A \cup B \) so that

- \(f'|\partial T' \) is the identity,
- \(f'|A \) is a \((g/(2g-1))\)-left Dehn twist, and
- \(f'|B \) is a \(((g-1)/(2g-1))\)-right Dehn twist.

Identify the two components of \(\partial T' \) to obtain a surface \(S \cong S_g \) and let \(h : S \to S \) be the induced map. Then \(h^{2g-1} \) is a left Dehn twist along the gluing curve, which is nonseparating.

Algebraic construction. Let \(c_1,\ldots, c_k \) be curves in \(S_g \) where \(c_i \) intersects \(c_{i+1} \) once for each \(i \), and all other pairs of curves are disjoint. If \(k \) is odd, then a regular neighborhood of \(\bigcup c_i \) has two boundary components, say, \(d_1 \) and \(d_2 \), and we have a relation in \(\text{Mod}(S_g) \) as follows:

\[
(T_{c_1}^2 T_{c_2} \cdots T_{c_k})^k = T_{d_1} T_{d_2}.
\]

This relation comes from the Artin group of type \(B_n \), in particular, the factorization of the central element in terms of standard generators; it also follows from the \(D_{2p} \) case of [2, Proposition 2.12(i)]. In the case \(k = 2g-1 \), the curves \(d_1 \) and \(d_2 \) are isotopic nonseparating curves; call this isotopy class \(d \). Using the fact that \(T_d \) commutes with each \(T_{c_i} \), we see that

\[
[(T_{c_1}^2 T_{c_2} \cdots T_{c_{2g-1}})^{1-g}T_d]^{2g-1} = T_d.
\]
Roots of half-twists. Let $S_{0,2g+2}$ be the sphere with $2g + 2$ punctures (or cone points) and let d be a curve in $S_{0,2g+2}$ with 2 punctures on one side and $2g$ on the other. On the side of d with 2 punctures, we perform a left half-twist, and on the other side we perform a $(g-1)/(2g-1)$–right Dehn twist by arranging the punctures so that one puncture is in the middle, and the other punctures rotate around this central puncture. The $(2g-1)^{st}$ power of the composition is a left half-twist about d. Thus, we have roots of half-twists in $\text{Mod}(S_{0,2g+2})$ for $g \geq 2$. There is a 2-fold orbifold covering $S_g \rightarrow S_{0,2g+2}$ where the relation from our algebraic construction above descends to this relation in $\text{Mod}(S_{0,2g+2})$ [1, Theorem 1 plus Corollary 7.1]. A slight generalization of this construction gives roots of half-twists in any $\text{Mod}(S_n)$ with $n \geq 5$.

Roots of elementary matrices. If we consider the map $\text{Mod}(S_g) \rightarrow \text{Sp}(2g, \mathbb{Z})$ given by the action of $\text{Mod}(S_g)$ on $H_1(S_g, \mathbb{Z})$, we also see that elementary matrices in $\text{Sp}(2g, \mathbb{Z})$ have roots; for instance, we have

$$
\begin{pmatrix}
1&0&0&1\\
0&1&0&0\\
0&1&-1&0\\
1&0&0&1
\end{pmatrix} ^3 = \begin{pmatrix}
1&1&0&0\\
0&0&1&0\\
0&0&0&1
\end{pmatrix} .
$$

By stabilizing, we obtain cube roots of elementary matrices in $\text{Sp}(2g, \mathbb{Z})$ for $g \geq 2$.

Roots of Nielsen transformations. Let F_n denote the free group generated by x_1, \ldots, x_n, let $\text{Aut}(F_n)$ denote the group of automorphisms of F_n, and assume $n \geq 2$. A Nielsen transformation is an element of $\text{Aut}(F_n)$ conjugate to the one given by $x_1 \mapsto x_1 x_2$ and $x_k \mapsto x_k$ for $2 \leq k \leq n$. The following automorphism is the square root of a Nielsen transformation in $\text{Aut}(F_n)$ for $n \geq 3$.

$$
x_1 \mapsto x_1 x_3 \\
x_2 \mapsto x_3^{-1} x_2 x_3 \\
x_3 \mapsto x_3^{-1} x_2
$$

Passing to quotients, this gives a square root of a Nielsen transformation in $\text{Out}(F_n)$ and, multiplying by $-\text{Id}$, a square root of an elementary matrix in $\text{SL}(n, \mathbb{Z})$, $n \geq 3$. Also, our roots of Dehn twists in $\text{Mod}(S)$ can be modified to work for punctured surfaces, thus giving “geometric” roots of Nielsen transformations in $\text{Out}(F_n)$.

Other roots. If $f \in \text{Mod}(S_g)$ is a root of a Dehn twist T_d, then f commutes with T_d. Since $fT_c f^{-1} = T_{f(c)}$ for any curve c, we see that f fixes d. In the complement of d, the class f must be periodic. This line of reasoning translates to $\text{GL}(n, \mathbb{Z})$ and $\text{Aut}(F_n)$: roots correspond to torsion elements in $\text{GL}(n-1, \mathbb{Z})$ and $\text{Aut}(F_{n-1})$, respectively. In all cases, one can show that the degree of the root is equal to the order of the torsion element.

Acknowledgements. We thank Serge Cantat for a useful conversation.

References

Dan Margalit, Department of Mathematics, 503 Boston Ave, Tufts University, Medford, MA 02155
E-mail address: dan.margalit@tufts.edu

Saul Schleimer, Department of Mathematics, University of Warwick, Coventry, CV4 7AL, UK
E-mail address: a.schleimer@warwick.ac.uk