Rabbit polynomial:
\[R(z) = z^2 + c \]
\[c \approx -0.1226 + 0.7449i \]

Periodicity:
\[\frac{c}{0} \rightarrow c \rightarrow c^2 + c \]

For any curve \(d \), \(T_d \circ R \) is equivalent to one of the rabbit, corabbit, airplane.

\[f : \{ \text{curves} \} \rightarrow \{ R, C, A \} \]

Example:
\[f(1/-3) = R \]
\[f(1/5) = A \]

For any liftable curve \(d \) that intersects the dashed ray 2 mod 4 times, the lift of \(d \) is trivial, hence \(f(d) = R \).

Example:
This is \(\frac{1}{6} \) of all curves.

\[f(1/1 - 2k) = f(T_a^k(b)) \]
- \(k \) is odd: \(f(1/1 - 2k) = R \)
- \(k = 2m \): \(f(1/1 - 2k) \approx T_a^{1-m} \circ R \)
 - Bartholdi-Nekrashevych algorithm determines \(T_a^{1-m} \circ R \) as \(R, C \), or \(A \)

Acknowledgments
Special thanks to mentors Sarah Davis, Becca Winarski, and Dan Margalit as well as Georgia Tech and the NSF.