1. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that maps each subspace of dimension 2 one-to-one to some other subspace of dimension 2. Show that the only vector v for which $f(v) = 0$ is $v = 0$.

2. Suppose that X is a subspace of a vector space V. Prove that the orthogonal complement of the orthogonal complement of X is X.

3. Prove that the cross product is non-associative, as well as non-commutative.

4. Fix a vector $x \in \mathbb{R}^3$. Consider the set of all pairs P of vectors $(v, w) \in \mathbb{R}^3 \times \mathbb{R}^3$ satisfying $v \times (x \times w) = 0$. Is P a subspace of $\mathbb{R}^3 \times \mathbb{R}^3$?

5. Suppose that P_1 and P_2 are two planes in \mathbb{R}^3, and let L be a line in \mathbb{R}^3 that hits both P_1 and P_2. Suppose that $|L \cap P_1| + |L \cap P_2| \geq 3$. Prove that $P_1 \cap P_2$ contains a line.

6. For which triples of vectors u, v, w is the scalar triple product $[u, v, w] > 0$? (Describe the triples.)
7. Suppose that \(A, B, C \) are elements of some vector space \(V \). Further, suppose that
\[
\]
Is it the case that \(A, B, C \) are all mutually orthogonal? What about if you just use two vectors \(A, B \) (i.e. does \(||A + B||^2 = ||A||^2 + ||B||^2 \) imply \(A \) and \(B \) orthogonal?)?

8. What is the difference between normal and orthogonal?

9. Suppose that \(X \) is a subspace of a finite dimensional vector space \(V \).
 a. Prove that \(X \) is also finite dimensional.
 b. Prove that \(X^\perp \) is finite dimensional.

10. Fix a vector space \(V \). Do the set of subspaces of \(V \) form a vector space? Here, addition of subspaces is defined as follows: Given subspaces \(A, B \), we have
\[
A + B = \{ a + b : a \in A, b \in B \}.
\]
And, scalar multiplication is
\[
\lambda A := \{ \lambda a : a \in A \}.
\]