1. There are 3 different classes: \(\{e\}, \{(1 \ 2), (1 \ 3), (2 \ 3)\}, \{(1 \ 2 \ 3), (1 \ 3 \ 2)\} \).

We have that \(c_e = 1, c_{(1 \ 2)} = 3, \) and \(c_{(1 \ 2 \ 3)} = 2 \). And, note that

\[|S_3| = 6 = 1 + 3 + 2. \]

4. One way that we can define the Dihedral group is through the symbols \(R \), which means rotate clockwise by \(2\pi/n \), and \(F \), which means flip about a specific vertex. We have that \(R^n = F^2 = e \), and \(FR = R^{-1}F \). This uniquely determines the properties of \(D_n \), and we have that it contains the \(2n \) distinct elements \(e, R, R^2, \ldots, R^{n-1}, F, FR, FR^2, \ldots, FR^{n-1} \).

Now, if \(r \) is one of the pure rotations \(e, \ldots, R^{n-1} \), and \(\alpha \) is also a pure rotation, then \(\alpha^{-1}r\alpha = r \). On the other hand, if \(\alpha = FR^j \), then

\[\alpha^{-1}r\alpha = (R^{-j}F)r(FR^j) = FR^jR^{-j}F = FrF = r^{-1}. \]

So, the set of conjugates of \(r \) are \(\{r, r^{-1}\} \).

Now we consider the conjugates of \(FR^j \). If \(R^i \) is any pure rotation, then \(R^{-i}FR^jR^i = FR^{2i+j} \). Thus, the conjugates of \(FR^j \) can be described as \(\{FR^k : k \equiv j \pmod{2}\} \).

In the case where \(n \) is even we have that the conjugates of elements of the form \(FR^j \) break down into two classes, those of the form \(\{FR^k : k \text{ even}\} \), and those of the form \(\{FR^k : k \text{ odd}\} \). Also, the conjugates of a pure rotation \(r \) take the form \(\{r, r^{-1}\} \). There is only one case where this set contains only one element, and that is when \(r \) is a rotation by 180 degrees. So, in the case
n even we will have that the class sizes \(c_a = 1 \) only if \(a \) is the identity or rotation by 180 degrees; \(c_a = 2 \) if \(a \) is any other pure rotation; and, there are two classes where \(c_a = n/2 \). In total we will have that

\[
\sum c_a = 1 + 1 + \frac{n-2}{2} \times |c_R| + |c_{FR}| + |c_{FR^2}| = n + n/2 + n/2 = 2n.
\]

In the case \(n \) odd all the sets \(\{r, r^{-1}\} \) have two elements, and there is only one equivalence class for \(FR \). So, in this case we have \(c_{R^j} = 2 \), \(c_{FR} = n \). So,

\[
\sum c_a = 1 + \frac{n-1}{2} |c_R| + |c_{FR}| = 1 + (n-1) + n = 2n.
\]

5. a. For every \(r \) cycle in \(S_n \), there are \(r \) different ways that it can be written in the form \((x_1 \ x_2 \cdots x_r) \); for example, the 3-cycle \((1 \ 2 \ 3) \) could also be written as \((2 \ 3 \ 1) \) or \((3 \ 1 \ 2) \). Now, the number of ways of writing the cycle is the number of sequences of \(r \) numbers chosen from among \(1, \ldots, n \), and there are \(n(n-1)\cdots(n-r+1) = n!/(n-r)! \) such sequences. In total, then, there are \(n!/(r(n-r)!) \) \(r \)-cycles in \(S_n \).

b. The set of conjugates of an element \(\alpha \in S_n \) is the set of all elements having the same cycle structure as \(\alpha \). So, the conjugates of a cycle \((x_1 \cdots x_r) \) is the set of all \(r \)-cycles. So, there are \(n!/(r(n-r)!) \) conjugates of \((1 \cdots r) \).

c. \(\sigma \) commutes with the cycle \(c = (1 \ 2 \cdots r) \) if and only if

\[
\sigma c \sigma^{-1} = (\sigma(1) \ \sigma(2) \cdots \sigma(r)) = (1 \ 2 \cdots r).
\]

Now, these last two cycles are equal if and only if for some \(j = 0, \ldots, r - 1 \) we have

\[
\sigma(i) \equiv i + j \pmod r, \quad \text{for } i = 1, \ldots, r.
\]

Thus, \(\sigma \) fixes \(r + 1, \ldots, n \), and acts as \((1 \cdots r)^j \) on \(\{1, \ldots, r\} \). It follows that

\[
\sigma = (1 \ 2 \cdots r)^j \tau,
\]

where \(\tau \) fixes \(r + 1, \ldots, n \).
7.

a. The number of 3-Sylow subgroups divides 30 and is congruent to 1 (mod 3). So, this number is 1 or 10. Similarly, the number of 5-Sylow subgroups divides 30 and is 1 (mod 5), giving us 1 or 6 of them. We cannot have that there are both 10 Sylow-3 subgroups, and 6 Sylow-5 subgroups, because from the Sylow-3 subgroups we would get 20 elements of order 3, and from the Sylow-5 subgroups we would get 24 elements of order 5. In total, we would have 20 + 24 = 44 elements, which exceeds 30.

We conclude that either there is only one Sylow-3, or there is only one Sylow-5. Since all Sylow-3’s are conjugate to each other, and since all Sylow-5’s are conjugate to each other, we will have that either the Sylow-3 is normal or the Sylow-5 is normal.

b. Say that the 3-Sylow in part a is normal, and write it as P. Consider then the map $\varphi: G \rightarrow G/P$. We have that $|G/P| = 10$, and it is easy to see that there can be only one Sylow-5 in that group, for the number of sylow-5’s must be 1 (mod 5) and divide 10. Now, each sylow-5 back in G must map to a Sylow-5 in G/P, because if $a \in G$ has order 5, then $\varphi(a)$ has order 5 in G/P (since, $\varphi(a)^5 = \varphi(a^5) = \varphi(1) = 1$, we either have a is in the kernel, or else a has order 5. If a is in the kernel, it must have belonged to P, but we know that P intersects the Sylow-5’s only at the identity.) So, if there were six Sylow-5’s in G, then they must all map down to a single Sylow-5 in G/P. This cannot happen, though, because it would mean that φ is at best a six-to-1 map, but it is a 3-to-1 map. So, the Sylow-5 must be normal.

Similarly, if the Sylow-5 was the one that was normal in part a, then we can’t have that there are 10 Sylow-3’s: If Q is that Sylow-5, then $\psi: G \rightarrow G/Q$ is 5-to-1, and yet since $|G/Q| = 6$ has at most one Sylow-3, if there were 10 Sylow-3’s in G, then ψ would have to be 10 to 1.

c. From part b, if P is our Sylow-3 and Q is our Sylow-5, both of which are normal, then G contains PQ, which has order 15. Since PQ has index $|G|/15 = 2$, it must be normal. (Because G has only two left-cosets of PQ, namely PQ, aPQ, and only two right cosets PQ, PQa. Both aPQ and PQa are the elements of G not contained in PQ, and so $aPQ = PQa$, and left cosets equal right cosets, which gives us that PQ is normal.)

d. As we know, all groups of order 15 are ableian and cyclic. So, half of G is this large cyclic group of order 15. Now, suppose that $x \in G$ has order 2. Such x exist, since G must have a 2-Sylow subgroup. Let $C = PQ$. Then, $G = C \cup (xC)$ (Note that xC is disjoint from C, because xC contains
x, which has order 2, while every element of C has order dividing 15).

How can we multiply elements in G? To answer that question, we begin by observing that since C is normal, $xCx = x^{-1}Cx = C$. So, conjugation by x is an automorphism of C. All automorphisms of a cyclic group take the form $\theta(c) = c^j$, where j is coprime to the order of G. Therefore, we must have that there exists j such that $xc = c^jx$ for all $c \in C$; moreover, j can only be one of 1, 2, 4, 7, 8, 11, 13, 14. We can further reduce the list of possible j by observing that $xcx = c^j$ implies $c = xc^jx = (xcx)^j = c^{j^2}$ So, $c^{j^2 - 1} = e$, which implies $j^2 - 1 \equiv 0 \pmod{15}$. This means that j can only be 1, 4, 11, 14. Once we have settled on a value for j we have completely pinned down how we multiply in our group: An arbitrary $g^2 \in G$ has the form xc or c, where $c \in C$. And, if $g_1 = xc_1$ and $g_2 = xc_2$, for example, then $g_1g_2 = x_c_1x_c_2 = x^2c_1c_2 = c_1c_2$.

If $j = 1$, then we are saying that x commutes with C, and we would have that G is an abelian group of order 30, which must be cyclic.

If $j = 14 \equiv -1 \pmod{15}$, then we have that G satisfies the relations of a dihedral group D_{15}, which we know has order 30 and is non-abelian.

The other two values $j = 4$ and 11 also turn out to give us two more non-abelian groups. In total, then there are 3 non-abelian groups of order 30, and 1 abelian group of order 30.

15.

a. What $(ab)^p = a^pb^p$ is really saying is that taking pth powers is a homomorphism from G to G (though not necessarily an automorphism, because it may fail to be injective). We must also have then that $(ab)^{p^j} = ((ab)^p)^p = (a^pb^p)^p = a^{p^j}b^{p^j}$; and, in fact, $(ab)^{p^j} = a^{p^j}b^{p^j}$.

Suppose now that P is any p-Sylow subgroup of G having size $|P| = p^j$. Then, as we know, $\varphi : G \to G$ given by $\varphi(a) = a^{p^j}$ is a homomorphism. The kernel consists of all elements of order dividing p^j, which must include any and all Sylow-p subgroups. But, in fact, this kernel is itself a p-group, because if $q||\ker(\varphi)|$, $q \neq p$, q prime, then the by Sylow’s theorem this kernel (being a subgroup) would have to contain an element of order q. Call this element a. Then we have $a^q = e$ and $a^{p^j} = e$, which is impossible unless $a = e$. So, since the kernel is a p-group, its order is at most of size $|P|$; but, since it also contains P, its order is at least $|P|$, meaning that the kernel has size $|P|$ and is a Sylow-p itself.

Because the kernel is normal Sylow-p, and because all the other (potential) Sylow-p’s are conjugate to it, we must have that there is only one
Sylow-p, namely P.

b. We know that $(ab)p^{j} = a^{p^{j}}b^{p^{j}}$, for all j. Now, write $|G| = p^{j}m$, where p does not divide m. Then, it is not difficult to show that there exits an integer k such that $p^{k} \equiv 1 \pmod{m}$; and so, $p^{k} \equiv 1 \pmod{d}$, for any divisor d of m.

Let N be the set of all elements of G such that $x^{m} = 1$. We claim that N is a subgroup of G, and is in fact the subgroup we are looking for (but that takes some work to prove). Since G is finite, to show $N < G$ we just need to check that if $a, b \in N$, then $ba \in N$. To this end, we start with

$$(ab)^{p^{k}} = a^{p^{k}}b^{p^{k}}.$$

Now, if you write out the left-hand-side, you get

$$ababab\cdots ab = aaaaaa\cdots abbbbb\cdots b.$$

If we cancel off an a on the left and a b on the right of both sides, we get

$$(ba)^{p^{k}-1} = a^{p^{k}-1}b^{p^{k}-1}.$$

Now, since $p^{k} \equiv 1 \pmod{m}$ we have $m|p^{k} - 1$; and so, the right-hand-side here is just the identity. That is to say,

$$(ba)^{p^{k}-1} = e.$$

Thus, the order of ba must divide $p^{k} - 1$, and it must divide $|G| = p^{j}m$. It follows that the order of ba divides m, and therefore

$$(ba)^{m} = e,$$

which means $ba \in N$. Thus, N is a subgroup.

Next, we show that $|N| = m$. To do that, we observe that if $q^{j}||m$, where q is prime, then G contains a Sylow-q subgroup of order q^{j}. This subgroup lies in N, since $a^{m} = e$ for every a in this Sylow-q. Since N contains these Sylow-q’s, for all primes $q \neq p$, we must have that product of the orders of these subgroups divides $|N|$. But, the product of these orders equals m, and so $m||N$. It is easy to see that $|N|$ also divides m, giving us $|N| = m$ (for if not, then $|N|$ is divisible by a power of p, meaning that it contains an element b of order p, which will fail to satisfy $b^{m} = e$).
Finally, we wish to show that N is normal in G; if so, then $G = NP$, and we are done. First, we observe that the cosets Nq, where q runs through the elements of P are all disjoint and their union is G (because, if Nq and Nq' have an element in common, then $q(q')^{-1} \in N$, which means it is the identity or has order dividing $|N|$; the latter is impossible, since the order of $q(q')^{-1}$ is a power of p, and p does not divide m). We likewise can decompose G into left cosets of N as qN, where q runs through the elements of P. Now, if $p^k \equiv 1 \pmod{m}$ and if $k > J$ (so that $p^k > |P|$), then for every element nq of the coset Nq we have

$$(nq)^{p^k-1} = q^{p^k-1}n^{p^k-1} = q^{-1}.$$

So, Nq is the set of those elements sent to q^{-1} upon taking $(p^k - 1)$th powers. A similar computation shows qN is also those elements sent ot q^{-1}. Thus,

$$qN = Nq,$$

and we deduce that N is normal.

c. P by itself has a non-trivial center, being a p-group. Now suppose $q \in P$ lies in the center of P. If we always have q lies in the center of G, then the center of G is non-trivial.

We wish to show that q commutes with every element of G. To that end, let nr be an arbitrary element of $NP = G$, with $n \in N$ and $r \in P$. Then, since $nr \in nP = Pn$, we have $nr = r'n$, for some $r' \in P$; also, $nr \in Nr = rN$, implies $nr = rn'$. So, $r'n = rn'$ implies $r^{-1}r' = n'n^{-1}$. Since N and P are disjoint, the only way this could hold is if $r^{-1}r' = e = n'n^{-1}$. Thus, $r = r'$, and it follows that $nr = rn$. So,

$$q(nr) = qrn = qrn = rqn = (nr)q.$$

Here we have used the fact that q commutes with all of P, as well as the fact that $nr = rn$. We conclude that q lies in the center of G, and we are done.