The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

Ernie Croot *

October 6, 2005

Abstract

How few three-term arithmetic progressions can a subset $S \subseteq \mathbb{Z}_N := \mathbb{Z}/N\mathbb{Z}$ have if $|S| \geq vN$? (that is, S has density at least v). Varnavides [4] showed that this number of arithmetic-progressions is at least $c(v)N^2$ for sufficiently large integers N; and, it is well-known that determining good lower bounds for $c(v) > 0$ is at the same level of depth as Erdős’s famous conjecture about whether a subset T of the naturals where $\sum_{n \in T} 1/n$ diverges, has a k-term arithmetic progression for $k = 3$ (that is, a three-term arithmetic progression).

The author answers a question of B. Green [1] about how this minimal number of progressions oscillates for a fixed density v as N runs through the primes, and as N runs through the odd positive integers.

1 Introduction

Given an integer $N \geq 2$ and a mapping $f : \mathbb{Z}_N \to [0, 1]$ define

$$ T_3(f) = T_3(f; N) := \sum_{a+b=2c \pmod{N}} f(a)f(b)f(c). $$

Thus, if $S \subseteq \mathbb{Z}_N$, and if we identify S with its indicator function $S(n)$, which is 0 if $n \not\in S$ and is 1 if $n \in S$, then $T_3(S)$ is the number of three-term arithmetic progressions $a, a+d, a+2d$ in the set S, including trivial progressions a, a, a.

Given $v \in (0, 1]$, define

$$ \rho(v, N) = \frac{1}{N^2} \min_{S \subseteq \mathbb{Z}_N} \min_{|S| \geq vN} T_3(S). $$

*Supported by an NSF grant
From an old result of Varnavides [4] we know that
\[\rho(v, N) > c(v) > 0, \]
where \(c(v) \) does not depend on \(N \). A natural and interesting question (posed by B. Green [1]) is to determine whether for fixed \(v \)
\[\lim_{p \to \infty \text{ prime}} \rho(v, p) \text{ exists?} \]

In this paper we answer this question in the affirmative:

Theorem 1 For a fixed \(v \in (0, 1] \) we have
\[\lim_{p \to \infty \text{ prime}} \rho(v, p) \text{ exists.} \]

The harder, and more interesting question, also asked by B. Green, which we do not answer in this paper, is to give a formula for this limit as a function of \(v \).

We will also prove the following:

Theorem 2 For \(v = 2/3 \) we have
\[\lim_{N \to \infty \text{ odd}} N \rho(v, N) \text{ does not exist,} \]
where here we consider all odd \(N \), not just primes.

Thus, in our proof of Theorem 1 we will make special use of the fact that our moduli are prime.

2 Basic Notation on Fourier Analysis

Given an integer \(N \geq 2 \) (not necessarily prime), and a function \(f : \mathbb{Z}_N \to \mathbb{C} \), we define the Fourier transform
\[
\hat{f}(a) = \sum_{n=0}^{N-1} f(n)e^{2\pi i an/N}.
\]

Thus, the Fourier transform of an indicator function \(C(n) \) for a set \(C \subseteq \mathbb{Z}_N \) is:
\[
\hat{C}(a) = \sum_{n=0}^{N-1} C(n)e^{2\pi i an/N} = \sum_{n \in C} e^{2\pi i an/N}.
\]
We also define the usual norms
\[||f||_t = \left(\sum_{a=0}^{N-1} |f(a)|^t \right)^{1/t}. \]

In our proofs we will make use of Parseval’s identity, which says that
\[||\hat{f}||_2^2 = N||f||_2^2; \]

in other words,
\[\sum_{a=0}^{N-1} |\hat{f}(a)|^2 = N \sum_{n=0}^{N-1} |f(n)|^2. \]

This implies that
\[||\hat{C}||_2^2 = N|C|. \]

Another basic fact we will use is that
\[T_3(f) = \frac{1}{N} \sum_{a=0}^{N-1} \hat{f}(a)^2 \hat{f}(-2a). \]

3 Key Lemmas

Here we list out some key lemmas we will need in the course of our proof of Theorems 1 and 2.

Lemma 1. Suppose \(h : \mathbb{Z}_N \to [0,1] \), and let \(C \) denote the set of all values \(a \in \mathbb{Z}_N \) for which
\[|\hat{h}(a)| \geq \beta \hat{h}(0). \]

Then,
\[|C| \leq \beta^{-2}(N/\hat{h}(0))^2. \]

Proof of the Lemma. This is an easy consequence of Parseval:
\[|C|(\beta\hat{h}(0))^2 \leq ||\hat{h}||_2^2 = N||h||_2^2 \leq N^2. \]
Lemma 2 Suppose that \(f, g : \mathbb{Z}_N \to [-2, 2]\) have the property
\[
||\hat{f} - \hat{g}||_\infty < \beta N.
\]
Then,
\[
|T_3(f) - T_3(g)| < 12\beta N^2.
\]

Proof of the Lemma. The proof is an exercise in multiple uses of Cauchy-Schwarz and Parseval.

First, let \(\delta(a) = \hat{f}(a) - \hat{g}(a)\). We have that
\[
T_3(f) = \frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)^2(\hat{g}(-2a) + \delta(-2a))
= \left(\frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)^2\hat{g}(-2a)\right) + E_1,
\]
where by Parseval’s identity we have that the error \(E_1\) satisfies
\[
|E_1| \leq \frac{1}{N} ||\delta||_\infty ||\hat{f}||_2^2 < 4\beta N^2.
\]

Next, we have that
\[
\frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)^2\hat{g}(-2a) = \frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)(\hat{g}(a) + \delta(a))\hat{g}(-2a)
= \left(\frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)\hat{g}(a)\hat{g}(-2a)\right) + E_2,
\]
where by Parseval again, along with Cauchy-Schwarz, we have that the error \(E_2\) satisfies
\[
|E_2| \leq \frac{1}{N} ||\hat{f}(a)\hat{g}(-2a)||_1 ||\delta||_\infty < \beta ||\hat{f}||_2 ||\hat{g}||_2 \leq 4\beta N^2.
\]

Finally,
\[
\frac{1}{N} \sum_{a \in \mathbb{Z}_N} \hat{f}(a)\hat{g}(a)\hat{g}(-2a) = \frac{1}{N} \sum_{a \in \mathbb{Z}_N} (\hat{g}(a) + \delta(a))\hat{g}(a)\hat{g}(-2a)
= T_3(g) + E_3,
\]
where by Parseval again, along with Cauchy-Schwarz, we have that the error E_3 satisfies

$$|E_3| \leq \frac{1}{N}||\delta||_\infty||\hat{g}(a)\hat{g}(-2a)||_1 < \beta||\hat{g}||_2^2 \leq 4\beta N^2.$$

Thus, we deduce

$$|T_3(f) - T_3(g)| < 12\beta N^2.$$

The following Lemma and the Proposition after it make use of ideas similar to the “granularization” methods from [2] and [3].

Lemma 3 For every $t \geq 1$, $0 < \epsilon < 1$, the following holds for all primes p sufficiently large: Given any set of residues $\{b_1, \ldots, b_t\} \subset \mathbb{Z}_p$, there exists a weight function $\mu : \mathbb{Z}_p \rightarrow [0, 1]$ such that

- $||\mu||_1 = 1$;
- $|\hat{\mu}(b_i) - 1| < \epsilon^2$, for all $i = 1, 2, \ldots, t$; and,
- $||\hat{\mu}||_1 \leq (6\epsilon)^t$.

Proof. We first define the functions $y_1, \ldots, y_t : \mathbb{Z}_p \rightarrow [0, 1]$, by defining their Fourier transforms: Let $c_i \equiv b_i^{-1} \pmod{p}$. Let $L = \lfloor ep/10 \rfloor$, and set

$$\hat{y}_i(a) = \frac{1}{2L + 1} \left(\sum_{|j| \leq L} e^{2\pi i ac_i j/p} \right)^2 \in \mathbb{R}_{\geq 0}.$$

It is obvious that $0 \leq y_i(n) \leq 1$, with $y_i(0) = 1$. Also note that

$$y_i(n) \neq 0 \text{ implies } b_i n \equiv j \pmod{p}, \text{ where } |j| \leq 2L. \quad (1)$$

Now we let $v(n) = y_1(n)y_2(n) \cdots y_t(n)$. Then,

$$\hat{v}(a) = \frac{(\hat{y}_1 * \hat{y}_2 * \cdots * \hat{y}_t)(a)}{p^{t-1}}$$

$$= \frac{1}{p^{t-1}} \sum_{r_1 + r_2 + \cdots + r_t \equiv a \pmod{p}} \hat{y}_1(r_1)\hat{y}_2(r_2) \cdots \hat{y}_t(r_t). \quad (2)$$

Now, as all the terms in the sum are non-negative reals we deduce that for p sufficiently large,

$$p > \hat{v}(0) \geq \frac{\hat{y}_1(0) \cdots \hat{y}_t(0)}{p^{t-1}} = \frac{(2L + 1)^t}{p^{t-1}} > (\epsilon/6)^t p. \quad (3)$$

5
We now let $\mu(a)$ be the weight whose Fourier transform is defined by

$$\hat{\mu}(a) = \frac{\hat{v}(a)}{\hat{v}(0)} \tag{4}$$

Clearly, $\mu(a)$ satisfies conclusion 1 of the lemma.

Consider now the value $\hat{\mu}(b_i)$. As $\mu(n) \neq 0$ implies $y_i(n) \neq 0$, from (1) we deduce that if $\mu(n) \neq 0$, then for some $|j| \leq 2L$,

$$\text{Re}(e^{2\pi ib_i n/p}) = \text{Re}(e^{2\pi ij/p}) = \cos(2\pi j/p) \geq 1 - \frac{1}{2}(2\pi \epsilon/5)^2 > 1 - \epsilon^2.$$

So, since $\hat{\mu}(b_i)$ is real, we deduce that

$$\hat{\mu}(b_i) = \frac{1}{\hat{v}(0)} \sum_{n=0}^{p-1} v(n) e^{2\pi ib_i n/p} > 1 - \epsilon^2.$$

So, our weight $\mu(n)$ satisfies the second conclusion of our Lemma.

Now, then, from (2), (4), and (3) we have that

$$\sum_{a=0}^{p-1} |\hat{\mu}(a)| = \frac{1}{\hat{v}(0)}p^{\ell-1} \sum_{a=0}^{p-1} \sum_{r_1, r_i \equiv a \pmod{p}} \hat{y}_1(r_1)\hat{y}_2(r_2) \cdots \hat{y}_t(r_t)$$

$$= \frac{1}{\hat{v}(0)}p^{\ell-1} \prod_{i=1}^{t} \left(\sum_{r=0}^{p-1} \hat{y}_i(r) \right)$$

$$= \frac{p y_1(0)y_2(0) \cdots y_t(0)}{\hat{v}(0)}$$

$$= \frac{p}{\hat{v}(0)}$$

$$< (6\epsilon^{-1})^{\ell}.$$

Next we have the following Proposition, which is an extended corollary of Lemma 3

Proposition 1 For every $\epsilon > 0$, $p > p_0(\epsilon)$ prime, and every $f : \mathbb{Z}_p \to [0, 1]$, there exists a function g satisfying:

- $\hat{g}(0) = \hat{f}(0)$.
- $g : \mathbb{R} \to [-2\epsilon, 1 + 2\epsilon]$.

6
• \(\hat{g} \) has “small” support. That is, there is a set of residues \(c_1, \ldots, c_m \in \mathbb{Z}_p \), \(m < m_0(\epsilon) \), satisfying

\[
g(n) = \frac{1}{p} \sum_{i=1}^{m} e^{-2\pi i c_i n/p} \hat{g}(c_i).
\]

• The \(c_i \) satisfy \(|c_i| < p^{1/m} \).
• \(|T_3(g) - T_3(f)| < 25ep^2 \).

Proof of the Proposition. We will need to define a number of sets and functions in order to begin the proof: Define

\[B = \{ a \in \mathbb{Z}_p : |\hat{f}(a)| > \epsilon \hat{f}(0) \}, \]

and let \(t = |B| \). Define

\[B' = \{ a \in \mathbb{Z}_p : |\hat{f}(-2a)| \text{ or } |\hat{f}(a)| > \epsilon(\epsilon/6)^t \hat{f}(0) \}, \]

and let \(m = |B'| \). Note that \(B \subseteq B' \) implies \(t \leq m \). Lemma 1 implies that \(m < m_0(\epsilon) \), where \(m_0(\epsilon) \) depends only on \(\epsilon \).

Let \(\mu : \mathbb{Z}_p \to [0,1] \) be as in Lemma 3 with parameter \(\epsilon \) and with \(\{b_1, \ldots, b_t\} = B \).

Let \(1 \leq s \leq p - 1 \) be such that for every \(b \in B' \),

\[b \equiv sc \pmod{p}, \text{ where } |c| < p^{1-1/m}; \]

such \(s \) exists by the Dirichlet Box Principle. Let \(c_1, \ldots, c_m \) be the values \(c \) so produced. \(^1\)

Define

\[h(n) = (\mu * f)(sn) = \sum_{a+b \equiv n \pmod{p}} \mu(sa)f(sb). \]

We have that \(h : \mathbb{Z}_p \to [0,1] \) and

\[\hat{h}(a) = \hat{\mu}(sa)\hat{f}(sa). \]

Finally, define \(g : \mathbb{R} \to \mathbb{R} \) to be

\[g(\alpha) = \frac{1}{p} \sum_{i=1}^{m} e^{-2\pi i c_i \alpha/p} \hat{h}(c_i), \]

\(^1\)Here is where we are using the fact that \(p \) is prime: We need it to prove that such \(s \) exists, and to extract the values of \(c \) from congruences \(b \equiv sc \pmod{p} \).
which is a truncated inverse Fourier transform of \hat{h}. We note that if $|\alpha - \beta| < 1$, then since $|c_i| < p^{1-1/m}$ we deduce that
\[
|g(\alpha) - g(\beta)| < \frac{m \sup_i |\hat{h}(c_i)|}{p} |e^{2\pi i (\alpha - \beta)p^{-1/m}} - 1| < \epsilon,
\tag{5}
\]
for p sufficiently large.

This function g clearly satisfies the first property
\[
\hat{g}(0) = \hat{h}(0) = \hat{\mu}(0) \hat{f}(0) = \hat{f}(0).
\]
(Fourier transforms are with respect to \mathbb{Z}_p).

Next, suppose that $n \in \mathbb{Z}_p$. Then,
\[
g(n) = h(n) - \frac{1}{p} \sum_{c \in \mathbb{Z}_p \setminus \{c_1, \ldots, c_m\}} e^{-2\pi i cn/p} \hat{\mu}(sc) \hat{f}(sc) = h(n) - \delta,
\]
where
\[
|\delta| \leq \frac{1}{p} ||\hat{\mu}||_1 \sup_{c \in \mathbb{Z}_p \setminus \{c_1, \ldots, c_m\}} |\hat{f}(sc)| = \frac{1}{p} ||\hat{\mu}||_1 \sup_{b \in \mathbb{Z}_p \setminus B'} |\hat{f}(b)| < \epsilon.
\]

From this, together with (5) we have that for $\alpha \in \mathbb{R}$, $g(\alpha) \in [-2\epsilon, 1+2\epsilon]$, as claimed by the second property in the conclusion of the proposition.

Next, we observe that
\[
T_3(g) = T_3(h) - E,
\]
where
\[
|E| = \frac{1}{p} \sum_{c \in \mathbb{Z}_p \setminus \{c_1, \ldots, c_m\}} |\hat{h}(c)|^2 |\hat{h}(-2c)| < \epsilon(\epsilon/6)^2 ||\hat{h}||_2^2
\leq \epsilon^2 p^2/6.
\]

To complete the proof of the Proposition, we must relate $T_3(h)$ to $T_3(f)$: We begin by observing that if $b \in B$, then
\[
|\hat{f}(b) - \hat{h}(s^{-1}b)| = |\hat{f}(b)||1 - \hat{\mu}(b)| < \epsilon^2 p.
\tag{6}
\]
Also, if $b \in \mathbb{Z}_p \setminus B$, then
\[
|\hat{f}(b) - \hat{h}(s^{-1}b)| < 2|\hat{f}(b)| < 2\epsilon p.
\]
Thus,\[||\hat{f}(sa) - \hat{h}(a)||_\infty < 2\epsilon p.\]

From Lemma 2 with $\beta = 2\epsilon$ we conclude that\[|T_3(f) - T_3(h)| < 24\epsilon p^2.\]

So,\[|T_3(f) - T_3(g)| < 25\epsilon p^2. \]

Lemma 4 Given a weight $\theta : \mathbb{Z}_N \rightarrow [0, 1]$, there exists a set $B \subseteq \mathbb{Z}_N$ such that\[|T_3(B) - T_3(\theta)| = O(N^{3/2}), \] and such that\[\hat{\theta}(0) \leq |B| < \hat{\theta}(0) + 1. \]

Proof. Suppose that $T(0), ..., T(N - 1)$ are independent random variables indexed by the residue classes modulo N, such that $T(a)$ takes on the value 1 with probability $\theta(a)$, and takes on the value 0 with probability $1 - \theta(a)$.

Let\[Y = \sum_{a=0}^{N-1} T(a), \]

and let\[Z = \sum_{a+b=2c \mod N} T(a)T(b)T(c). \]

Then, we have that\[\mathbb{E}(Y) = \sum_{a=0}^{N-1} \theta(a) = \hat{\theta}(0), \]

and\[V(Y) = \sum_{a=0}^{N-1} \theta(a)(1 - \theta(a)) < N. \]

So, by Chebychev’s inequality, we have that\[|Y - \mathbb{E}(Y)| \leq 2N^{1/2} \]
occurs with probability greater than 3/4.

Next, we observe that
\[\mathbb{E}(Z) = T_3(\theta) \]

We also have that
\[\mathbb{E}(Z^2) \leq T_3(\theta)^2 + 2 \sum_{a+b \equiv 2c \pmod{N}} 1 + \sum_{a+b \equiv 2c \pmod{N}} 1 \]
\[+ O(N^2) \]
\[< \mathbb{E}(Z)^2 + 4N^3, \]
for \(N \) sufficiently large.

So, the variance of \(Z \) is
\[V(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2 < 4N^3. \]

It follows from Chebychev’s inequality that
\[|Z - \mathbb{E}(Z)| \leq 3N^{3/2} \] (10)
with probability more than 5/9.

Thus, since both (9) and (10) occur simultaneously with positive probability, it is easy to see that there exists a subset \(B' \subseteq \{0,1,...,N-1\} \) satisfying
\[||B'| - \hat{\theta}(0)|| \leq 4N^{1/2}, \]
and
\[|T_3(B') - T_3(\theta)| \leq 3N^{3/2} \] (11)

By adding or deleting at most \(4N^{1/2} \) elements from \(B' \) we can produce a set \(B \) satisfying (8). Each of these elements we add or delete from \(B' \) to produce \(B \) alters the number of solutions \(a+b \equiv 2c \pmod{N} \), \(a,b,c \in B' \) by at most \(N \). So, the number solutions \(a+b \equiv 2c \pmod{N} \), \(a,b,c \in B' \) is within \(O(N^{3/2}) \) of the number of solutions with \(a,b,c \in B \). Combining this observation with (11), (7) follows, and the lemma is proved. \(\blacksquare \)

Finally, we will require the following technical lemma, which is used in the proof of Theorem 2:

Lemma 5 Suppose \(p \) is prime, and suppose that \(S \subseteq \mathbb{Z}_p \) satisfies
\[p/3 < |S| < 2p/5. \]
Let \(r(n) \) be the number of pairs \((s_1, s_2) \in S \times S\) such that \(n = s_1 + s_2\). Then, if \(T \subseteq \mathbb{Z}_p \), and \(p \) is sufficiently large, we have

\[
\sum_{n \in T} r(n) < 0.93|S|(|S|T|)^{1/2}.
\]

Proof of the Lemma. First, observe that if \(1 < a \leq p - 1 \), then among all subsets \(S \subseteq \mathbb{Z}_p \) of cardinality at most \(p/2 \), the one which maximizes \(|\hat{S}(a)| \) satisfies

\[
|\hat{S}(a)| = \left| 1 + e^{2\pi i/p} + e^{4\pi i/p} + \cdots + e^{2\pi i(|S|-1)/p} \right| = \frac{|e^{2\pi i|S|/p} - 1|}{|e^{2\pi i/p} - 1|} = \frac{|\sin(\pi|S|/p)|}{|\sin(\pi/p)|}.
\]

Since \(|\theta| > \pi/3 \) we have that

\[
|\sin(\theta)| < \frac{\sin(\pi/3)|\theta|}{\pi/3} = \frac{3\sqrt{3}|\theta|}{2\pi}.
\]

This can be seen by drawing a line passing through \((0,0)\) and \((\pi/3, \sin(\pi/3))\), and realizing that for \(\theta > \pi/3 \) we have \(\sin(\theta) \) lies above the line. Thus, since \(p/3 < |S| < 2p/5 \) we deduce that for \(a \neq 0 \),

\[
|\hat{S}(a)| < \frac{3\sqrt{3}|S|}{2p|\sin(\pi/p)|} \sim \frac{3\sqrt{3}|S|}{2\pi}.
\]

Thus, by Parseval,

\[
||S \ast S||_2^2 = \frac{1}{p} ||\hat{S}||_4^4 \leq \frac{|S|^4}{p} + \frac{1}{p}(||\hat{S}||_2^2 - |S|^2) \sup_{a \neq 0} |\hat{S}(a)|^2 < 0.856|S|^3,
\]

for \(p \) sufficiently large.

By Cauchy-Schwarz we have that

\[
\sum_{n \in T} r(n) \leq \left(\sum_{n=0}^{p-1} r(n)^2 \right)^{1/2} |T|^{1/2} = ||S \ast S||_2 |T|^{1/2} < 0.93|S|(|S|T|)^{1/2}.
\]
4 Proof of Theorem 1

To prove the theorem it suffices to show that for every $0 < \epsilon, \nu < 1$, every pair of primes p, r with $r > p^3 > p_0(\epsilon)$, and every set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \geq \nu p$, there exists a set $B \subseteq \mathbb{Z}_r$, $|B| \geq \nu r$, such that

\[
\frac{T_3(B)}{r^2} < \frac{T_3(A)}{p^2} + \epsilon. \tag{12}
\]

This then implies

\[
\rho(r, \nu) < \rho(p, \nu) + \epsilon,
\]

and then our theorem follows (because then $\rho(r, \nu)$ is approximately decreasing as r runs through the primes.)

To prove (12), let $A \subseteq \mathbb{Z}_p$, where $|A| \geq \nu p$. Then, applying Proposition 1 with $f(n) = A(n)$, the indicator function for the set A, we deduce that there is a map $g: \mathbb{R} \to \mathbb{R}$ satisfying the conclusion of that proposition. Let $c_1, \ldots, c_m, |c_i| < p^{1-1/m}$ be as in the proposition.

Define

\[
h(\alpha) = \frac{1}{p} \sum_{i=1}^{m} e^{-2\pi i a c_i / r} \hat{g}(c_i) = g(\alpha p/r) \in [-2\epsilon, 1 + 2\epsilon].
\]

If we restrict to integer values of α, then we have that h has the following properties

- $h: \mathbb{Z}_r \to [-2\epsilon, 1 + 2\epsilon]$.
- $\hat{h}(0) = r \hat{g}(0)/p = r|A|/p \geq \nu r$. (Here, the Fourier transform of h is with respect to \mathbb{Z}_r, while the Fourier transform of g is with respect to \mathbb{Z}_p.)
- For $|a| < r/2$ we have $\hat{h}(a) \neq 0$ if and only if $a = c_i$ for some i, where $|c_i| < p^{1-1/m}$, in which case $h(c_i) = r \hat{g}(c_i)/p$.

From the third conclusion we get that

\[
T_3(h) = \frac{1}{r} \sum_{i=1}^{m} \frac{r^3}{p^2} \hat{g}(c_i)^2 \hat{g}(-2c_i) = \frac{r^2 T_3(g)}{p^2}.
\]

Then, from the final conclusion in Proposition 1 we have that

\[
\frac{T_3(h)}{r^2} < \frac{T_3(f)}{p^2} + 25\epsilon. \tag{13}
\]
This would be the end of the proof of our theorem were it not for the fact that \(h : \mathbb{Z}_r \to [-2\epsilon, 1 + 2\epsilon] \), instead of \(\mathbb{Z}_r \to \{0, 1\} \). This is easily fixed: First, we let \(\ell_0 : \mathbb{Z}_r \to [0, 1] \) be defined by

\[
\ell_0(n) = \begin{cases}
 h(n), & \text{if } h(n) \in [0, 1]; \\
 0, & \text{if } h(n) < 0; \\
 1, & \text{if } h(n) > 1.
\end{cases}
\]

We have that

\[
|\ell_0(n) - h(n)| \leq 2\epsilon, \quad \text{and therefore } ||\hat{\ell}_0 - \hat{h}||_{\infty} < 2\epsilon r.
\]

It is clear that by reassigning some of the values of \(\ell_0(n) \) we can produce a map \(\ell : \mathbb{Z}_r \to [0, 1] \) such that \(^{2}\)

\[
\hat{\ell}(0) = \hat{h}(0), \quad \text{and } ||\hat{\ell} - \hat{h}||_{\infty} < 4\epsilon r.
\]

From Lemma 2 we then deduce

\[
|T_3(\ell) - T_3(h)| < 48\epsilon r^2.
\]

Then, from Lemma 4 applied with \(\theta = \ell \), there exits a subset \(B \subseteq \mathbb{Z}_r \) such that for some \(0 \leq \delta < 1 \) we have

\[
|B| = \hat{\ell}(0) + \delta = \hat{h}(0) + \delta = \frac{r\hat{g}(0)}{p} + \delta = \frac{r|A|}{p} + \delta \\
\geq vr.
\]

Also,

\[
T_3(B) = T_3(\ell) + O(r^{3/2});
\]

and so,

\[
|T_3(B) - T_3(h)| \leq |T_3(B) - T_3(\ell)| + |T_3(\ell) - T_3(h)| \leq 49\epsilon r^2,
\]

for \(r \) sufficiently large. It follows then from (13) that

\[
\frac{T_3(B)}{r^2} < \frac{T_3(h)}{r^2} + 49\epsilon < \frac{T_3(f)}{p^2} + 74\epsilon.
\]

This then proves (12) on rescaling our 74\(\epsilon \) to \(\epsilon \), and our theorem follows.

\(^{2}\)If \(\hat{\ell}_0(0) > \hat{h}(0) \), then we reassign some of the \(n \) where \(\ell_0(n) = 1 \) to 0, so that we then get \(\hat{h}(0) \leq \hat{\ell}_0(n) < \hat{h}(0) + 1 \), and then we change one more \(n \) where \(\ell_0(n) = 0 \) to produce \(\ell : \mathbb{Z}_r \to [0, 1] \) satisfying \(\ell(0) = h(0) \); likewise, if \(\hat{\ell}_0(0) < \hat{h}(0) \), we reassign some values where \(\ell_0(n) = 0 \) to 1.
5 Proof of Theorem 2

We begin with a simple lemma:

Lemma 6 Suppose \(N \geq 3\) is odd, and suppose \(A \subseteq \mathbb{Z}_N\), \(|A| = vN\). Let \(A'\) denote the complement of \(A\). Then,

\[
T_3(A) + T_3(A') = (3v^2 - 3v + 1)N^2.
\]

Proof. The proof is an immediate consequence of the fact that \(\hat{A}'(0) = (1 - v)N\), together with \(\hat{A}(a) = -\hat{A}'(a)\) for \(1 \leq a \leq N - 1\). For then, we have

\[
T_3(A) + T_3(A') = \frac{1}{N} \sum_{a=0}^{N-1} \hat{A}(a)^2 \hat{A}(-2a) + \hat{A}'(a)\hat{A}'(-2a)
\]

\[
= (v^3 + (1 - v)^3)N^2
\]

\[
= (3v^2 - 3v + 1)N^2. \qed
\]

A consequence of this lemma is that for a given density \(v\), the sets \(A \subseteq \mathbb{Z}_N\) which minimize \(T_3(A)\) are exactly those which maximize \(T_3(A')\). If \(3|N\) and \(v = 2/3\), clearly if we let \(A'\) be the multiplies of 3 modulo \(N\), then \(T_3(A')\) is maximized and therefore \(T_3(A)\) is minimized. In this case, for every pair \(m, m + d \in A'\) we have \(m + 2d \in A'\), and so \(T_3(A') = (1 - v)^2 N^2\). By the above lemma,

\[
T_3(A) = N^2(3v^2 - 3v + 1 - (1 - v)^2) = N^2(2v^2 - v) = \frac{2N^2}{9}.
\]

So,

\[
\rho(2/3, N) = \frac{2}{9}.
\]

The idea now is to show that

\[
\lim_{p \to \infty, p \text{ prime}} \rho(2/3, p) \neq \frac{2}{9}.
\]

Suppose \(p \equiv 1 \pmod{3}\) and that \(A \subseteq \mathbb{Z}_p\) minimizes \(T_3(A)\) subject to \(|A| = (2p + 1)/3\). Let \(S = \mathbb{Z}_p \setminus A\), and note that \(|S| = (p - 1)/3\). Let \(T = 2 \ast S = \{2s : s \in S\}\).
Now, if \(r(n) \) is the number of pairs \((s_1, s_2) \in S \times S\) satisfying \(s_1 + s_2 = n \), then by Lemma 5 we have

\[
T_3(T) = \sum_{n \in T} r(n) < 0.93|S|(|S||T|)^{1/2} \leq 0.93p^2/9,
\]

for all \(p \) sufficiently large. So, by Lemma 6 we have that

\[
T_3(A) > 0.23p^2,
\]

and therefore

\[
\rho(2/3,p) > 0.23 > 2/9
\]

for all sufficiently large primes \(p \equiv 1 \pmod{3} \). This finishes the proof of the theorem. ■

6 Acknowledgements

I would like to thank Ben Green for the question, as well as for suggesting the proof of Theorem 1, which was a modification of an earlier proof of the author.

References

