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Links in Thickened Surfaces (LTS)

A LTS is a link ` in a thickened closed, orientable surface S ⇥ I.
We usually assume ` is oriented.
Links in S2 ⇥ I can be identified with links in S3.

`, `0 ⇢ S ⇥ I are equivalent if there is an orientation-preserving
homeomorphism

h : (S ⇥ I,S ⇥ {0}) ! (S ⇥ I,S ⇥ {0}), h(`) = `0.

We can regard LTS as diagrams on S modulo Reidemeister
moves and orientation-preserving homeomorphisms of S.

Problem: Find invariants of LTS.



Virtual links

A virtual link is an equivalence class of diagrams in the
2-sphere with classical and virtual crossings, modulo extended
Reidemeister moves.

Definition due to Kauffman; extends classical knot theory.



Theorem. (Carter, S. Kamada, Saito) Virtual links correspond
to LTS modulo stabilization, that is, the addition and subtraction
of hollow handles.

A virtual link diagram becomes a LTS by adding handles at
virtual crossings.

A surface diagram is easily converted to a virtual link, in this
example the virtual trefoil.



Realizing a virtual Reidemeister II-move by stabilization of S:

A Dehn twist on S introduces virtual crossings that may be
removed by virtual Reidemeister moves.



The virtual link group, which we denote by ⇡̄`, is obtained from
a diagram of ` by taking arcs as generators, and the usual
Wirtinger relations at classical crossings only.

This is an invariant of oriented virtual links, hence an invariant
of LTS. Unlike the classical knot group, it is far from complete.

Example: Inequivalent knots in T2 ⇥ I corresponding to the
trivial virtual knot.

⇡̄`1 = ha, b | aa = ba, ab = aai ⇠= Z ⇠= ⇡̄`2
⇠= ⇡̄`3 .



Example: Flipping the diagram (taking a mirror image and
changing crossings) gives an orientation-preserving homeom.
of S ⇥ I that takes S ⇥ {0} to S ⇥ {1}.

` `0

⇡̄`0 is trivial, but ⇡̄` is the trefoil knot group.

It follows that ` and `0 are inequivalent as LTS and as virtual
knots, and also that both are nontrivial.



Virtual Genus

Virtual links also correspond bijectively to abstract link diagrams
defined by N. Kamada, who introduced the following notion:

The virtual genus of a virtual knot ` is the minimal genus of a
surface S supporting a diagram of `. The virtual genus is 0 iff `
is a classical link.

Theorem. (G. Kuperberg) A minimal-genus diagram is unique
up to Reidemeister moves and orientation-preserving
homeomorphism.

Hence any invariant of LTS becomes a virtual link invariant if
we apply it to a minimal-genus diagram for the link.



From the proof of Kuperberg’s theorem:

If genus(S) =v. genus(`) + n then (after Reidemeister moves)
there exists an essential n-component 1-manifold on which we
can perform surgery to reduce the genus of S by n.

Problem: Find obstructions to genus reduction.

Dye & Kauffman use skein theory and the bracket polynomial.

We use operator groups and Alexander invariants. Our
approach is inspired by dynamical systems.



The covering group of a LTS

Lift ` ⇢ S ⇥ I to ˜̀ in the universal cover S̃ ⇥ I ⇠= R2 ⇥ I.

Defintion. The covering group of the LTS ` is

⇡̃` = ⇡1((S̃ ⇥ I) \ ˜̀).

This is an invariant of LTS, since orientation-preserving
homeomorphisms of S lift to S̃.



Example. Lift ˜̀ for our previous genus-2 example.



Operator group structure

⇡̃` is generally not finitely presented as a group, but it has a
finite presentation of another kind:

The group � = ⇡1S = hx1, y1, . . . , xg , yg |
Q
[xi , yi ] i of covering

transformations of S̃ leaves ˜̀ invariant.

� acts on ⇡̃` by automorphisms g 7! g� .

(⇡̃`, �) is an operator group (Krull, Noether).

It has additional structure: (u�)⌘ = u�⌘, for all u 2 ⇡̃` and
�, ⌘ 2 �.

The Wirtinger algorithm gives a presentation of ⇡̃` with finitely
many �-orbits of generators {a�}, {b�}, . . . and relators {r�},
{s�}, . . ..



Example. Chain link fence: � = Z2

As a group, ⇡̃` has presentation

⇡̃` = ha� , b� | (aax)� = (ba)� , (axby )� = (aax)� , (� 2 �) i

As a �-operator group, it has a finite presentation

⇡̃` = ha, b | aax = ba, axby = aaxi� ⇠= ha | axayaxy = aaxay i�



Some properties

We say ` ⇢ S ⇥ I is trivial if its components bound disjoint discs.

Theorem. A LTS ` ⇢ S ⇥ I is trivial iff ⇡̃` ⇠= ha1, . . . , ad | i�.

• Trivializing the action of � produces the virtual knot group ⇡̄`.
In the above example:

⇡̃` = ha, b | aax = ba, axby = aaxi�
⇡̄` = ha, b | aa = ba, ab = aai

• For genus g = 0 (S = S2), we have S̃ = S and � = h1i. Then
⇡̃` ⇠= ⇡` := ⇡1(S3 \ `), with trivial operator action.



• For genus g > 0 we recover ⇡` := ⇡1(S ⇥ I \ `) from any
�-operator group presentation of ⇡̃` by
(1) adding standard generators x1, y1, . . . , xg , yg of � and the

relator
Q
[xi , yi ]; and

(2) taking u� to denote �u��1.

For our example,
⇡` = ha, b, x , y | aax = ba, axby = aax , [x , y ] = 0i

By Waldhausen, S ⇥ I \ ` is determined by the peripheral group
system, comprising ⇡` and ⇡1(boundary components).

In the above presentation of ⇡`, ⇡1(S ⇥ {1}) is the subgroup
generated by x1, y1, . . . , xg , yg . �-group isomorphisms of ⇡̃`
preserve this peripheral information.



⇡1(S ⇥ {0}) is generated by elements X1,Y1, . . . ,Xg ,Yg . Here
Xi = Aixi where Ai is the product of generators corresponding
to arcs meeting the corresponding edge of the fundamental
domain, and similarly for Yi .

The fundamental group of the boundary of a link component
neighborhood is generated by a meridian and longitude, also
easily read from the diagram.



Symplectic rank and virtual genus

H1S ⇠= Z2g has a symplectic form corresponding to the
intersection pairing of generators x1, y1, . . . , xg , yg .

The symplectic rank rks(V ) of a submodule V of H1S is the
dimension of a max. symplectic subspace of V ⌦ R ⇢ R2g .

For a �-group presentation P of ⇡̃`, let VP be the submodule of
H1S generated by operators that appear in the relations.

Definition. The symplectic rank of ⇡̃` is the minimum rks(VP)
over all presentations.

Theorem. Let ` be a non-split virtual link. For any
representative ` ⇢ S ⇥ I,

1
2 symplectic rank of ⇡̃` = virtual genus (`).

Thus 1
2rks(VP) � virtual genus (`).



Example. Let k ⇢ T⇥ I be given by

⇡̃k = ha | ax2ȳ = a i� is nontrivial, so k is nontrivial in S ⇥ I.

VP = hx2ȳi has symplectic rank 0, so the virtual genus is 0.
In fact, k is trivial as a virtual knot.

Proof of Theorem is based on Kuperburg’s theorem and work of
Waldhausen.



Alexander invariants from ⇡̃`

Let ` = `1 [ . . . [ `d ⇢ S ⇥ I.

Let ✏ : ⇡̃` ! Zd ⇠= ht1, . . . , td | [ti , tj ] = 1 8 i , ji be the
homomorphism sending the meridians of lifts of `i to ti .

K = ker ✏

M = K/K 0 is a module over Z[�⇥ Zd ], a natural choice of
Alexander module for LTS.

For polynomial invariants, we want a Noetherian module.

Let M̄ = M/{�a � ⌘a : �⌘�1 2 �0, a 2 K/K 0}.

M̄ is a module over Z[H1�⇥ Zd ] ⇠= R[t±1
1 , . . . , t±1

d ],
where R = Z[Z2g].

Lemma. M̄ is presented by a square matrix A with entries in
R[t±1].



We define the Alexander polynomial of a LTS to be

�`(t1, . . . , td) = det A.

Coefficients are in Z[Z2g].

An orientation-preserving homeomorphism � of S induces a
symplectic automorphism �# of H1S.

�`(t1, . . . , td) is well defined up to a symplectic change of basis
X

ci,n tn
i !

X
�#(ci,n) tn

i

and multiplication by units in R[t±1
1 , . . . , t±1

d ].



Example. For the chain link fence,

⇡̃` ⇠= ha | axayaxy = aaxay i�.

We have ✏ : a 7! t . Applying Fox calculus:

M ⇠= ha | (x + ty + t2xy)a = (1 + tx + t2y)a i

�`(t) = (xy � y)t2 + (y � x)t + (x � 1)

A Dehn twist induces �# : x 7! xy , y 7! y .

�`(t) is equivalent to (xy2 � y)t2 + (y � xy)t + (xy � 1).



Textiles

For g = 1, ˜̀ is a doubly periodic textile structure (Grishanov,
Meshkov & Omelchenko; Grishanov, Meshkov & Vassiliev;
Morton & Grishanov).
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1600 H. R. Morton & S. Grishanov

Fig. 4. Multiaxial weave.

Fig. 5. Single jersey.

Fig. 6. Single jersey with a di↵erent repeating cell.

1.3. Fabric kernels

The original fabric can be recovered from any one of its kernels. Since the region
between the two auxiliary components X and Y is topologically a thickened torus
this means that the diagram on the torus can be recovered. The whole fabric can
be reconstructed as a doubly periodic plane pattern by unwrapping the torus — in
e↵ect constructing the inverse image of the diagram on the torus under the universal
cover of the torus by the plane.
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Doubly Periodic Textile Structures 1599

Fig. 1. A kernel for a fabric.

Fig. 2. Plain weave.

Fig. 3. Leno weave.

two strands in the diagram of the kernel in Fig. 4 have not been closed. A wide
variety of fabrics can be found in the books by Watson [11, 12], and Spencer [14],
and some of the primary structural elements are described in [13].

Di↵erent choices of repeating cell for a given fabric will give rise to di↵erent
kernels. For example, choosing the cell shown in Fig. 6 for the single jersey fabric
gives the kernel shown.

Single jersey. Plain weave.

(Diagrams from Morton & Grishanov.)

These authors study textiles via the quotient link in T2 ⇥ I.



Morton and Grishanov obtain a link L in S3 from the periodic
textile by projecting to a link in the thickened torus and adding
components X , Y in the complement.
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Fig. 1. A kernel for a fabric.

Fig. 2. Plain weave.

Fig. 3. Leno weave.

two strands in the diagram of the kernel in Fig. 4 have not been closed. A wide
variety of fabrics can be found in the books by Watson [11, 12], and Spencer [14],
and some of the primary structural elements are described in [13].

Di↵erent choices of repeating cell for a given fabric will give rise to di↵erent
kernels. For example, choosing the cell shown in Fig. 6 for the single jersey fabric
gives the kernel shown.

Our invariant �` is the multivariable Alexander polynomial of L
considered by Morton and Grishanov.

Our method of computation is much easier, basically because
our x and y both lie on the same surface boundary.



Symplectic rank and virtual genus, II

Definition. The symplectic rank of �` is rks(W ), where W is the
subspace of R2g spanned by ratios of coefficients of �`.

Prop. This is invariant under symplectic change of basis.

Theorem. virtual genus (`) � 1
2 symplectic rank of �`.

Example. For the chain link fence we found

�`(t) = (xy � y)t2 + (y � x)t + (x � 1).

W = span{x , y}, rks(W ) = 2, so virtual trefoil has genus � 1.

Since we have a genus 1 diagram, the virtual genus is 1
(already well known!)



Example: Kishino’s knot

⇡̃k = ha, b, c, d |axb = axyax , axdv = aax , bd = cb, dv bu = cdv i

�k = (x � uvx)t2 + (1� v � x + uvx � vxy � uvxy)t + (vxy � v)

W = span{x , y , u, v} = R4. �k has symplectic rank 4, so
virtual genus of k is � 2. Thus virtual genus = 2.

This was shown previously by Dye and Kauffman with other
techniques.



Example. Stoimenow’s link

Dye and Kauffman give this example, due to A. Stoimenow, for
which their methods do not determine virtual genus.

The symplectic rank of �` is equal to 2. Since the link has a
diagram on a torus, we see the link has virtual genus 1.



Example. Virtual trefoil double

This is a satellite of the virtual trefoil (chain link fence).

Theorem. [Silver-W] The virtual genus of a satellite k̃ of k is
equal to the virtual genus of k .

For this example, �k̃ = (t � 1)(xy � 1)2 has symplectic rank 0.
It does not detect virtual genus, which is 1.

Note that the symplectic rank of the �-group presentation from
this diagram must be 2.



Thank you for listening.

Single jersey (image: Woolmark Co.)


