Lightning Talks I Tech Topology Conference

December 5, 2015

Generating mapping class groups with torsion elements

Justin Lanier
 Georgia Tech

Generating $\operatorname{Mod}\left(S_{g}\right)$

$2 g+1$ Dehn twists generate. (Humphries)

Generating $\operatorname{Mod}\left(S_{g}\right)$

	Order of elements	Number of elements	Genus
Luo	2	$6(2 g+1)$	$g \geq 3$
Brendle-Farb	2	6	$g \geq 3$
Kassabov	2	5	$9 \geq 5$
	2	4	$9 \geq 7$
Monden	3	3	$9 \geq 3$
	4	4	$9 \geq 3$

Obstacle:

When do higher-order elements
even exist in $\operatorname{Mod}\left(S_{g}\right)$?

Theorem 1 (Lanier '15)

For $k \geq 5$ and $g \geq(k-1)(k-2)$, $\operatorname{Mod}\left(S_{g}\right)$ contains an element of order k.

Theorem 1 (Lanier '15)

For $k \geq 5$ and $g \geq(k-1)(k-2)$, $\operatorname{Mod}\left(S_{g}\right)$ contains an element of order k.

Theorem 2 (Lanier '15)
For $k \geq 5$ and $g \geq(k-1)(k-2), \operatorname{Mod}\left(S_{g}\right)$ is generated by 4 elements of order k.

Theorem 1

Theorem 2

Step 1: Write T_{c} as a product of elements of order k.

Step 2: Find elements of order k taking c to the other curves.

Step 3: Optimize to 4 elements.

Further Questions

- Can 4 be further optimized?
- What is the last g for which an element of order k fails to exist?
- Can similar results be obtained for finite index subgroups of $\operatorname{Mod}\left(S_{g}\right)$?

Further Questions

- Can 4 be further optimized?
- What is the last g for which an element of order k fails to exist?
- Can similar results be obtained for finite index subgroups of $\operatorname{Mod}\left(S_{g}\right)$?

Thank you!
 Justin Lanier Georgia Tech

Knots in $S^{1} \times S^{2}$ with L-space surgeries

Faramarz Vafaee
California Institute of Technology

December, 2015
joint with Yi Ni

Knots in $S^{1} \times S^{2}$ admitting L-space fillings

- Focus: Knots in $S^{1} \times S^{2}$ with L-space surgeries

Knots in $S^{1} \times S^{2}$ admitting L-space fillings

- Focus: Knots in $S^{1} \times S^{2}$ with L-space surgeries
- Example:
- Start with a solid torus $V=S^{1} \times D^{2}$ with meridian μ.
- Let $K \subset V$ be a Berge-Gabai knot, i.e. K has a non-trivial solid torus filling.
- There is a slope λ such that $V^{\prime}=V_{\lambda}(K)$ is another solid torus, with meridian μ^{\prime}.
- Dehn filling V along μ^{\prime} will give us a lens space L.
- K, when viewed as a knot in the lens space L, has an $S^{1} \times S^{2}$ surgery; namely, $L_{\lambda}(K)$ has a genus one Heegaard splitting with the property that the meridians of the two solid tori coincide (this common meridian is μ^{\prime}).

Knots in $S^{1} \times S^{2}$ admitting L-space fillings

- Focus: Knots in $S^{1} \times S^{2}$ with L-space surgeries
- Example:
- Start with a solid torus $V=S^{1} \times D^{2}$ with meridian μ.
- Let $K \subset V$ be a Berge-Gabai knot, i.e. K has a non-trivial solid torus filling.
- There is a slope λ such that $V^{\prime}=V_{\lambda}(K)$ is another solid torus, with meridian μ^{\prime}.
- Dehn filling V along μ^{\prime} will give us a lens space L.
- K, when viewed as a knot in the lens space L, has an $S^{1} \times S^{2}$ surgery; namely, $L_{\lambda}(K)$ has a genus one Heegaard splitting with the property that the meridians of the two solid tori coincide (this common meridian is μ^{\prime}).
- Any lens space obtainable by longitudinal surgery on some knots in $S^{1} \times S^{2}$ may be obtained this way. (Rasmussen)

Knots in S^{3} with L-space surgeries

- $K \subset S^{3}$ with some L-space surgery fibered. (Ni)
- K induces the tight contact structure on S^{3}.
- K is strongly quasi positive. (Hedden)

Knots in L-spaces admitting $S^{1} \times S^{2}$ fillings

Theorem (Ni-V.)

Suppose $L \subset S^{1} \times S^{2}$ is a knot with an L-space surgery. Then the complement of L in $S^{1} \times S^{2}$ fibers over S^{1}.

Proposition (Ni-V.)

If K is a knot in an L-space Y with some $S^{1} \times S^{2}$ surgery, then K is Floer simple.

Knots in L-spaces admitting $S^{1} \times S^{2}$ fillings

Theorem (Ni-V.)

Suppose $L \subset S^{1} \times S^{2}$ is a knot with an L-space surgery. Then the complement of L in $S^{1} \times S^{2}$ fibers over S^{1}.

Proposition (Ni-V.)

If K is a knot in an L-space Y with some $S^{1} \times S^{2}$ surgery, then K is Floer simple.

- Recall: A knot K in a $\mathbb{Q} H S^{3} Y$ is Floer simple if rk $\overline{H F K}(Y, K)=\left|H_{1}(Y ; \mathbb{Z})\right|$.

A rationally fibered, Floer simple knot induces a tight contact structure

Proposition (Ni-V.)

Let K be a rationally fibered, Floer simple knot in a $\mathbb{Q} H S^{3} Y$. The contact structure induced by the open book decomposition corresponding to the fibration of (Y, K) is tight.

Semigroups of L-space CableKnots and the Upsilon Function

Shida Wang
Indiana University

December 2015
Tech Topology Conference
Georgia Institute of Technology

Outline

Algebraic knots and semigroups
L-space knots and a generalization

The Upsilon function and an application

Algebraic knots and semigroups

L-space knots and a generalization

The Upsilon function and an application

Algebraic knots and semigroups

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point.

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.
The torus knot $T_{p, q}$ is an algebraic knot. (Consider the complex curve $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1}^{q}-z_{2}^{p}=0\right\}$.)

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.
The torus knot $T_{p, q}$ is an algebraic knot.
(Consider the complex curve $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1}^{q}-z_{2}^{p}=0\right\}$.)
The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geqslant 0}$.
For a singular point (C, z), let $\varphi(t)=(x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0)=z=\left(z_{1}, z_{2}\right)$.
Then φ induces a map $\varphi^{*}: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[t]]$ by $f(x, y) \mapsto f\left(x(t)-z_{1}, y(t)-z_{2}\right)$.
The map ord: $\mathbb{C}[[t]] \rightarrow \mathbb{Z}_{\geqslant 0}$ maps a power series in one variable to its order at 0 .
The image $S \subset \mathbb{Z}_{\geqslant 0}$ of the composition ord $\circ \varphi^{*}$ is closed under addition.
S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.
The torus knot $T_{p, q}$ is an algebraic knot.
(Consider the complex curve $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1}^{q}-z_{2}^{p}=0\right\}$.)
The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geqslant 0}$.
For a singular point (C, z), let $\varphi(t)=(x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0)=z=\left(z_{1}, z_{2}\right)$.
Then φ induces a map $\varphi^{*}: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[t]]$ by $f(x, y) \mapsto f\left(x(t)-z_{1}, y(t)-z_{2}\right)$.
The map ord: $\mathbb{C}[[t]] \rightarrow \mathbb{Z}_{\geqslant 0}$ maps a power series in one variable to its order at 0 .
The image $S \subset \mathbb{Z}_{\geqslant 0}$ of the composition ord $\circ \varphi^{*}$ is closed under addition.
S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.
The semigroup of the torus knot $T_{p, q}$ is $\langle p, q\rangle \subset \mathbb{Z}_{\geqslant 0}$.

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.
The torus knot $T_{p, q}$ is an algebraic knot.
(Consider the complex curve $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1}^{q}-z_{2}^{p}=0\right\}$.)
The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geqslant 0}$.
For a singular point (C, z), let $\varphi(t)=(x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0)=z=\left(z_{1}, z_{2}\right)$.
Then φ induces a map $\varphi^{*}: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[t]]$ by $f(x, y) \mapsto f\left(x(t)-z_{1}, y(t)-z_{2}\right)$.
The map ord: $\mathbb{C}[[t]] \rightarrow \mathbb{Z}_{\geqslant 0}$ maps a power series in one variable to its order at 0 .
The image $S \subset \mathbb{Z}_{\geqslant 0}$ of the composition ord $\circ \varphi^{*}$ is closed under addition.
S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.
The semigroup of the torus knot $T_{p, q}$ is $\langle p, q\rangle \subset \mathbb{Z}_{\geqslant 0}$.
The semigroup and the Alexander polynomial determines each other.
Let S_{K} be the semigroup of an algebraic knot K. Then $\Delta_{K}(t)=(1-t)\left(\sum_{s \in S_{K}} t^{s}\right)$ in $\mathbb{Z}[[t]]$.

Algebraic knots and semigroups

An algebraic knot is the link of an isolated plane curve singular point. An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^{2}$, such that C is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small $r>0, C$ intersects the ball $B(z, r) \subset \mathbb{C}^{2}$ transversally along a link L, which is called an algebraic link.
If L is connected, it is called an algebraic knot.
The torus knot $T_{p, q}$ is an algebraic knot.
(Consider the complex curve $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1}^{q}-z_{2}^{p}=0\right\}$.)
The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geqslant 0}$.
For a singular point (C, z), let $\varphi(t)=(x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0)=z=\left(z_{1}, z_{2}\right)$.
Then φ induces a map $\varphi^{*}: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[t]]$ by $f(x, y) \mapsto f\left(x(t)-z_{1}, y(t)-z_{2}\right)$.
The map ord: $\mathbb{C}[[t]] \rightarrow \mathbb{Z}_{\geqslant 0}$ maps a power series in one variable to its order at 0 .
The image $S \subset \mathbb{Z}_{\geqslant 0}$ of the composition ord $\circ \varphi^{*}$ is closed under addition.
S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.
The semigroup of the torus $\operatorname{knot} T_{p, q}$ is $\langle p, q\rangle \subset \mathbb{Z}_{\geqslant 0}$.
The semigroup and the Alexander polynomial determines each other.
Let S_{K} be the semigroup of an algebraic knot K. Then $\Delta_{K}(t)=(1-t)\left(\sum_{s \in S_{K}} t^{s}\right)$ in $\mathbb{Z}[[t]]$.
Example of the torus knot $T_{3,7}$
Let $K=T_{3,7}$. Its semigroup is $S_{K}=\langle 3,7\rangle=\{0,3,6,7,9,10,12\} \cup \mathbb{Z}_{>12}$.
$\Delta_{K}(t)=1-t+t^{3}-t^{4}+t+6-t^{8}+t^{9}-t^{11}+t^{12}=(1-t)\left(1+t^{3}+t^{6}+t^{7}+t^{9}+t^{10}+t^{12}+\sum_{s>12} t_{\underline{\equiv}}^{s}\right)$.

Algebraic knots and semigroups

L-space knots and a generalization

The Upsilon function and an application

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.
The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1, and they alternate in sign.
There is an increasing sequence of integers $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 n}=2 g(K)$ such that the Alexander polynomial of K is $\Delta_{K}(t)=\sum_{i=0}^{2 n}(-1)^{i} t^{\alpha_{i}}$.

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.
The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1, and they alternate in sign.
There is an increasing sequence of integers $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 n}=2 g(K)$ such that the Alexander polynomial of K is $\Delta_{K}(t)=\sum_{i=0}^{2 n}(-1)^{i} t^{\alpha_{i}}$.

Example: $\Delta_{T_{3,7}}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12}$

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.
The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1, and they alternate in sign.
There is an increasing sequence of integers $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 n}=2 g(K)$ such that the Alexander polynomial of K is $\Delta_{K}(t)=\sum_{i=0}^{2 n}(-1)^{i} t^{\alpha_{i}}$.

Example: $\Delta_{T_{3,7}}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12}$

Define S_{K} to be the subset of $\mathbb{Z}_{\geqslant 0}$ satisfying $\sum_{s \in S_{K}} t^{s}=\frac{\Delta_{K}(t)}{1-t}$ in $\mathbb{Z}[[t]]$.
That is, $S_{K}=\left\{\alpha_{0}, \cdots, \alpha_{1}-1, \alpha_{2}, \cdots, \alpha_{3}-1, \cdots, \alpha_{2 n-2}, \cdots, \alpha_{2 n-1}-1, \alpha_{2 n}\right\} \cup \mathbb{Z}_{>\alpha_{2 n}}$.
For algebraic knots, S_{K} a semigroup (closed under addition).

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.
The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1, and they alternate in sign.
There is an increasing sequence of integers $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 n}=2 g(K)$ such that the Alexander polynomial of K is $\Delta_{K}(t)=\sum_{i=0}^{2 n}(-1)^{i} t^{\alpha_{i}}$.

Example: $\Delta_{T_{3,7}}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12}$
Define S_{K} to be the subset of $\mathbb{Z}_{\geqslant 0}$ satisfying $\sum_{s \in S_{K}} t^{s}=\frac{\Delta_{K}(t)}{1-t}$ in $\mathbb{Z}[[t]]$.
That is, $S_{K}=\left\{\alpha_{0}, \cdots, \alpha_{1}-1, \alpha_{2}, \cdots, \alpha_{3}-1, \cdots, \alpha_{2 n-2}, \cdots, \alpha_{2 n-1}-1, \alpha_{2 n}\right\} \cup \mathbb{Z}_{>\alpha_{2 n}}$.
For algebraic knots, S_{K} a semigroup (closed under addition).
Question: For what L-space knots K is S_{K} a semigroup (closed under addition)?

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)
The knot K is called an L-space knot if some positive surgery on K gives a 3 -manifold that is an L-space.

Theorem (Hedden 2009)
Any algebraic knot is an L-space knot.
The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1, and they alternate in sign.
There is an increasing sequence of integers $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2 n}=2 g(K)$ such that the Alexander polynomial of K is $\Delta_{K}(t)=\sum_{i=0}^{2 n}(-1)^{i} t^{\alpha_{i}}$.

Example: $\Delta_{T_{3,7}}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12}$
Define S_{K} to be the subset of $\mathbb{Z}_{\geqslant 0}$ satisfying $\sum_{s \in S_{K}} t^{s}=\frac{\Delta_{K}(t)}{1-t}$ in $\mathbb{Z}[[t]]$.
That is, $S_{K}=\left\{\alpha_{0}, \cdots, \alpha_{1}-1, \alpha_{2}, \cdots, \alpha_{3}-1, \cdots, \alpha_{2 n-2}, \cdots, \alpha_{2 n-1}-1, \alpha_{2 n}\right\} \cup \mathbb{Z}_{>\alpha_{2 n}}$.
For algebraic knots, S_{K} a semigroup (closed under addition).
Question: For what L-space knots K is S_{K} a semigroup (closed under addition)?

An counterexample: the pretzel knot $P(-2,3,7)$
It is an L-space knot. Its $S_{K}=\{0,3,5,7,8,10\} \cup \mathbb{Z}_{>10}$, which is not a semigroup.

Main Results

Theorem (Hedden 2009)
Let K be a nontrivial L-space knot and $q \geqslant p(2 g(K)-1)$. Then $K_{p, q}$ is an L-space knot.
Theorem (Hom 2011)
The converse is true.

Main Results

Theorem (Hedden 2009)

Let K be a nontrivial L-space knot and $q \geqslant p(2 g(K)-1)$. Then $K_{p, q}$ is an L-space knot.
Theorem (Hom 2011)
The converse is true.

Theorem (W.)
Let K be a nontrivial L-space knot and $q \geqslant p(2 g(K)-1)$. Then S_{K} is a semigroup if and only if $S_{K_{p, q}}$ is a semigroup.

Main Results

Theorem (Hedden 2009)

Let K be a nontrivial L-space knot and $q \geqslant p(2 g(K)-1)$. Then $K_{p, q}$ is an L-space knot.
Theorem (Hom 2011)
The converse is true.

Theorem (W.)
Let K be a nontrivial L-space knot and $q \geqslant p(2 g(K)-1)$. Then S_{K} is a semigroup if and only if $S_{K_{p, q}}$ is a semigroup.

Corollary
If an L-space knot K is an iterated torus knot, then S_{K} is a semigroup.

Algebraic knots and semigroups

L-space knots and a generalization

The Upsilon function and an application

The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

- $\Upsilon_{K}(t)$ is a piecewise linear function of t on [0, 2].
- $\Upsilon_{K}(t)=\Upsilon_{K}(2-t)$.
- $\Upsilon_{-K}(t)=-\Upsilon_{K}(t)$ and $\Upsilon_{K_{1} \# K_{2}}(t)=\Upsilon_{K_{1}}(t)+\Upsilon_{K_{2}}(t)$.
- $\left|\Upsilon_{K}(t)\right| \leqslant t \cdot g_{4}(K)$.

The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

- $\Upsilon_{K}(t)$ is a piecewise linear function of t on [0, 2].
- $\Upsilon_{K}(t)=\Upsilon_{K}(2-t)$.
- $\Upsilon_{-K}(t)=-\Upsilon_{K}(t)$ and $\Upsilon_{K_{1} \# K_{2}}(t)=\Upsilon_{K_{1}}(t)+\Upsilon_{K_{2}}(t)$.
- $\left|\Upsilon_{K}(t)\right| \leqslant t \cdot g_{4}(K)$.

For L-space knots: computable by the Alexander polynomial The invariant $\Upsilon_{K}(t)$ for an L-space knot is computed by the formula $\Upsilon_{K}(t)=\max _{0 \leqslant 2 i \leqslant n}\left\{m_{2 i}-t\left(g-\alpha_{2 i}\right)\right\}$, where

$$
\begin{aligned}
m_{0} & =0 \\
m_{2} & =-2\left(\alpha_{1}-\alpha_{0}\right) \\
& \cdots \\
m_{2 n} & =-2\left(\alpha_{1}-\alpha_{0}\right)-\cdots-2\left(\alpha_{2 n-1}-\alpha_{2 n-2}\right)
\end{aligned}
$$

An Application

The Υ function
$+$
properties of the Alexander polynomial for algebraic knots
\Downarrow
nonexistence of cobordism of minimal genus between some pairs of algebraic knots (Feller-Krcatovich / W. 2015)

An Application

The Υ function
$+$
properties of the Alexander polynomial for algebraic knots
\Downarrow
nonexistence of cobordism of minimal genus between some pairs of algebraic knots (Feller-Krcatovich / W. 2015)

Corollary
Similar results for iterated torus L-space knots.

Thank you!

$$
4 \square>4 \text { 岛 } \downarrow \equiv \text { 引 }
$$

The Lifting Mapping Class Group of a Superelliptic Cover

Becca Winarski University of Wisconsin-Milwaukee

Joint work with Ty Ghaswala

In general, we have subgroups

$$
\begin{aligned}
& L M C G(x) \stackrel{\text { i. }}{<} \operatorname{MCG}(x) \\
& S M C G(\tilde{x})<M C G(\tilde{x}) \\
& \text { s.t. } L M C G(x) \cong S M C G(\tilde{x}) / \operatorname{Deck}
\end{aligned}
$$

In the hyperelliptic case,

$$
\operatorname{LMCG}(X)=\operatorname{MCG}(X)
$$

Our work:
Find a presentation for LMCG(X) for superelliptic covers

Generators:
odd half twists

Pure braid group generators

even half twists parity flips

Relations

- Braid relations
- Commutator relations
- Odd permutations \leftrightarrow Even permutations
- Half twists squared are Dehn twists
- Conjugation relations

Thank you!

An A_{∞} Structure for Legendrians from Generating Families

Ziva Myer

Bryn Mawr College
Advisor: Lisa Traynor
December 5, 2015

Contact Manifold $\left(J^{1} M, \xi\right)$

The standard contact structure on $\mathbb{R}^{3}: \xi=\operatorname{ker}(d z-y d x)$.

Contact Manifold $\left(J^{1} M, \xi\right)$

Legendrian submanifold $\Lambda \subset J^{1} M$ $T \Lambda \subset \xi$

The standard contact structure on $\mathbb{R}^{3}: \xi=\operatorname{ker}(d z-y d x)$.

Contact Manifold $\left(J^{1} M, \xi\right)$

> Legendrian submanifold $\Lambda \subset J^{1} M$ $T \wedge \subset \xi$

The standard contact structure on $\mathbb{R}^{3}: \xi=\operatorname{ker}(d z-y d x)$.

Contact Manifold $\left(J^{1} M, \xi\right)$

The standard contact structure on $\mathbb{R}^{3}: \xi=\operatorname{ker}(d z-y d x)$.

Legendrian submanifold $\Lambda \subset J^{1} M$ $T \wedge \subset \xi$

Important feature: Reeb Chords

Goal: Define algebraic invariants for Legendrians from Reeb chords.

Techniques for Invariants

Pseudoholomorphic Curves

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$

$$
\partial^{\epsilon}: A \longrightarrow A
$$

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$
[Etnyre-Sabloff-et al.]

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$
[Etnyre-Sabloff-et al.]

Generating Families

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$
\begin{aligned}
& F: M \times \mathbb{R}^{N} \longrightarrow \mathbb{R} \\
& \Lambda=\left\{\left(x, \frac{\partial F}{\partial x}(x, e), F(x, e)\right)\right. \\
&\left.\left\lvert\, \frac{\partial F}{\partial e}(x, e)=0\right.\right\}
\end{aligned}
$$

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂),
$\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$
\begin{aligned}
& F: M \times \mathbb{R}^{N} \longrightarrow \mathbb{R} \\
& \Lambda=\left\{\left(x, \frac{\partial F}{\partial x}(x, e), F(x, e)\right)\right.
\end{aligned}
$$

$$
\left.\left\lvert\, \frac{\partial F}{\partial e}(x, e)=0\right.\right\}
$$

- $\left\{G H^{*}(F)\right\}_{F}=H_{\text {Morse }}^{*}\left(C_{+}\left(w_{F}\right)\right)$

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂), $\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$
\begin{aligned}
& F: M \times \mathbb{R}^{N} \longrightarrow \mathbb{R} \\
& \Lambda=\left\{\left(x, \frac{\partial F}{\partial x}(x, e), F(x, e)\right)\right. \\
&\left.\left\lvert\, \frac{\partial F}{\partial e}(x, e)=0\right.\right\}
\end{aligned}
$$

- $\left\{G H^{*}(F)\right\}_{F}=H_{\text {Morse }}^{*}\left(C_{+}\left(w_{F}\right)\right)$
- ?

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂), $\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$
\begin{aligned}
& F: M \times \mathbb{R}^{N} \longrightarrow \mathbb{R} \\
& \Lambda=\left\{\left(x, \frac{\partial F}{\partial x}(x, e), F(x, e)\right)\right. \\
& \left.\left\lvert\, \frac{\partial F}{\partial e}(x, e)=0\right.\right\}
\end{aligned}
$$

- $\left\{G H^{*}(F)\right\}_{F}=H_{\text {Morse }}^{*}\left(C_{+}\left(w_{F}\right)\right)$
- $\exists m_{k}: C_{+}\left(w_{F}\right)^{\otimes k} \longrightarrow C_{+}\left(w_{F}\right)$?

Techniques for Invariants

Pseudoholomorphic Curves

- DGA (\mathcal{A}, ∂), $\mathcal{A}=\bigoplus_{k=0}^{\infty} A^{\otimes k}$
∂ counts:

- Augmentation $\epsilon: \mathcal{A} \longrightarrow \mathbb{Z}_{2}$ $\partial^{\epsilon}: A \longrightarrow A$
- $\left\{L C H^{*}(\epsilon)\right\}_{\epsilon}$
- A_{∞}-algebra $m_{k}: A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$
\begin{aligned}
& F: M \times \mathbb{R}^{N} \longrightarrow \mathbb{R} \\
& \Lambda=\left\{\left(x, \frac{\partial F}{\partial x}(x, e), F(x, e)\right)\right.
\end{aligned}
$$

$$
\left.\left\lvert\, \frac{\partial F}{\partial e}(x, e)=0\right.\right\}
$$

- $\left\{G H^{*}(F)\right\}_{F}=H_{\text {Morse }}^{*}\left(C_{+}\left(w_{F}\right)\right)$
- $\exists m_{k}: C_{+}\left(w_{F}\right)^{\otimes k} \longrightarrow C_{+}\left(w_{F}\right)$? Yes! (My thesis work)

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees $m_{k}: C_{+}^{\otimes k}\left(w_{F}\right) \longrightarrow C_{+}\left(w_{F}\right)$ counts isolated trees:

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees
$m_{k}: C_{+}^{\otimes k}\left(w_{F}\right) \longrightarrow C_{+}\left(w_{F}\right)$ counts isolated trees:

A_{∞} relations come from compactifying 1-dimensional spaces of trees.

$$
\sum_{i+j+k=I} m_{i+1+k} \circ\left(1^{\otimes i} \otimes m_{j} \otimes 1^{\otimes k}\right)=0
$$

Future Directions

- Generalize to (higher dimensional) links

Future Directions

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in $T^{*} M$ with generating families

Future Directions

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in $T^{*} M$ with generating families
- Connections to sheaf theory

Future Directions

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in $T^{*} M$ with generating families

- Connections to sheaf theory

Thank you!

Exceptional Cosmetic Surgeries on S^{3}

Huygens C. Ravelomanana

University of Georgia

December 05, 2015
knot $K \subset S^{3}$

Definition

- Two Dehn surgeries $S_{K}^{3}(r)$ and $S_{K}^{3}(s)$ are called cosmetic if there is a homeomorphism $h: S_{K}^{3}(r) \rightarrow S_{K}^{3}(s)$.

Definition

- Two Dehn surgeries $S_{K}^{3}(r)$ and $S_{K}^{3}(s)$ are called cosmetic if there is a homeomorphism $h: S_{K}^{3}(r) \rightarrow S_{K}^{3}(s)$.
- They are called truly cosmetic if h is orientation-preserving.

Some examples

Some examples

Example

- If K is an amphicheiral knot in S^{3}, then $S_{K}^{3}(r) \cong S_{K}^{3}(-r)$.

Some examples

Example

- If K is an amphicheiral knot in S^{3}, then $S_{K}^{3}(r) \cong S_{K}^{3}(-r)$.
- If K is the unknot, then $S_{K}^{3}(p / q)=L(p, q)$

Some examples

Example

- If K is an amphicheiral knot in S^{3}, then $S_{K}^{3}(r) \cong S_{K}^{3}(-r)$.
- If K is the unknot, then $S_{K}^{3}(p / q)=L(p, q)$ so

$$
S_{K}^{3}\left(p / q_{1}\right) \cong S_{K}^{3}\left(p / q_{2}\right) \quad \text { iff } \quad \pm q_{1} \equiv q_{2}^{ \pm 1}[\bmod p]
$$

for relatively prime pairs of integers (p, q_{1}) and (p, q_{2}).

Fact

Apart from these examples there are no known knots in S^{3} which admit cosmetic surgeries.

The conjecture

Conjecture (A) in problem 1.81 of "Kirby list of problem in low-dimensional topology". Assume K is a non-trivial knot.

The conjecture

Conjecture (A) in problem 1.81 of "Kirby list of problem in low-dimensional topology". Assume K is a non-trivial knot.

Conjecture (Cosmetic surgery conjecture)
Two surgeries with inequivalent slopes are never truly cosmetic.

Main result

Let K be a hyperbolic knot in S^{3}, and $r, s \in \mathbb{Q} \cup\{\infty\}$ two distinct exceptional slopes on $\partial \mathscr{N}(K)$.

Main result

Let K be a hyperbolic knot in S^{3}, and $r, s \in \mathbb{Q} \cup\{\infty\}$ two distinct exceptional slopes on $\partial \mathscr{N}(K)$.

Theorem (R.)

If $S_{K}^{3}(r) \cong S_{K}^{3}(s)$ as oriented manifolds, then the surgery must be irreducible, toroidal and non-Seifert fibred, moreover

$$
\{r, s\}=\{+1,-1\} .
$$

Consequences

Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on
■ alternating hyperbolic knots in S^{3}

Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

- alternating hyperbolic knots in S^{3}
- arborescent knots in S^{3}

Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

- alternating hyperbolic knots in S^{3}
- arborescent knots in S^{3}

■ non-trivial algebraic knots in S^{3}.

Consequences

Corollary (R.)

- If a hyperbolic knot $K \subset S^{3}$ admits an exceptional truly cosmetic surgery then the Heegaard Floer correction term of any $1 / n(n \in \mathbb{Z})$ surgery on K satisfies $d\left(S_{K}^{3}(1 / n)\right)=0$.

Consequences

Corollary (R.)

- If a hyperbolic knot $K \subset S^{3}$ admits an exceptional truly cosmetic surgery then the Heegaard Floer correction term of any $1 / n(n \in \mathbb{Z})$ surgery on K satisfies $d\left(S_{K}^{3}(1 / n)\right)=0$.
■ If Y is the result of this surgery then:

$$
\left|t_{0}(K)\right|+2 \sum_{i=1}^{n}\left|t_{i}(K)\right| \leq \operatorname{rank} H F_{\mathrm{red}}(Y)
$$

The Proof

Main Theorem

The Proof

Main Theorem

The Proof

The Proof

Main Theorem

Using distance
between slopes: no reducibles surgeries

The Proof

Main Theorem

Using distance
between slopes: no reducibles surgeries

The Proof

Main Theorem

Using distance
between slopes: no reducibles surgeries

The Proof

Main Theorem

Using distance between slopes: no reducibles surgeries

The Proof

The Proof

Spheres, TORI, AND OUTER AUTOMORPHISMS OF THE FREE GROUP

Funda Gultepe

University of Illinois at Urbana-Champaign

