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Generating mapping class groups 
with torsion elements 

 
Justin Lanier 
Georgia Tech 



2g+1 Dehn twists generate. 
(Humphries) 

Generating Mod(Sg)   



Generating Mod(Sg)   
Order of 
elements 

Number of 
elements Genus 

Luo 2 6(2g+1) g ≥ 3 
Brendle-Farb 2 6 g ≥ 3 

Kassabov 
2 5 g ≥ 5 
2 4 g ≥ 7 

Monden 
3 3 g ≥ 3 
4 4 g ≥ 3 



Obstacle: 
 

When do higher-order elements 
even exist in Mod(Sg)?   



Theorem 1  (Lanier ‘15) 
 

For k ≥ 5 and g ≥ (k-1)(k-2), Mod(Sg) contains an 
element of order k. 
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element of order k. 

Theorem 2  (Lanier ‘15) 
 

For k ≥ 5 and g ≥ (k-1)(k-2), Mod(Sg) is generated 
by 4 elements of order k. 



genus k-1 genus k 

Theorem 1  



Frobenius coin 
problem 

Theorem 1  



Step 1: Write Tc as a product of 
elements of order k. 
 
 
Step 2: Find elements of order k 
taking c to the other curves. 
 
 
Step 3: Optimize to 4 elements. 

Theorem 2  c 



•  Can 4 be further optimized? 
•  What is the last g for which an element of order k 

fails to exist? 
•  Can similar results be obtained for finite index 

subgroups of Mod(Sg)? 
 

Further Questions 



Further Questions 

Thank you! 
Justin Lanier 
Georgia Tech 

•  Can 4 be further optimized? 
•  What is the last g for which an element of order k 

fails to exist? 
•  Can similar results be obtained for finite index 

subgroups of Mod(Sg)? 
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Knots in S1 × S2
admitting L-space fillings

� Focus: Knots in S1 × S2 with L-space surgeries

� Example:
� Start with a solid torus V = S1 ×D2 with meridian µ.
� Let K ⊂ V be a Berge-Gabai knot, i.e. K has a non-trivial solid torus
filling.

� There is a slope � such that V ′ = V�(K) is another solid torus, with

meridian µ
′
.

� Dehn filling V along µ
′
will give us a lens space L.

� K, when viewed as a knot in the lens space L, has an S1 × S2 surgery;
namely, L�(K) has a genus one Heegaard splitting with the property
that the meridians of the two solid tori coincide (this common meridian

is µ
′
).

� Any lens space obtainable by longitudinal surgery on some knots in
S1 × S2 may be obtained this way. (Rasmussen)
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Knots in S3
with L-space surgeries

� K ⊂ S3 with some L-space surgery fibered. (Ni)

� K induces the tight contact structure on S3.

� K is strongly quasi positive. (Hedden)



Knots in L-spaces admitting S1 × S2
fillings

Theorem (Ni-V.)

Suppose L ⊂ S1 × S2
is a knot with an L-space surgery. Then the

complement of L in S1 × S2
fibers over S1

.

Proposition (Ni-V.)

If K is a knot in an L-space Y with some S1 × S2
surgery, then K is Floer

simple.

� Recall: A knot K in a QHS3 Y is Floer simple if
rk �HFK(Y,K) = �H1(Y ;Z)�.
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A rationally fibered, Floer simple knot induces a tight contact structure

Proposition (Ni-V.)

Let K be a rationally fibered, Floer simple knot in a QHS3 Y . The contact

structure induced by the open book decomposition corresponding to the

fibration of (Y,K) is tight.
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L-space knots and a generalization

The Upsilon function and an application
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The semigroup of an algebraic knot is a subset S of Z!0.
For a singular point (C, z), let ϕ(t) = (x(t), y(t)) be a local analytic parametrization of C with
ϕ(0) = z = (z1, z2).
Then ϕ induces a map ϕ∗ : C[[x, y]] → C[[t]] by f(x, y) %→ f(x(t) − z1, y(t) − z2).
The map ord : C[[t]] → Z!0 maps a power series in one variable to its order at 0.

The image S ⊂ Z!0 of the composition ord ◦ ϕ∗ is closed under addition.

S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.



Algebraic knots and semigroups
An algebraic knot is the link of an isolated plane curve singular point.
An isolated plane curve singular point z is a point on a complex curve in C ⊂ C

2, such that C
is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small r > 0, C intersects the ball B(z, r) ⊂ C

2 transversally along a link L,
which is called an algebraic link.
If L is connected, it is called an algebraic knot.

The torus knot Tp,q is an algebraic knot.
(Consider the complex curve {(z1, z2) ∈ C

2|zq
1
− z

p
2

= 0}.)

The semigroup of an algebraic knot is a subset S of Z!0.
For a singular point (C, z), let ϕ(t) = (x(t), y(t)) be a local analytic parametrization of C with
ϕ(0) = z = (z1, z2).
Then ϕ induces a map ϕ∗ : C[[x, y]] → C[[t]] by f(x, y) %→ f(x(t) − z1, y(t) − z2).
The map ord : C[[t]] → Z!0 maps a power series in one variable to its order at 0.

The image S ⊂ Z!0 of the composition ord ◦ ϕ∗ is closed under addition.

S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.

The semigroup of the torus knot Tp,q is ⟨p, q⟩ ⊂ Z!0.



Algebraic knots and semigroups
An algebraic knot is the link of an isolated plane curve singular point.
An isolated plane curve singular point z is a point on a complex curve in C ⊂ C

2, such that C
is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small r > 0, C intersects the ball B(z, r) ⊂ C

2 transversally along a link L,
which is called an algebraic link.
If L is connected, it is called an algebraic knot.

The torus knot Tp,q is an algebraic knot.
(Consider the complex curve {(z1, z2) ∈ C

2|zq
1
− z

p
2

= 0}.)

The semigroup of an algebraic knot is a subset S of Z!0.
For a singular point (C, z), let ϕ(t) = (x(t), y(t)) be a local analytic parametrization of C with
ϕ(0) = z = (z1, z2).
Then ϕ induces a map ϕ∗ : C[[x, y]] → C[[t]] by f(x, y) %→ f(x(t) − z1, y(t) − z2).
The map ord : C[[t]] → Z!0 maps a power series in one variable to its order at 0.

The image S ⊂ Z!0 of the composition ord ◦ ϕ∗ is closed under addition.

S is defined to be the semigroup of the singular point / algebraic knot.
The semigroup is a well-defined invariant of algebraic knots.

The semigroup of the torus knot Tp,q is ⟨p, q⟩ ⊂ Z!0.

The semigroup and the Alexander polynomial determines each other.
Let SK be the semigroup of an algebraic knot K. Then ∆K(t) = (1 − t)(

∑
s∈SK

ts) in Z[[t]].



Algebraic knots and semigroups
An algebraic knot is the link of an isolated plane curve singular point.
An isolated plane curve singular point z is a point on a complex curve in C ⊂ C

2, such that C
is smooth at all points sufficiently close to z, with the exception of z itself.
For a sufficiently small r > 0, C intersects the ball B(z, r) ⊂ C

2 transversally along a link L,
which is called an algebraic link.
If L is connected, it is called an algebraic knot.

The torus knot Tp,q is an algebraic knot.
(Consider the complex curve {(z1, z2) ∈ C

2|zq
1
− z

p
2

= 0}.)

The semigroup of an algebraic knot is a subset S of Z!0.
For a singular point (C, z), let ϕ(t) = (x(t), y(t)) be a local analytic parametrization of C with
ϕ(0) = z = (z1, z2).
Then ϕ induces a map ϕ∗ : C[[x, y]] → C[[t]] by f(x, y) %→ f(x(t) − z1, y(t) − z2).
The map ord : C[[t]] → Z!0 maps a power series in one variable to its order at 0.

The image S ⊂ Z!0 of the composition ord ◦ ϕ∗ is closed under addition.

S is defined to be the semigroup of the singular point / algebraic knot.
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The semigroup and the Alexander polynomial determines each other.
Let SK be the semigroup of an algebraic knot K. Then ∆K(t) = (1 − t)(

∑
s∈SK

ts) in Z[[t]].

Example of the torus knot T3,7

Let K = T3,7. Its semigroup is SK = ⟨3, 7⟩ = {0, 3, 6, 7, 9, 10, 12} ∪ Z>12.

∆K(t) = 1−t+t3−t4+t+6−t8+t9−t11+t12 = (1−t)(1+t3+t6+t7+t9+t10+t12+
∑

s>12
ts).
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Question: For what L-space knots K is SK a semigroup (closed under
addition)?

An counterexample: the pretzel knot P (−2, 3, 7)
It is an L-space knot. Its SK = {0, 3, 5, 7, 8, 10} ∪ Z>10, which is not a semigroup.
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Main Results
Theorem (Hedden 2009)
Let K be a nontrivial L-space knot and q ! p(2g(K) − 1).
Then Kp,q is an L-space knot.

Theorem (Hom 2011)
The converse is true.

Theorem (W.)
Let K be a nontrivial L-space knot and q ! p(2g(K) − 1).
Then SK is a semigroup if and only if SKp,q is a semigroup.

Corollary
If an L-space knot K is an iterated torus knot, then SK is a
semigroup.
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The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

! ΥK(t) is a piecewise linear function of t on [0, 2].

! ΥK(t) = ΥK(2 − t).

! Υ−K(t) = −ΥK(t) and ΥK1#K2
(t) = ΥK1

(t) + ΥK2
(t).

! |ΥK(t)| " t · g4(K).



The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

! ΥK(t) is a piecewise linear function of t on [0, 2].

! ΥK(t) = ΥK(2 − t).

! Υ−K(t) = −ΥK(t) and ΥK1#K2
(t) = ΥK1

(t) + ΥK2
(t).

! |ΥK(t)| " t · g4(K).

For L-space knots: computable by the Alexander polynomial
The invariant ΥK(t) for an L-space knot is computed by the formula
ΥK(t) = max

0"2i"n
{m2i − t(g − α2i)}, where

m0 = 0

m2 = −2(α1 − α0)

· · ·

m2n = −2(α1 − α0) − · · ·− 2(α2n−1 − α2n−2).
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nonexistence of cobordism of minimal genus between some
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An Application

The Υ function
+

properties of the Alexander polynomial for algebraic knots
⇓

nonexistence of cobordism of minimal genus between some
pairs of algebraic knots (Feller-Krcatovich / W. 2015)

Corollary
Similar results for iterated torus L-space knots.



Thank you!
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knot K ⊂S3

surgery of slope r

new manifold S3
K

(r )

surgery of slope s

new manifold S3
K

(s)

S3
K

(r ) ∼=S3
K

(s) ?
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Definition

• Two Dehn surgeries S3
K

(r ) and S3
K

(s) are called cosmetic if
there is a homeomorphism h : S3

K
(r ) → S3

K
(s).
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Definition

• Two Dehn surgeries S3
K

(r ) and S3
K

(s) are called cosmetic if
there is a homeomorphism h : S3

K
(r ) → S3

K
(s).

• They are called truly cosmetic if h is orientation-preserving.
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Some examples

Example

• If K is an amphicheiral knot in S3, then S3
K

(r ) ∼= S3
K

(−r ).
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Some examples

Example

• If K is an amphicheiral knot in S3, then S3
K

(r ) ∼= S3
K

(−r ).

• If K is the unknot, then S3
K

(p/q) =L(p,q)
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Some examples

Example

• If K is an amphicheiral knot in S3, then S3
K

(r ) ∼= S3
K

(−r ).

• If K is the unknot, then S3
K

(p/q) =L(p,q) so

S3
K

(

p/q1
)

∼= S3
K

(

p/q2
)

iff ±q1 ≡ q±12 [mod p],

for relatively prime pairs of integers (p,q1) and (p,q2).
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Fact

Apart from these examples there are no known knots in S3

which admit cosmetic surgeries.
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The conjecture

Conjecture (A) in problem 1.81 of “Kirby list of problem in
low-dimensional topology”. Assume K is a non-trivial knot.
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The conjecture

Conjecture (A) in problem 1.81 of “Kirby list of problem in
low-dimensional topology”. Assume K is a non-trivial knot.

Conjecture (Cosmetic surgery conjecture)

Two surgeries with inequivalent slopes are never truly cosmetic.
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Main result

Let K be a hyperbolic knot in S3, and r ,s ∈Q∪ {∞} two distinct
exceptional slopes on ∂N (K ).
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Main result

Let K be a hyperbolic knot in S3, and r ,s ∈Q∪ {∞} two distinct
exceptional slopes on ∂N (K ).

Theorem (R.)

If S3
K

(r ) ∼= S3
K

(s) as oriented manifolds, then the surgery must
be irreducible, toroidal and non-Seifert fibred, moreover

{r ,s} = {+1,−1}.
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Consequences
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Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on
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Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

alternating hyperbolic knots in S3
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Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

alternating hyperbolic knots in S3

arborescent knots in S3
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Consequences

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

alternating hyperbolic knots in S3

arborescent knots in S3

non-trivial algebraic knots in S3.

Huygens C. Ravelomanana Exceptional Cosmetic Surgeries on S3



Consequences

Corollary (R.)

If a hyperbolic knot K ⊂ S3 admits an exceptional truly
cosmetic surgery then the Heegaard Floer correction term
of any 1/n (n ∈Z) surgery on K satisfies d(S3

K
(1/n)) = 0.
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Consequences

Corollary (R.)

If a hyperbolic knot K ⊂ S3 admits an exceptional truly
cosmetic surgery then the Heegaard Floer correction term
of any 1/n (n ∈Z) surgery on K satisfies d(S3

K
(1/n)) = 0.

If Y is the result of this surgery then:

|t0(K )|+2
n
∑

i=1

|ti (K )|≤ rankHFred(Y ).
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