LIGHTNING TALKS I TECH TOPOLOGY CONFERENCE December 5, 2015

Generating mapping class groups with torsion elements

Justin Lanier Georgia Tech

Generating Mod(S_g)

2g+1 Dehn twists generate. (Humphries)

Generating Mod(S_g)

	Order of elements	Number of elements	Genus
Luo	2	6(2g+1)	<i>g</i> ≥ 3
Brendle-Farb	2	6	<i>g</i> ≥ 3
Kassabov	2	5	<i>g</i> ≥ 5
	2	4	g ≥ 7
Monden	3	3	<i>g</i> ≥ 3
	4	4	<i>g</i> ≥ 3

Obstacle:

When do higher-order elements even exist in Mod(S_g)?

Theorem 1 (Lanier '15)

For $k \ge 5$ and $g \ge (k-1)(k-2)$, Mod (S_g) contains an element of order k.

Theorem 1 (Lanier '15) For $k \ge 5$ and $g \ge (k-1)(k-2)$, Mod(S_g) contains an element of order k.

Theorem 2 (Lanier '15) For $k \ge 5$ and $g \ge (k-1)(k-2)$, Mod (S_g) is generated by **4** elements of order k.

Theorem 1

Frobenius coin problem

Theorem 2

Step 1: Write T_c as a product of elements of order k.

Step 2: Find elements of order k taking c to the other curves.

Step 3: Optimize to 4 elements.

Further Questions

- Can 4 be further optimized?
- What is the last g for which an element of order k fails to exist?
- Can similar results be obtained for finite index subgroups of $Mod(S_g)$?

Further Questions

- Can 4 be further optimized?
- What is the last g for which an element of order k fails to exist?
- Can similar results be obtained for finite index subgroups of $Mod(S_g)$?

Thank you!

Justin Lanier Georgia Tech

Knots in $S^1 \times S^2$ with L-space surgeries

Faramarz Vafaee California Institute of Technology

December, 2015 joint with Yi Ni

Knots in $S^1 \times S^2$ admitting L-space fillings

• Focus: Knots in $S^1 \times S^2$ with L-space surgeries

Knots in $S^1 \times S^2$ admitting L-space fillings

- Focus: Knots in $S^1 \times S^2$ with L-space surgeries
- Example:
 - Start with a solid torus $V = S^1 \times D^2$ with meridian μ .
 - + Let $K \subset V$ be a *Berge-Gabai* knot, i.e. K has a non-trivial solid torus filling.
 - There is a slope λ such that $V' = V_{\lambda}(K)$ is another solid torus, with meridian μ' .
 - Dehn filling V along μ' will give us a lens space L.
 - K, when viewed as a knot in the lens space L, has an $S^1 \times S^2$ surgery; namely, $L_{\lambda}(K)$ has a genus one Heegaard splitting with the property that the meridians of the two solid tori coincide (this common meridian is μ').

Knots in $S^1 \times S^2$ admitting L-space fillings

- Focus: Knots in $S^1 \times S^2$ with L-space surgeries
- Example:
 - Start with a solid torus $V = S^1 \times D^2$ with meridian μ .
 - + Let $K \subset V$ be a *Berge-Gabai* knot, i.e. K has a non-trivial solid torus filling.
 - There is a slope λ such that $V' = V_{\lambda}(K)$ is another solid torus, with meridian μ' .
 - Dehn filling V along $\mu^{'}$ will give us a lens space L.
 - K, when viewed as a knot in the lens space L, has an $S^1 \times S^2$ surgery; namely, $L_{\lambda}(K)$ has a genus one Heegaard splitting with the property that the meridians of the two solid tori coincide (this common meridian is μ').
- Any lens space obtainable by longitudinal surgery on some knots in $S^1 \times S^2$ may be obtained this way. (Rasmussen)

Knots in S^3 with L-space surgeries

- $K \subset S^3$ with some L-space surgery fibered. (Ni)
- K induces the tight contact structure on S^3 .
- K is strongly quasi positive. (Hedden)

Knots in L-spaces admitting $S^1 \times S^2$ fillings

Theorem (Ni-V.)

Suppose $L \subset S^1 \times S^2$ is a knot with an L-space surgery. Then the complement of L in $S^1 \times S^2$ fibers over S^1 .

Proposition (Ni-V.)

If K is a knot in an L-space Y with some $S^1 \times S^2$ surgery, then K is Floer simple.

Knots in L-spaces admitting $S^1 \times S^2$ fillings

Theorem (Ni-V.)

Suppose $L \subset S^1 \times S^2$ is a knot with an L-space surgery. Then the complement of L in $S^1 \times S^2$ fibers over S^1 .

Proposition (Ni-V.)

If K is a knot in an L-space Y with some $S^1 \times S^2$ surgery, then K is Floer simple.

• Recall: A knot K in a $\mathbb{Q}HS^3$ Y is Floer simple if rk $\widehat{HFK}(Y,K) = |H_1(Y;\mathbb{Z})|.$

A rationally fibered, Floer simple knot induces a tight contact structure

Proposition (Ni-V.)

Let K be a rationally fibered, Floer simple knot in a $\mathbb{Q}HS^3$ Y. The contact structure induced by the open book decomposition corresponding to the fibration of (Y, K) is tight.

Thank you

Semigroups of L-space Cable Knots and the Upsilon Function

> Shida Wang Indiana University

> > December 2015

Tech Topology Conference Georgia Institute of Technology

うして ふゆう ふほう ふほう ふしつ

L-space knots and a generalization

The Upsilon function and an application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

L-space knots and a generalization

The Upsilon function and an application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

An algebraic knot is the link of an isolated plane curve singular point.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L, which is called an algebraic link.

ション ふゆ アメリア ション ひゃく

If L is connected, it is called an algebraic knot.

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L, which is called an algebraic link. If L is connected, it is called an algebraic knot.

うして ふゆう ふほう ふほう ふしつ

The torus knot $T_{p,q}$ is an algebraic knot.

(Consider the complex curve $\{(z_1, z_2) \in \mathbb{C}^2 | z_1^q - z_2^p = 0\}$.)

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L, which is called an algebraic link.

If L is connected, it is called an algebraic knot.

The torus knot $T_{p,q}$ is an algebraic knot.

(Consider the complex curve $\{(z_1, z_2) \in \mathbb{C}^2 | z_1^q - z_2^p = 0\}$.)

The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geq 0}$.

For a singular point (C, z), let $\varphi(t) = (x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0) = z = (z_1, z_2).$ Then φ induces a map $\varphi^* \colon \mathbb{C}[[x, y]] \to \mathbb{C}[[t]]$ by $f(x, y) \mapsto f(x(t) - z_1, y(t) - z_2)$. The map ord: $\mathbb{C}[[t]] \to \mathbb{Z}_{\geq 0}$ maps a power series in one variable to its order at 0. The image $S \subset \mathbb{Z}_{\geq 0}$ of the composition ord $\circ \varphi^*$ is closed under addition. S is defined to be the semigroup of the singular point / algebraic knot. The semigroup is a well-defined invariant of algebraic knots.

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L. which is called an algebraic link. If L is connected, it is called an algebraic knot.

The torus knot $T_{p,q}$ is an algebraic knot.

(Consider the complex curve $\{(z_1, z_2) \in \mathbb{C}^2 | z_1^q - z_2^p = 0\}$.)

The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geq 0}$.

For a singular point (C, z), let $\varphi(t) = (x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0) = z = (z_1, z_2).$ Then φ induces a map $\varphi^* : \mathbb{C}[[x, y]] \to \mathbb{C}[[t]]$ by $f(x, y) \mapsto f(x(t) - z_1, y(t) - z_2)$. The map ord: $\mathbb{C}[[t]] \to \mathbb{Z}_{\geq 0}$ maps a power series in one variable to its order at 0. The image $S \subset \mathbb{Z}_{\geq 0}$ of the composition ord $\circ \varphi^*$ is closed under addition. S is defined to be the semigroup of the singular point / algebraic knot. The semigroup is a well-defined invariant of algebraic knots.

The semigroup of the torus knot $T_{p,q}$ is $\langle p,q \rangle \subset \mathbb{Z}_{\geq 0}$.

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L, which is called an algebraic link.

If L is connected, it is called an algebraic knot.

The torus knot $T_{p,q}$ is an algebraic knot.

(Consider the complex curve $\{(z_1, z_2) \in \mathbb{C}^2 | z_1^q - z_2^p = 0\}$.)

The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geq 0}$.

For a singular point (C, z), let $\varphi(t) = (x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0) = z = (z_1, z_2).$ Then φ induces a map $\varphi^* \colon \mathbb{C}[[x, y]] \to \mathbb{C}[[t]]$ by $f(x, y) \mapsto f(x(t) - z_1, y(t) - z_2)$. The map ord: $\mathbb{C}[[t]] \to \mathbb{Z}_{\geq 0}$ maps a power series in one variable to its order at 0. The image $S \subset \mathbb{Z}_{\geq 0}$ of the composition ord $\circ \varphi^*$ is closed under addition. S is defined to be the semigroup of the singular point / algebraic knot. The semigroup is a well-defined invariant of algebraic knots.

The semigroup of the torus knot $T_{p,q}$ is $\langle p,q \rangle \subset \mathbb{Z}_{\geq 0}$.

The semigroup and the Alexander polynomial determines each other. Let S_K be the semigroup of an algebraic knot K. Then $\Delta_K(t) = (1-t)(\sum_{s \in S_{K'}} t^s)$ in $\mathbb{Z}[[t]]$.

An algebraic knot is the link of an isolated plane curve singular point.

An isolated plane curve singular point z is a point on a complex curve in $C \subset \mathbb{C}^2$, such that C is smooth at all points sufficiently close to z, with the exception of z itself. For a sufficiently small r > 0, C intersects the ball $B(z, r) \subset \mathbb{C}^2$ transversally along a link L, which is called an algebraic link.

If L is connected, it is called an algebraic knot.

The torus knot $T_{p,q}$ is an algebraic knot.

(Consider the complex curve $\{(z_1, z_2) \in \mathbb{C}^2 | z_1^q - z_2^p = 0\}$.)

The semigroup of an algebraic knot is a subset S of $\mathbb{Z}_{\geq 0}$.

For a singular point (C, z), let $\varphi(t) = (x(t), y(t))$ be a local analytic parametrization of C with $\varphi(0) = z = (z_1, z_2)$. Then φ induces a map $\varphi^* : \mathbb{C}[[x, y]] \to \mathbb{C}[[t]]$ by $f(x, y) \mapsto f(x(t) - z_1, y(t) - z_2)$. The map ord: $\mathbb{C}[[t]] \to \mathbb{Z}_{\geq 0}$ maps a power series in one variable to its order at 0. The image $S \subset \mathbb{Z}_{\geq 0}$ of the composition ord $\circ \varphi^*$ is closed under addition. S is defined to be the semigroup of the singular point / algebraic knot. The semigroup is a well-defined invariant of algebraic knots.

The semigroup of the torus knot $T_{p,q}$ is $\langle p,q \rangle \subset \mathbb{Z}_{\geq 0}$.

The semigroup and the Alexander polynomial determines each other. Let S_K be the semigroup of an algebraic knot K. Then $\Delta_K(t) = (1-t)(\sum_{s \in S_K} t^s)$ in $\mathbb{Z}[[t]]$.

Example of the torus knot $T_{3,7}$

Let $K = T_{3,7}$. Its semigroup is $S_K = \langle 3,7 \rangle = \{0,3,6,7,9,10,12\} \cup \mathbb{Z}_{>12}$. $\Delta_K(t) = 1 - t + t^3 - t^4 + t + 6 - t^8 + t^9 - t^{11} + t^{12} = (1 - t)(1 + t^3 + t^6 + t^7 + t^9 + t^{10} + t^{12} + \sum_{s>12} t^s_{\frac{s}{s}})$.

L-space knots and a generalization

The Upsilon function and an application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

L-Space Knot and a Generalization

Definition(Ozsváth-Szabó 2005)

The knot K is called an *L*-space knot if some positive surgery on K gives a 3-manifold that is an *L*-space.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで
Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

ション ふゆ マ キャット マックタン

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1 , and they alternate in sign.

There is an increasing sequence of integers $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{2n} = 2g(K)$ such that the Alexander polynomial of K is $\Delta_K(t) = \sum_{i=0}^{2n} (-1)^i t^{\alpha_i}$.

うして ふゆう ふほう ふほう ふしつ

Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1 , and they alternate in sign.

There is an increasing sequence of integers $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{2n} = 2g(K)$ such that the Alexander polynomial of K is $\Delta_K(t) = \sum_{i=0}^{2n} (-1)^i t^{\alpha_i}$.

うして ふゆう ふほう ふほう ふしつ

Example: $\Delta_{T_{3,7}}(t) = 1 - t + t^3 - t^4 + t^6 - t^8 + t^9 - t^{11} + t^{12}$

Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1 , and they alternate in sign.

There is an increasing sequence of integers $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{2n} = 2g(K)$ such that the Alexander polynomial of K is $\Delta_K(t) = \sum_{i=0}^{2n} (-1)^i t^{\alpha_i}$.

Example: $\Delta_{T_{3,7}}(t) = 1 - t + t^3 - t^4 + t^6 - t^8 + t^9 - t^{11} + t^{12}$

Define S_K to be the subset of $\mathbb{Z}_{\geq 0}$ satisfying $\sum_{s \in S_K} t^s = \frac{\Delta_K(t)}{1-t}$ in $\mathbb{Z}[[t]]$.

That is, $S_K = \{\alpha_0, \cdots, \alpha_1 - 1, \alpha_2, \cdots, \alpha_3 - 1, \cdots, \alpha_{2n-2}, \cdots, \alpha_{2n-1} - 1, \alpha_{2n}\} \cup \mathbb{Z}_{>\alpha_{2n}}$. For algebraic knots, S_K a semigroup (closed under addition).

うして ふゆう ふほう ふほう ふしつ

Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1 , and they alternate in sign.

There is an increasing sequence of integers $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{2n} = 2g(K)$ such that the Alexander polynomial of K is $\Delta_K(t) = \sum_{i=0}^{2n} (-1)^i t^{\alpha_i}$.

Example: $\Delta_{T_{3,7}}(t) = 1 - t + t^3 - t^4 + t^6 - t^8 + t^9 - t^{11} + t^{12}$

Define S_K to be the subset of $\mathbb{Z}_{\geq 0}$ satisfying $\sum_{s \in S_K} t^s = \frac{\Delta_K(t)}{1-t}$ in $\mathbb{Z}[[t]]$.

That is, $S_K = \{\alpha_0, \cdots, \alpha_1 - 1, \alpha_2, \cdots, \alpha_3 - 1, \cdots, \alpha_{2n-2}, \cdots, \alpha_{2n-1} - 1, \alpha_{2n}\} \cup \mathbb{Z}_{>\alpha_{2n}}$. For algebraic knots, S_K a semigroup (closed under addition).

Question: For what L-space knots K is S_K a semigroup (closed under addition)?

うして ふゆう ふほう ふほう ふしつ

Definition(Ozsváth-Szabó 2005)

The knot K is called an L-space knot if some positive surgery on K gives a 3-manifold that is an L-space.

Theorem (Hedden 2009)

Any algebraic knot is an L-space knot.

The nonzero coefficients of the Alexander polynomial of an L-space knot are all ± 1 , and they alternate in sign.

There is an increasing sequence of integers $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_{2n} = 2g(K)$ such that the Alexander polynomial of K is $\Delta_K(t) = \sum_{i=0}^{2n} (-1)^i t^{\alpha_i}$.

Example: $\Delta_{T_{3,7}}(t) = 1 - t + t^3 - t^4 + t^6 - t^8 + t^9 - t^{11} + t^{12}$

Define S_K to be the subset of $\mathbb{Z}_{\geq 0}$ satisfying $\sum_{s \in S_K} t^s = \frac{\Delta_K(t)}{1-t}$ in $\mathbb{Z}[[t]]$.

That is, $S_K = \{\alpha_0, \cdots, \alpha_1 - 1, \alpha_2, \cdots, \alpha_3 - 1, \cdots, \alpha_{2n-2}, \cdots, \alpha_{2n-1} - 1, \alpha_{2n}\} \cup \mathbb{Z}_{>\alpha_{2n}}$. For algebraic knots, S_K a semigroup (closed under addition).

Question: For what L-space knots K is S_K a semigroup (closed under addition)?

3

An counterexample: the pretzel knot P(-2,3,7)It is an *L*-space knot. Its $S_K = \{0,3,5,7,8,10\} \cup \mathbb{Z}_{>10}$, which is not a semigroup.

Main Results

Theorem (Hedden 2009)

Let K be a nontrivial L-space knot and $q \ge p(2g(K) - 1)$. Then $K_{p,q}$ is an L-space knot.

うして ふゆう ふほう ふほう ふしつ

Theorem (Hom 2011)

The converse is true.

Main Results

Theorem (Hedden 2009)

Let K be a nontrivial L-space knot and $q \ge p(2g(K) - 1)$. Then $K_{p,q}$ is an L-space knot.

Theorem (Hom 2011) The converse is true.

Theorem (W.)

Let K be a nontrivial L-space knot and $q \ge p(2g(K) - 1)$. Then S_K is a semigroup if and only if $S_{K_{p,q}}$ is a semigroup.

うして ふゆう ふほう ふほう ふしつ

Main Results

Theorem (Hedden 2009)

Let K be a nontrivial L-space knot and $q \ge p(2g(K) - 1)$. Then $K_{p,q}$ is an L-space knot.

Theorem (Hom 2011) The converse is true.

Theorem (W.)

Let K be a nontrivial L-space knot and $q \ge p(2g(K) - 1)$. Then S_K is a semigroup if and only if $S_{K_{p,q}}$ is a semigroup.

Corollary

If an L-space knot K is an iterated torus knot, then S_K is a semigroup.

Algebraic knots and semigroups

L-space knots and a generalization

The Upsilon function and an application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

• $\Upsilon_K(t)$ is a piecewise linear function of t on [0, 2].

$$\blacktriangleright \ \Upsilon_K(t) = \Upsilon_K(2-t).$$

 $\blacktriangleright \ \Upsilon_{-K}(t) = -\Upsilon_K(t) \text{ and } \Upsilon_{K_1 \# K_2}(t) = \Upsilon_{K_1}(t) + \Upsilon_{K_2}(t).$

ション ふゆ マ キャット マックタン

 $|\Upsilon_K(t)| \leqslant t \cdot g_4(K).$

The Υ Function (Ozsváth-Stipsicz-Szabó 2014)

Properties

• $\Upsilon_K(t)$ is a piecewise linear function of t on [0, 2].

$$\blacktriangleright \ \Upsilon_K(t) = \Upsilon_K(2-t).$$

•
$$\Upsilon_{-K}(t) = -\Upsilon_K(t)$$
 and $\Upsilon_{K_1 \# K_2}(t) = \Upsilon_{K_1}(t) + \Upsilon_{K_2}(t)$.

 $|\Upsilon_K(t)| \leqslant t \cdot g_4(K).$

For *L*-space knots: computable by the Alexander polynomial The invariant $\Upsilon_K(t)$ for an *L*-space knot is computed by the formula $\Upsilon_K(t) = \max_{0 \leq 2i \leq n} \{m_{2i} - t(g - \alpha_{2i})\},$ where

$$m_{0} = 0$$

$$m_{2} = -2(\alpha_{1} - \alpha_{0})$$

...

$$m_{2n} = -2(\alpha_{1} - \alpha_{0}) - \dots - 2(\alpha_{2n-1} - \alpha_{2n-2}).$$

・ロト ・母ト ・ヨト ・ヨト ・ヨー のへで

An Application

The Υ function + properties of the Alexander polynomial for algebraic knots \downarrow nonexistence of cobordism of minimal genus between some pairs of algebraic knots (Feller-Krcatovich / W. 2015)

うして ふゆう ふほう ふほう ふしつ

An Application

うして ふゆう ふほう ふほう ふしつ

Corollary

Similar results for iterated torus L-space knots.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Lifting Mapping Class Group of a Superelliptic Cover

Becca Winarski University of Wisconsin-Milwaukee

Joint work with Ty Ghaswala

In general, we have subgroups

$$LMCG(X) \stackrel{fi.}{<} MCG(X)$$

 $SMCG(\tilde{X}) < MCG(\tilde{X})$
s.t. $LMCG(X) \cong SMCG(\tilde{X}) / Deck$

In the hyperelliptic case, LMCG(X) = MCG(X) Our work:

Find a presentation for LMCG(X) for superelliptic covers

odd half twists even half twists parity flips

Relations

- · Braid relations
- · Commutator relations
- · Odd permutations Even permutations
- · Half twists squared are Dehn twists
- · Conjugation relations

An A_{∞} Structure for Legendrians from Generating Families

Ziva Myer

Bryn Mawr College Advisor: Lisa Traynor

December 5, 2015

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Legendrian submanifold $\Lambda \subset J^1 M$ $\mathcal{T}\Lambda \subset \xi$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Legendrian submanifold $\Lambda \subset J^1 M$ $\mathcal{T}\Lambda \subset \xi$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Important feature: Reeb Chords

Legendrian submanifold $\Lambda \subset J^1 M$ $T\Lambda \subset \xi$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Important feature: Reeb Chords

Goal: Define algebraic invariants for Legendrians from Reeb chords.

Pseudoholomorphic Curves

Pseudoholomorphic Curves

• DGA
$$(\mathcal{A}, \partial)$$
,
 $\mathcal{A} = \bigoplus_{k=0}^{\infty} A^{\otimes k}$

Pseudoholomorphic Curves

Pseudoholomorphic Curves

• Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Pseudoholomorphic Curves

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families
Techniques for Invariants

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

• ?

Techniques for Invariants

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

• ?

• Generating Family

$$F: M \times \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\Lambda = \{ (x, \frac{\partial F}{\partial x}(x, e), F(x, e)) | \frac{\partial F}{\partial e}(x, e) = 0 \}$$

Techniques for Invariants

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} A^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

- ?
- Generating Family

$$F: M \times \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\Lambda = \{ (x, \frac{\partial F}{\partial x}(x, e), F(x, e)) | \frac{\partial F}{\partial e}(x, e) = 0 \}$$

• ${GH^*(F)}_F = H^*_{Morse}(C_+(w_F))$

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

• ?

• Generating Family

$$F: M \times \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\Lambda = \{ (x, \frac{\partial F}{\partial x}(x, e), F(x, e)) | \frac{\partial F}{\partial e}(x, e) = 0 \}$$

• $\{GH^*(F)\}_F = H^*_{Morse}(C_+(w_F))$ • ?

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

• ?

• Generating Family

$$F: M \times \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\Lambda = \{ (x, \frac{\partial F}{\partial x}(x, e), F(x, e)) | \frac{\partial F}{\partial e}(x, e) = 0 \}$$

• $\{GH^*(F)\}_F = H^*_{Morse}(C_+(w_F))$ • $\exists m_k : C_+(w_F)^{\otimes k} \longrightarrow C_+(w_F)$?

Pseudoholomorphic Curves

• DGA (\mathcal{A}, ∂) , $\mathcal{A} = \bigoplus_{k=0}^{\infty} \mathcal{A}^{\otimes k}$ ∂ counts:

- Augmentation $\epsilon : \mathcal{A} \longrightarrow \mathbb{Z}_2$ $\partial^{\epsilon} : \mathcal{A} \longrightarrow \mathcal{A}$
- $\{LCH^*(\epsilon)\}_{\epsilon}$
- A_{∞} -algebra $m_k : A^{\otimes k} \longrightarrow A$ [Etnyre-Sabloff-et al.]

Generating Families

• ?

• Generating Family

$$F: M \times \mathbb{R}^N \longrightarrow \mathbb{R}$$
$$\Lambda = \{ (x, \frac{\partial F}{\partial x}(x, e), F(x, e)) | \frac{\partial F}{\partial e}(x, e) = 0 \}$$

- $\{GH^*(F)\}_F = H^*_{Morse}(C_+(w_F))$
- $\exists m_k : C_+(w_F)^{\otimes k} \longrightarrow C_+(w_F)$? Yes! (My thesis work)

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees $m_k: C_+^{\otimes k}(w_F) \longrightarrow C_+(w_F)$ counts isolated trees:

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees $m_k: C_+^{\otimes k}(w_F) \longrightarrow C_+(w_F)$ counts isolated trees:

 A_{∞} relations come from compactifying 1-dimensional spaces of trees.

$$\sum_{i+j+k=l} m_{i+1+k} \circ (1^{\otimes i} \otimes m_j \otimes 1^{\otimes k}) = 0$$

• Generalize to (higher dimensional) links

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in T^*M with generating families

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in T^*M with generating families
- Connections to sheaf theory

- Generalize to (higher dimensional) links
- Extend theory to Lagrangians in T^*M with generating families
- Connections to sheaf theory

Thank you!

Exceptional Cosmetic Surgeries on S^3

Huygens C. Ravelomanana

University of Georgia

December 05, 2015

Huygens C. Ravelomanana Exceptional Cosmetic Surgeries on S³

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

(신문) (신문)

2

Definition

• Two Dehn surgeries $S_K^3(r)$ and $S_K^3(s)$ are called cosmetic if there is a homeomorphism $h: S_K^3(r) \to S_K^3(s)$.

Definition

- Two Dehn surgeries $S_K^3(r)$ and $S_K^3(s)$ are called cosmetic if there is a homeomorphism $h: S_K^3(r) \to S_K^3(s)$.
- They are called truly cosmetic if h is orientation-preserving.

Huygens C. Ravelomanana Exceptional Cosmetic Surgeries on S^3

- 12

Example

• If K is an amphicheiral knot in S^3 , then $S_K^3(r) \cong S_K^3(-r)$.

Image: A matrix and a matrix

æ

Example

- If K is an amphicheiral knot in S^3 , then $S_K^3(r) \cong S_K^3(-r)$.
- If K is the unknot, then $S_K^3(p/q) = L(p,q)$

Example

- If K is an amphicheiral knot in S^3 , then $S^3_K(r) \cong S^3_K(-r)$.
- If K is the unknot, then $S_K^3(p/q) = L(p,q)$ so

$$S_K^3\left(p/q_1\right) \cong S_K^3\left(p/q_2\right) \quad \text{iff} \ \ \pm q_1 \equiv q_2^{\pm 1} \ [\text{mod} \ p],$$

for relatively prime pairs of integers (p, q_1) and (p, q_2) .

Fact

Apart from these examples there are no known knots in S^3 which admit cosmetic surgeries.

< ∃ >

3

Conjecture (A) in problem 1.81 of "Kirby list of problem in low-dimensional topology". Assume K is a non-trivial knot.

3

Conjecture (A) in problem 1.81 of "Kirby list of problem in low-dimensional topology". Assume K is a non-trivial knot.

Conjecture (Cosmetic surgery conjecture)

Two surgeries with inequivalent slopes are never truly cosmetic.

Let K be a hyperbolic knot in S^3 , and $r, s \in \mathbb{Q} \cup \{\infty\}$ two distinct exceptional slopes on $\partial \mathcal{N}(K)$.

3

Let K be a hyperbolic knot in S^3 , and $r, s \in \mathbb{Q} \cup \{\infty\}$ two distinct exceptional slopes on $\partial \mathcal{N}(K)$.

Theorem (R.)

If $S_K^3(r) \cong S_K^3(s)$ as oriented manifolds, then the surgery must be irreducible, toroidal and non-Seifert fibred, moreover

 $\{r,s\} = \{+1,-1\}.$

Huygens C. Ravelomanana Exceptional Cosmetic Surgeries on S^3

æ

- 4 回 ト 4 回 ト 4 回

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

→ < ∃ →</p>

æ

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

 \blacksquare alternating hyperbolic knots in S^3

Corollary (R.)

There are no exceptional truly cosmetic surgeries on

- alternating hyperbolic knots in S^3
- \blacksquare arborescent knots in S^3

→ < ∃ →</p>
Corollary (R.)

There are no exceptional truly cosmetic surgeries on

- alternating hyperbolic knots in S^3
- arborescent knots in S^3

• non-trivial algebraic knots in S^3 .

Corollary (R.)

■ If a hyperbolic knot $K \subset S^3$ admits an exceptional truly cosmetic surgery then the Heegaard Floer correction term of any 1/n $(n \in \mathbb{Z})$ surgery on K satisfies $d(S_K^3(1/n)) = 0$.

Corollary (R.)

- If a hyperbolic knot $K \subset S^3$ admits an exceptional truly cosmetic surgery then the Heegaard Floer correction term of any 1/n $(n \in \mathbb{Z})$ surgery on K satisfies $d(S_K^3(1/n)) = 0$.
- If Y is the result of this surgery then:

$$|t_0(K)| + 2\sum_{i=1}^n |t_i(K)| \le \operatorname{rank} HF_{\operatorname{red}}(Y).$$

The Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spheres, Tori, and outer automorphisms of The free group

Funda Gultepe

University of Illinois at Urbana-Champaign