Lightning Talks II Tech Topology Conference

December 6, 2015

Penner's conjecture

Balázs Strenner
strenner@math.ias.edu

School of Mathematics
Institute for Advanced Study
December 5, 2015

Mapping class groups

S_{g} - closed orientable surface of genus g
$\operatorname{Mod}\left(S_{g}\right)=\operatorname{Homeo}^{+}\left(S_{g}\right) /$ isotopy
Theorem (Nielsen-Thurston classification)
Every $f \in \operatorname{Mod}\left(S_{g}\right)$ is either finite order, reducible or pseudo-Anosov.

Dehn twist
Finite order

Pseudo-Anosov

Penner's construction

$A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}$ filling multicurves. Any product of $T_{a_{i}}$ and $T_{b_{j}}^{-1}$ containing each of these Dehn twists at least once is pA .

Conjecture (Penner, 1988)

Every pseudo-Anosov mapping class has a power arising from Penner's construction.

Conjecture (Penner, 1988)

Every pseudo-Anosov mapping class has a power arising from Penner's construction.

Theorem (Shin-S.)
Penner's conjecture is false for $S_{g, n}$ when $3 g+n \geq 5$.

Theorem (Shin-S.)
Galois conjugates of Penner stretch factors all lie off the unit circle.

Theorem (Shin-S.)
Galois conjugates of Penner stretch factors all lie off the unit circle.
Sketch of the proof.

1. Every Dehn twist in Penner's construction can be described by a matrix. \Longrightarrow Every Penner pA can be described by a matrix.

Theorem (Shin-S.)
Galois conjugates of Penner stretch factors all lie off the unit circle.
Sketch of the proof.

1. Every Dehn twist in Penner's construction can be described by a matrix. \Longrightarrow Every Penner pA can be described by a matrix.
2. Need to show that such matrices cannot have eigenvalues on the unit circle.

Theorem (Shin-S.)
Galois conjugates of Penner stretch factors all lie off the unit circle.
Sketch of the proof.

1. Every Dehn twist in Penner's construction can be described by a matrix. \Longrightarrow Every Penner pA can be described by a matrix.
2. Need to show that such matrices cannot have eigenvalues on the unit circle.
3. I.e., they cannot act on 2-dimensional invariant subspaces by rotations.
4. Construct a height function that is increasing after every iteration.

Example

$$
\begin{aligned}
& Q_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& Q_{2}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

An increasing height function: $h(x, y)=x y$.

Thank you!

Optimal cobordisms between knots

David Krcatovich

Rice University
Joint with Peter Feller (Boston College)

6th December 2015

The "cobordism distance" between two knots K and J is

$$
d(K, J)=\min \left\{g(\Sigma) \mid \Sigma \text { sm. emb. in } S^{3} \times[0,1], \partial \Sigma=K \sqcup r J\right\}
$$

The "cobordism distance" between two knots K and J is

$$
d(K, J)=\min \left\{g(\Sigma) \mid \Sigma \text { sm. emb. in } S^{3} \times[0,1], \partial \Sigma=K \sqcup r J\right\}
$$

The "cobordism distance" between two knots K and J is

$$
d(K, J)=\min \left\{g(\Sigma) \mid \Sigma \text { sm. emb. in } S^{3} \times[0,1], \partial \Sigma=K \sqcup r J\right\}
$$

$d(K$, unknot $)=g_{4}(K)$

The "cobordism distance" between two knots K and J is

$$
d(K, J)=\min \left\{g(\Sigma) \mid \Sigma \text { sm. emb. in } S^{3} \times[0,1], \partial \Sigma=K \sqcup r J\right\}
$$

$d(K$, unknot $)=g_{4}(K)$ triangle inequality: $d(K, J) \geq\left|g_{4}(K)-g_{4}(J)\right|$

If $d(K, J)=\left|g_{4}(K)-g_{4}(J)\right|$, a cobordism realizing this distance is "optimal"

If $d(K, J)=\left|g_{4}(K)-g_{4}(J)\right|$, a cobordism realizing this distance is "optimal"

Q: When do optimal cobordisms exist?

Suppose V_{f} is the zero set of a polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$.

Suppose V_{f} is the zero set of a polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Then $K=V_{f} \cap S_{r}^{3}$ is generically a knot or link in S^{3}. And K bounds the surface $\Sigma_{K}=V_{f} \cap B_{r}^{4}$

(Rudolph, Boileau-Orevkov): K is a "quasipositive" knot

Thom conjecture (proven by Kronheimer and Mrowka) plus work of Rudolph: $g_{4}(K)=g\left(\Sigma_{K}\right)$.

Thom conjecture (proven by Kronheimer and Mrowka) plus work of Rudolph: $g_{4}(K)=g\left(\Sigma_{K}\right)$.
i.e., algebraic curves are minimal genus surfaces.

Thom conjecture (proven by Kronheimer and Mrowka) plus work of Rudolph: $g_{4}(K)=g\left(\Sigma_{K}\right)$.
i.e., algebraic curves are minimal genus surfaces.

If $K=V_{f} \cap S_{r}^{3}$ and $J=V_{f} \cap S_{R}^{3}$, then V_{f} provides an optimal cobordism from K to J.

Thom conjecture (proven by Kronheimer and Mrowka) plus work of Rudolph: $g_{4}(K)=g\left(\Sigma_{K}\right)$.
i.e., algebraic curves are minimal genus surfaces.

If $K=V_{f} \cap S_{r}^{3}$ and $J=V_{f} \cap S_{R}^{3}$, then V_{f} provides an optimal cobordism from K to J.

Theorem

Suppose K and J are quasipositive knots; K has braid index m, and J is the closure of a QP n-braid which contains k full twists. Then

$$
d(K, J) \geq g_{4}(K)-g_{4}(J)+k(n-m) .
$$

Corollary

If an algebraic cobordism exists between two knots, the one with bigger genus cannot have smaller braid index.

Corollary

If an algebraic cobordism exists between two knots, the one with bigger genus cannot have smaller braid index.

Corollary (Franks-Williams)

If a link L is the closure of a positive n-braid with a full twist, then n is the braid index of L.

Corollary

If an algebraic cobordism exists between two knots, the one with bigger genus cannot have smaller braid index.

Corollary (Franks-Williams)

If a link L is the closure of a positive n-braid with a full twist, then n is the braid index of L.

Corollary

If a knot K is the closure of a quasipositive n-braid with a full twist, then n is the braid index of K.

Proof of theorem uses Upsilon invariant from Heegaard Floer homology (Ozsváth - Stipsicz - Szabó), and the fact that for quasipositive knots, the slice-Bennequin inequality is sharp

Thank you!

Nontrivial examples of bridge trisection of knotted surfaces in S^{4}

Bo-hyun Kwon

Department of Mathematics
University of Georgia, Athens
bortire74@gmail.com
December 6, 2015

Definitions

Definition (by J.Gay and Kirby)

Let X be a closed, connected, oriented, smooth 4-manifold. A $\left(g, k_{1}, k_{2}, k_{3}\right)$-trisection of X is a decomposition $X=X_{1} \cup X_{2} \cup X_{3}$, such that
(1) $X_{i} \equiv \vdash^{k_{i}}\left(S^{1} \times B^{3}\right)$,
(2) $H_{i j}=X_{i} \cap X_{j}$ is a genus g handlebody, and
(3) $\Sigma=X_{1} \cap X_{2} \cap X_{3}$ is a closed surface of genus g

Definition

The 0 -trisection of S^{4} is a decomposition $S^{4}=X_{1} \cup X_{2} \cup X_{3}$, such that
(1) X_{i} is a 4-ball,
(2) $B_{i j}=X_{i} \cap X_{j}=\partial X_{i} \cap \partial X_{j}$ is a 3-ball and
(3) $\Sigma=X_{1} \cap X_{2} \cap X_{3}=B_{12} \cap B_{23} \cap B_{31}$ is a 2-sphere.

Definitions

A trivial c-disk system is a pair (X, \mathcal{D}) where X is a 4-ball and $\mathcal{D} \subset X$ is a collection of c properly embedded disks \mathcal{D} which are simultaneously isotopic into the boundary of X.

Definition (by J. Meier and A. Zupan)

A $\left(b ; c_{1}, c_{2}, c_{3}\right)$ - bridge trisection \mathcal{T} of a knotted surface $\mathcal{K} \subset S^{4}$ is a decomposition of the form
$\left(S^{4}, \mathcal{K}\right)=\left(X_{1}, \mathcal{D}_{1}\right) \cup\left(X_{2}, \mathcal{D}_{2}\right) \cup\left(X_{3}, \mathcal{D}_{3}\right)$ such that
(1) $S^{4}=X_{1} \cup X_{2} \cup X_{3}$ is the standard genus zero trisection of S^{4},
(2) $\left(X_{i}, \mathcal{D}_{i}\right)$ is a trivial c_{i}-disk system, and
(3) $\left(B_{i j}, \alpha_{i j}\right)=\left(X_{i}, \mathcal{D}_{i}\right) \cap\left(X_{j}, \mathcal{D}_{j}\right)$ is a b-strand trivial tangle.

Theorem (Meier, Zupan)

Every knotted surface \mathcal{K} in S^{4} admits a bridge trisection.

Figure: The seven standard bridge trisections:
$(1,1): S^{2},(2,1),(2,1): \mathbb{R P}^{2},(3,1),(3,1),(3,1),(3,1): \mathbb{T}^{2}$

Any trisection obtained as the connected sum of some number of these standard trisections, or any stabilization thereof, will also be called standard.

Theorem (Meier, Zupan)

Every knotted surface \mathcal{K} with $b(\mathcal{K}) \leq 3$ is unknotted and any bridge trisection of \mathcal{K} is standard.

Theorem (Meier, Zupan)

Any two bridge trisections of a given pair $\left(S^{4}, \mathcal{K}\right)$ become equivalent after a sequence of stabilizations and destabilizations.

Theorem (Meier, Zupan)

Any two tri-plane diagrams for a given knontted surface are related by a finite sequence of tri-plane moves. (Reidemeister move, mutual braid transpositions, stabilization/destabilization.)

Figure: A (4, 2)-bridge trisection: Spun Trefoil

Figure: A (6, 2)-bridge trisection: Spun Torus from Trefoil Knot

Propostion[Meier, Zupan]
If \mathcal{K} is orientable and admits a ($b ; c_{1}, 1, c_{3}$)-bridge trisection, then \mathcal{K} is topologically unknotted.

Question

Can a surface admitting a $\left(b ; c_{1}, 1, c_{3}\right)$-bridge trisection be smoothly knotted?.

Interesting examples

Figure: $A(4,1)$-bridge trisection: $\mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$

Figure: $\mathrm{A}(5,1,2,2)$-bridge trisection: \mathbb{T}^{2} or $\mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$

Link maps in the 4 -sphere
 Tech Topology Conference, Georgia Tech 2015

Ash Lightfoot
Indiana University

December 6, 2015

Talk Outline / Result

1. Link maps, link homotopy
2. Kirk's σ invariant
3. Open problem: does $\sigma=0 \Rightarrow$ link nullhomotopic?
4. Result: $\sigma=0 \Rightarrow$ get "clean" Whitney discs
$\Rightarrow \quad+$ ve evidence to affirmative answer

Classifying link maps

Link map:
$f: S_{+}^{p} \cup S_{-}^{q} \rightarrow S^{n}, \quad f\left(S_{+}^{p}\right) \cap f\left(S_{-}^{q}\right)=\varnothing$

Classifying link maps

Link map:
$f: S_{+}^{p} \cup S_{-}^{q} \rightarrow S^{n}, \quad f\left(S_{+}^{p}\right) \cap f\left(S_{-}^{q}\right)=\varnothing$
Link homotopy $=$ homotopy through link maps
(the two spheres stay disjoint but may self-intersect)

Classifying link maps

Link map:

$f: S_{+}^{p} \cup S_{-}^{q} \rightarrow S^{n}$,

$$
f\left(S_{+}^{p}\right) \cap f\left(S_{-}^{q}\right)=\varnothing
$$

Link homotopy $=$ homotopy through link maps
(the two spheres stay disjoint but may self-intersect)
$L M_{p, q}^{n}=$ set of link maps $S_{+}^{p} \cup S_{-}^{q} \rightarrow S^{n}$ mod link homotopy

Classifying link maps

$L M_{1,1}^{3} \xrightarrow[\cong]{\text { linking } \#} \mathbb{Z}$

Classifying link maps

$$
\begin{aligned}
& L M_{1,1}^{3} \xrightarrow{\cong} \xrightarrow{\text { linking } \#} \mathbb{Z} \\
& L M_{2,2}^{4} \xrightarrow[\text { (Kirk) }]{\left(\sigma_{+}, \sigma_{-}\right)} \mathbb{Z}[t] \oplus \mathbb{Z}[t]
\end{aligned}
$$

Classifying link maps

$L M_{2,2}^{4} \xrightarrow[\text { (Kirk) }]{\left(\sigma_{+}, \sigma_{-}\right)} \mathbb{Z}[t] \oplus \mathbb{Z}[t]$
Q: Does $\sigma(f)=(0,0) \Rightarrow f$ link homotopically trivial?
(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Classifying link maps

$L M_{2,2}^{4} \xrightarrow[\text { (Kirk) }]{\left(\sigma_{+}, \sigma_{-}\right)} \mathbb{Z}[t] \oplus \mathbb{Z}[t]$
Q: Does $\sigma(f)=(0,0) \Rightarrow f$ link homotopically trivial?
(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Does $\sigma(f)=(0,0) \Rightarrow f$ link homotopic to embedding?
(Bartels-Teichner '99)

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":
Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$
Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

$$
\sigma_{+}(f)=-t+t=0
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example:

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Kirk's invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

Given $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$,
$\sigma_{ \pm}(f)$ obstructs homotoping $\left.f\right|_{S_{ \pm}^{2}}: S_{ \pm}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$ to embedding via the "Whitney trick":

Example: this does happen to be be link homotopic to an embedding.

$$
\begin{aligned}
& \sigma_{+}(f)=-t+t=0 \\
& \sigma_{-}(f)=0
\end{aligned}
$$

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disc V

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disc V

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney discs alone enough to embed?

The Whitney disc intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disc V
\rightsquigarrow define a "secondary" invariant that obstructs this
(Li '97) $\omega: \operatorname{ker} \sigma \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

Result: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney discs whose interiors are disjoint from $f\left(S_{ \pm}^{2}\right)$.

Result: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney discs whose interiors are disjoint from $f\left(S_{ \pm}^{2}\right)$.

Result: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney discs whose interiors are disjoint from $f\left(S_{ \pm}^{2}\right)$.

Result: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney discs whose interiors are disjoint from $f\left(S_{ \pm}^{2}\right)$.

- Still open: Is $\sigma: L M_{2,2}^{4} \rightarrow \mathbb{Z}[t] \oplus \mathbb{Z}[t]$ the complete obstruction?

Other results and questions

- Theorem: Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map. After a link homotopy, the Schneiderman-Teichner τ-invariant applied to $f \mid S_{+}^{2}$ is \mathbb{Z}_{2}-valued and vanishes if $\sigma(f)=(0,0)$.
- New proof of the image of σ.
- Theorem: There is a link map f with $\sigma_{-}(f)=0, \omega_{-}(f)=0$ but $\sigma_{+}(f) \neq 0$.
- Question: is $L M_{2,2}^{4}$ an abelian group with respect to connect sum?
- Question: Is σ injective?
- Question: Can a secondary invariant for $L M_{2,2,2}^{4}$ be defined? Is it stronger than σ ?
- Question: Can ω be related to invariants of links?

Character Varieties of 2-Bridge Knot Complements

Leona Sparaco

Florida State University

