Geometrically similar knots and 3-manifolds

Dave Futer, joint with Christian Millichap

Temple University

Tech Topology Conference December 11, 2016 Question (Weyl, Bers, Kac): Can you hear the shape of a drum?

For this talk,

- Drum means a 3-manifold, often the complement of a knot in S^3 .
- *Shape* means the complete hyperbolic metric.
- *Hear* means to determine from the spectrum of lengths of closed geodesics, listed with multiplicities.

$$\mathcal{L}(M) = (\ell_1, \ell_2, \ldots), \text{ where } \ell_i \leq \ell_{i+1}.$$

 $\mathcal{L}(M)$ is closely related to $\mathcal{E}(M)$, the Laplace eigenvalue spectrum.

- For closed manifolds, $\mathcal{L}(M)$ determines $\mathcal{E}(M)$. [Kelmer, 2011]
- $\mathcal{E}(M)$ determines the length set $L(M) = \{\ell_i\}$, without multiplicities. [Duistermaat–Guillemin, 1975]

Highly abridged history

Question: Can you hear the shape of a drum?

Answer: No! There are lots of examples of hyperbolic manifolds that are *isospectral* (same length spectrum) but not isometric.

- 1980: Vignéras gives arithmetic construction.
- 1985: Sunada develops general method.

Theorem (Sunada)

Let M be a non-positively curved manifold, and $\varphi : \pi_1 M \to G$ a map onto a finite group. Suppose that $H, K \subset G$ are almost conjugate, meaning:

$$\forall g \in G, \qquad \#([g] \cap H) = \#([g] \cap K).$$

Then M_H and M_K , covers corresponding to $\varphi^{-1}H$ and $\varphi^{-1}K$, are isospectral.

 2006: McReynolds uses Sunada's construction to build large families of hyperbolic 3–manifolds that are isospectral but not isometric. Size of family is super-polynomial in volume.

Dave Futer (joint with Christian Millichap)

Hearing shape of a manifold, up to commensurability

Question (Reid): If $\mathcal{L}(M_1) = \mathcal{L}(M_2)$, must M_1 and M_2 be *commensurable*? That is, must they share a finite-sheeted cover?

- Yes in all the above examples.
- (Reid, 1992): Yes if the M_i are *arithmetic* surfaces. Think $\mathbb{H}^2/SL(2,\mathbb{Z})$.
- (Chinburg–Hamilton–Long–Reid, 2007): Yes if the *M_i* are arithmetic hyperbolic 3–manifolds. Think ℍ³/SL(2, ℤ[√−d]).
- (Prasad–Rapinchuk, 2008): Yes if the M_i are arithmetic hyperbolic d–manifolds, where $d \neq 1 \mod 4$.

Theorem (Linowitz–McReynolds–Pollack–Thompson, 2014)

Let M_1 and M_2 be arithmetic hyperbolic 3–manifolds with $Vol(M_i) \leq V$. If

$$|\mathcal{L}(M_1)|_{\leq A} = \mathcal{L}(M_1)|_{\leq A}, \quad \text{ where } \quad A = c \cdot \exp\left((\log V)^{\log V}\right) > \exp(V^k)$$

then M_1 and M_2 are commensurable. There is a similar result in dimension 2.

Theorem (Millichap, 2014)

For each (odd) $n \ge 5$, there are n!/2 distinct hyperbolic knot complements $\{M_n^{\sigma}\}$, where $\sigma \in S_n$, such that

- $Vol(M_n^{\sigma}) = Vol(M_n^{\sigma'}) = v_n \approx n \cdot Vol(ideal octahedron).$
- Each M_n^{σ} is the only knot complement in its commensurability class.
- Each M_n^{σ} has the same (n + 1) shortest geodesics.

Construction: Pretzel knot $P(a_1, \ldots, a_{n+1})$, modified via *mutation* along Conway spheres.

The catch: the (n + 1) shortest geodesics have length $\ell_i \leq 0.015$.

Geometrically similar but not commensurable

Theorem (F–Millichap, 2016)

For each $n \gg 0$, there are distinct hyperbolic 3–manifolds M_n and M'_n s.t.:

- Vol $(M_n) = Vol(M'_n) \approx n.$ $[\approx: equal up to multiplicative constants]$
- 2 M_n (also, M'_n) is minimal in its commensurability class. So the two are not commensurable.
- Solution Length spectra agree up to length n: $\mathcal{L}(M_n)|_{\leq n} = \mathcal{L}(M'_n)|_{\leq n}$.
- M_n and M'_n have at least e^n/n geodesics up to length n.

Remarks and variations:

- M_n and M'_n can be taken closed, or non-compact with finite volume.
- We can take $M_n = S^3 \setminus K_n$ and $M'_n = \setminus K'_n$ to be knot complements in S^3 , at the cost of making the length cutoff $A = 2 \log n$.
- The length cutoff in the LMPT theorem is much higher: $A > \exp(V^k)$.

Observation

Let *S* be a surface of Euler characteristic $\chi(S) < -1$. Then, for all n > 0, *S* admits a pair of complete hyperbolic structures Σ_n and Σ'_n such that:

• Area
$$(\Sigma_n) = Area(\Sigma'_n) = -2\pi\chi(S).$$

Length spectra agree up to length n:

$$\mathcal{L}(\Sigma_n)|_{\leq n} = \mathcal{L}(\Sigma'_n)|_{\leq n}.$$

③ Σ_n and Σ'_n are not commensurable.

Construction:

- Choose metric Σ_n where γ has collar of width > n.
- To get Σ'_n: cut along γ, twist, re-glue.

The construction (for knots)

Knots with these properties are abundant, if you know where to look.

To build K_n , start with a pair of tangles T (top) and B (bottom) that have:

- Incompressible boundary.
- No symmetries.

Connect them with a long pure braid φ^n , where $\varphi \in Mod(S_{0,4})$ is pseudo-Anosov.

To build K'_n , use tangle B', namely B rotated 180°. The two knots are *mutants*.

As $n \to \infty$, M_n looks more and more like this:

- Caps corresponding to T and B
- Caps separated by ≈ *n* copies of a submanifold *nearly isometric* to V_φ, where V_φ is a fundamental domain for M_φ, the mapping torus of φ.
- Vol $(M_n) \approx n \cdot \text{Vol} (V_{\varphi}) \approx n.$
- T and B separated by collar of width > n.

The geometric limit as $n \to \infty$ was first described by Namazi–Souto.

Width of collar follows by work of Brock–Bromberg, Minsky, and Bowditch.

Geometry of closed manifolds M_n

Closed manifolds M_n and M'_n are built in a very analogous way. Now, caps T and B have boundary a genus 2 surface.

- For M_n : glue T to B by φ^n .
- For M'_n : glue T to B by $\varphi^n \circ h$.

Key: cutting & regluing by *h* is a *rigid* process.

Lemma

Any closed geodesic $\gamma \subset M_n$ that is not homotopic into T or B must have length at least n. Thus all geodesics shorter than n remain invariant when we mutate M_n to M'_n .

Theorem (Margulis)

A hyperbolic manifold M with $Vol(M) < \infty$ is non-arithmetic \Leftrightarrow the commensurability class of M has a unique minimal element.

 M_n and M'_n are not arithmetic. Thus they are commensurable \Leftrightarrow they cover a common orbifold quotient, O.

Regular covers come from *symmetries*. But we know the geometry of M_n , and it is highly asymmetric.

Irregular covers come from *hidden symmetries*. These are ruled out by a delicate argument using pants on ∂T , Dehn filling, and horoball packings of \mathbb{H}^3 .

Theorem (Huber, Margulis)

Let M be a finite volume hyperbolic (d + 1)-manifold. The number of closed geodesics in M of length $\leq L$ is $\pi_M(L) \sim \frac{e^{dL}}{dL}$. [\sim : ratio \rightarrow 1].

The limit does not depend on *M*! But the rate of convergence does.

Problem: We want a *uniform* result that will work in every M_n for $n \gg 0$.

Solution: Count closed geodesics in a *pleated surface* separating two consecutive copies of the block V_{φ} . The geometry of these surfaces converges.

