Geometrically similar knots and 3-manifolds

Dave Futer, joint with Christian Millichap

Temple University
Tech Topology Conference
December 11, 2016

Geometric inverse problems

Question (Weyl, Bers, Kac): Can you hear the shape of a drum?
For this talk,

- Drum means a 3-manifold, often the complement of a knot in S^{3}.
- Shape means the complete hyperbolic metric.
- Hear means to determine from the spectrum of lengths of closed geodesics, listed with multiplicities.

$$
\mathcal{L}(M)=\left(\ell_{1}, \ell_{2}, \ldots\right), \quad \text { where } \quad \ell_{i} \leq \ell_{i+1} .
$$

$\mathcal{L}(M)$ is closely related to $\mathcal{E}(M)$, the Laplace eigenvalue spectrum.

- For closed manifolds, $\mathcal{L}(M)$ determines $\mathcal{E}(M)$.
[Kelmer, 2011]
- $\mathcal{E}(M)$ determines the length set $L(M)=\left\{\ell_{i}\right\}$, without multiplicities.
[Duistermaat-Guillemin, 1975]

Highly abridged history

Question: Can you hear the shape of a drum?
Answer: No! There are lots of examples of hyperbolic manifolds that are isospectral (same length spectrum) but not isometric.

- 1980: Vignéras gives arithmetic construction.
- 1985: Sunada develops general method.

Theorem (Sunada)

Let M be a non-positively curved manifold, and $\varphi: \pi_{1} M \rightarrow G$ a map onto a finite group. Suppose that $H, K \subset G$ are almost conjugate, meaning:

$$
\forall g \in G, \quad \#([g] \cap H)=\#([g] \cap K)
$$

Then M_{H} and M_{K}, covers corresponding to $\varphi^{-1} \mathrm{H}$ and $\varphi^{-1} \mathrm{~K}$, are isospectral.

- 2006: McReynolds uses Sunada's construction to build large families of hyperbolic 3-manifolds that are isospectral but not isometric. Size of family is super-polynomial in volume.

Hearing shape of a manifold, up to commensurability

Question (Reid): If $\mathcal{L}\left(M_{1}\right)=\mathcal{L}\left(M_{2}\right)$, must M_{1} and M_{2} be commensurable? That is, must they share a finite-sheeted cover?

- Yes in all the above examples.
- (Reid, 1992): Yes if the M_{i} are arithmetic surfaces. Think $\mathbb{H}^{2} / S L(2, \mathbb{Z})$.
- (Chinburg-Hamilton-Long-Reid, 2007): Yes if the M_{i} are arithmetic hyperbolic 3-manifolds. Think $\mathbb{H}^{3} / S L(2, \mathbb{Z}[\sqrt{-d}])$.
- (Prasad-Rapinchuk, 2008): Yes if the M_{i} are arithmetic hyperbolic d-manifolds, where $d \neq 1 \bmod 4$.

Theorem (Linowitz-McReynolds-Pollack-Thompson, 2014)

Let M_{1} and M_{2} be arithmetic hyperbolic 3-manifolds with $\operatorname{Vol}\left(M_{i}\right) \leq V$. If

$$
\left.\mathcal{L}\left(M_{1}\right)\right|_{\leq A}=\left.\mathcal{L}\left(M_{1}\right)\right|_{\leq A}, \quad \text { where } \quad A=c \cdot \exp \left((\log V)^{\log V}\right)>\exp \left(V^{k}\right)
$$

then M_{1} and M_{2} are commensurable. There is a similar result in dimension 2.

Geometrically similar pretzel knots

Theorem (Millichap, 2014)

For each (odd) $n \geq 5$, there are $n!/ 2$ distinct hyperbolic knot complements $\left\{M_{n}^{\sigma}\right\}$, where $\sigma \in S_{n}$, such that

- $\operatorname{Vol}\left(M_{n}^{\sigma}\right)=\operatorname{Vol}\left(M_{n}^{\sigma^{\prime}}\right)=v_{n} \approx n \cdot \operatorname{Vol}($ ideal octahedron $)$.
- Each M_{n}^{σ} is the only knot complement in its commensurability class.
- Each M_{n}^{σ} has the same $(n+1)$ shortest geodesics.

Construction: Pretzel knot $P\left(a_{1}, \ldots, a_{n+1}\right)$, modified via mutation along Conway spheres.

The catch: the $(n+1)$ shortest geodesics have length $\ell_{i} \leq 0.015$.

Geometrically similar but not commensurable

Theorem (F-Millichap, 2016)

For each $n \gg 0$, there are distinct hyperbolic 3-manifolds M_{n} and M_{n}^{\prime} s.t.:
(1) $\operatorname{Vol}\left(M_{n}\right)=\operatorname{Vol}\left(M_{n}^{\prime}\right) \approx n . \quad$ [: equal up to multiplicative constants]
(2) M_{n} (also, $\left.M_{n}^{\prime}\right)$ is minimal in its commensurability class. So the two are not commensurable.
(3) Length spectra agree up to length n : $\left.\quad \mathcal{L}\left(M_{n}\right)\right|_{\leq n}=\left.\mathcal{L}\left(M_{n}^{\prime}\right)\right|_{\leq n}$.
(9) M_{n} and M_{n}^{\prime} have at least e^{n} / n geodesics up to length n.

Remarks and variations:

- M_{n} and M_{n}^{\prime} can be taken closed, or non-compact with finite volume.
- We can take $M_{n}=S^{3} \backslash K_{n}$ and $M_{n}^{\prime}=\backslash K_{n}^{\prime}$ to be knot complements in S^{3}, at the cost of making the length cutoff $A=2 \log n$.
- The length cutoff in the LMPT theorem is much higher: $A>\exp \left(V^{k}\right)$.

Interlude: geometrically similar surfaces

Observation

Let S be a surface of Euler characteristic $\chi(S)<-1$. Then, for all $n>0$, S admits a pair of complete hyperbolic structures Σ_{n} and Σ_{n}^{\prime} such that:
(1) $\operatorname{Area}\left(\Sigma_{n}\right)=\operatorname{Area}\left(\Sigma_{n}^{\prime}\right)=-2 \pi \chi(S)$.
(2) Length spectra agree up to length n : $\left.\quad \mathcal{L}\left(\Sigma_{n}\right)\right|_{\leq n}=\left.\mathcal{L}\left(\Sigma_{n}^{\prime}\right)\right|_{\leq n}$.
(3) Σ_{n} and Σ_{n}^{\prime} are not commensurable.

Construction:

- Choose metric Σ_{n} where γ has collar of width $>n$.
- To get Σ_{n}^{\prime} : cut along γ, twist, re-glue.

The construction (for knots)

Knots with these properties are abundant, if you know where to look.

To build K_{n}, start with a pair of tangles T (top) and B (bottom) that have:

- Incompressible boundary.
- No symmetries.

Connect them with a long pure braid φ^{n}, where $\varphi \in \operatorname{Mod}\left(S_{0,4}\right)$ is pseudo-Anosov.

To build K_{n}^{\prime}, use tangle B^{\prime}, namely B rotated 180°. The two knots are mutants.

Geometry of $M_{n}=S^{3} \backslash K_{n}$

As $n \rightarrow \infty, M_{n}$ looks more and more like this:

- Caps corresponding to T and B
- Caps separated by $\approx n$ copies of a submanifold nearly isometric to V_{φ}, where V_{φ} is a fundamental domain for M_{φ}, the mapping torus of φ.
- $\operatorname{Vol}\left(M_{n}\right) \approx n \cdot \operatorname{Vol}\left(V_{\varphi}\right) \approx n$.
- T and B separated by collar of width $>n$.

The geometric limit as $n \rightarrow \infty$ was first described by Namazi-Souto.

Width of collar follows by work of Brock-Bromberg, Minsky, and Bowditch.

T
V_{φ}
B

Geometry of closed manifolds M_{n}

Closed manifolds M_{n} and M_{n}^{\prime} are built in a very analogous way. Now, caps T and B have boundary a genus 2 surface.

- For M_{n} : glue T to B by φ^{n}.
- For M_{n}^{\prime} : glue T to B by $\varphi^{n} \circ h$.

Key: cutting \& regluing by h is a rigid process.

Lemma

Any closed geodesic $\gamma \subset M_{n}$ that is not homotopic into T or B must have length at least n. Thus all geodesics shorter than n remain invariant when we mutate M_{n} to M_{n}^{\prime}.

T
V_{φ}
B

Ruling out commensurability

Theorem (Margulis)

A hyperbolic manifold M with $\operatorname{Vol}(M)<\infty$ is non-arithmetic \Leftrightarrow the commensurability class of M has a unique minimal element.
M_{n} and M_{n}^{\prime} are not arithmetic. Thus they are commensurable \Leftrightarrow they cover a common orbifold quotient, \mathcal{O}.

Regular covers come from symmetries. But we know the geometry of M_{n}, and it is highly asymmetric.

Irregular covers come from hidden symmetries. These are ruled out by a delicate argument using pants on ∂T, Dehn filling, and horoball packings of \mathbb{H}^{3}.

T
V_{φ}
B

Counting geodesics in M_{n}

Theorem (Huber, Margulis)

Let M be a finite volume hyperbolic $(d+1)$-manifold. The number of closed geodesics in M of length $\leq L$ is $\pi_{M}(L) \sim \frac{e^{d L}}{d L}$. $\quad[\sim$: ratio $\rightarrow 1]$.

The limit does not depend on $M!$ But the rate of convergence does.
Problem: We want a uniform result that will work in every M_{n} for $n \gg 0$.
Solution: Count closed geodesics in a pleated surface separating two consecutive copies of the block V_{φ}. The geometry of these surfaces converges.

