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Corollary.  The coherent cohomological dimension of moduli 
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Ideas behind Theorem’s proof



Ideas behind Theorem’s proof
(1) Duality:

H4g�5
(Mod(⌃g, `);Q)

⇠
=

H0(Mod(⌃g, `); St(⌃g))



Ideas behind Theorem’s proof
(1) Duality:

H4g�5
(Mod(⌃g, `);Q)

⇠
=

H0(Mod(⌃g, `); St(⌃g))

Recall:

H0(G;M) = M/hm� g ·m | m 2 M, g 2 Gi



Ideas behind Theorem’s proof
(1) Duality:

H4g�5
(Mod(⌃g, `);Q)

⇠
=

H0(Mod(⌃g, `); St(⌃g))

Recall:

H0(G;M) = M/hm� g ·m | m 2 M, g 2 Gi

Takeaway: must understand the action

Mod(⌃g, `) � St(⌃g)
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Ideas behind Theorem’s proof
(3) Null-homologous curves break relations in  St2g(Z/p)

Solution:

(Z/p)4 = L�R

St(⌃g)

H0(Mod(⌃g, `); St(⌃g))

H1(�;Z/p)
St2g(Z/p)/SB

Kill the span         of such ‘separated’ bases:SB
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The problem

Let g ≥ 2 and suppose H < Mod(Sg ) is a finite subgroup.

(Nielsen Realization) H lifts to a group of automorphisms of some
Riemann surface structure on Sg .

Problem:

Investigate the structure of the moduli space MH
g of genus g Riemann

surfaces with a group of automorphisms acting topologically like H.
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The moduli space

Theorem (González-D́ıez + Harvey)

MH
g = TeichHg /ModH(Sg )

TeichH
g is the fixed locus of H in Teichmüller space Teichg

(contractible complex submanifold!)

ModH(Sg ) is the normalizer of H in Mod(Sg ).

Observation 1: MH
g is a quotient of a smooth complex quasiprojective

variety by a finite group (a quasiprojective orbifold).

Observation 2: MH
g has the same rational cohomology as ModH(Sg ).
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Picard groups

The Picard group is an algebro-geometric invariant:

Pic MH
g = {isomorphism classes of algebraic line bundles on MH

g }

(Zariski-locally trivial, algebraic transition functions).

Theorem (K.)

Suppose H < Mod(Sg ) is finite+abelian. Let g ′ = genus of Sg/H.

1 If g ′ = 0, then Pic MH
g is finite.

2 If g ′ ≥ 3, then Pic MH
g is finitely generated.
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The proof

Idea of proof of Part 2:

Show the (rational) first Chern class

c1 : Pic MH
g ⊗Q→ H2(MH

g ,Q)

is injective.

Comes down to showing that

H1(MH
g ,Q) ∼= H1(ModH(Sg ),Q) = 0.

Kevin Kordek Texas A&M University Picard groups of moduli spaces of Riemann surfaces with symmetry 5 / 8



The proof

(Birman-Hilden, Harvey-MacLachlan)

=⇒ ModH(Sg )/H ∼= finite-index Γ < Mod(Sh,n)

where n = # {branch points of Sg → Sg/H}.

Key step:

H abelian =⇒ Γ contains all Dehn twists on separating curves.

A theorem of Putman + fiddling =⇒ H1(Γ,Q) = 0.

H finite =⇒ H1(ModH(Sg ),Q) = 0.
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Future work

Some questions:

What happens when h = 1, 2?

What if H is non-abelian?
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Thank you!
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Motivation
Strongly Quasipositive and Tight Links

Staircases
A Conjecture

What is the contact-geometric information contained in Khovanov homology?

Knot Homology Theories and Contact Structures

(Hedden, Rudolph, 2007) Knot Floer homology detects
membership in the class of links inducing the tight contact
structure on S3.
Is a similar statement true for Khovanov homology?

Ian Banfield
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A Conjecture

What is the contact-geometric information contained in Khovanov homology?

(Sutured) Khovanov Chain complex - Picture

⊕=

Ian Banfield
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Band Generators

Definition
Let Bn be the braid group on n stands. The elements

i j

aj,i =

are called band generators and generate the braid group Bn.

Ian Banfield



Motivation
Strongly Quasipositive and Tight Links

Staircases
A Conjecture

Strongly Quasipositive Links and Tight Links

Definition (Rudolph)

A link L ⊂ S3 is strongly quasipositive if it admits a braid
representative which contains positive band generators only.
Example β = a1,6a1,4a2,6a2,5.

L = β̂ =

Ian Banfield
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Strongly Quasipositive and Tight Links

Staircases
A Conjecture

Tight Links

Theorem (Giroux, Rudolph)

The fibered links inducing the tight contact structure on S3 are
exactly the fibered strongly quasipositive links. Such a link is
called tight.

Ian Banfield
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Staircases
A Conjecture

Staircase Braid Closures

Definition (B.)
A staircase braid is a strongly quasipositive braid β ∈ Bn
which contains the Dual Garside element δ = σn−1σn−2 . . . σ1.

Example
1 2 3 4 5 6 7 8 9 10

Ian Banfield
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A Conjecture

Properties of Staircases

Theorem (B.)
Staircase braid closures are fibered and so are tight. Further,
the monodromy is a product of Dehn twists.

Theorem (B. - Rudolph)
Closures of positive braids are staircase braid closures.
Conversely, staircase braid closures are stably positive braid
closures.

Theorem (B.)
All inclusions are proper:

{positive braids} ⊂ {staircase braids} ⊂ {tight links} (1)
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Conjecture

A braid closure β̂ ⊂ S3 is tight if and only if the sutured
Khovanov homology of β̂ is

SKhi(β̂) =


0 if i < 0
V n if i = 0
V n−2 if i = 1
? if i > 1.

(2)

Ian Banfield
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Strongly Quasipositive and Tight Links

Staircases
A Conjecture

Thank you for listening!

Ian Banfield
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Background

Definition

A contact 3-manifold is (for the purposes of this talk) a closed orientable
3-manifold Y equipped with a two dimensional coorientable subbundle ξ
of TY satisfying a nonintegrability condition (locally looks like α = 0 for
some 1-form α with α ∧ dα > 0).

Definition

A symplectic filling of (Y , ξ) is a compact symplectic 4-manifold (X , ω)
with boundary Y where ξ is the complex tangencies for a nice
(compatible) almost complex structure, and a little more structure (a
Liouville vector field near the boundary).

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Stein Fillings

A Stein filling is a particular kind of symplectic filling.

Example

The unit 4-ball B4 in C2 is a Stein filling of (S3, ξstd).

Example

If f : C3 → C is a complex polynomial and 0 is a regular value of f .
Then f −1(0) ∩ B6 is a Stein filling of f −1(0) ∩ S5 for some large enough
round B6. For instance if we let f (x , y , z) = x2 + y 3 + z5 − 1 we get a
Stein filling of the Poincare homology sphere.

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Central Questions

Question (Classification)

Given (Y , ξ) a contact 3-manifold. What are all the Stein fillings (X , ω)
of (Y , ξ) up to symplectic deformation, symplectomorphism or
diffeomorphism?

Question (Geography)

Given (Y , ξ) a contact 3-manifold. What are the possible values for χ(X )
and σ(X ) for (X , ω) a Stein filling of (Y , ξ)?

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Some Known Results

Symplectic fillings can often be completely classified in the case where
(Y , ξ) is a boundary of some neighborhood of symplectic spheres
plumbed together (Eliashberg,McDuff,Lisca,Ohta and Ono,
Schöenberger,Starkson), or when they are supported by relatively simple
planar open books (Plamenevskaya and Van-Horn Morris, Sivek and
Van-Horn Morris, Kaloti and Li).

Theorem (Stipsicz)

If (Y , ξ) is symplectic cobordant to (S3, ξstd), then there are only a finite
number of possible values of χ(X ) and σ(X ).

Theorem (Etnyre)

If (Y , ξ) is supported by a planar open book then it is symplectic
cobordant to (S3, ξstd).

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Legendrian Surgery

Definition

A Legendrian link L in (S3, ξstd) is an oriented link in S3 with TL ⊂ ξstd .

Theorem (Weinstein,Eliashberg)

Given any Legendrian link in (S3, ξstd) there is a natural way to associate
a contact 3-manifold Legendrian surgery on L which is topologically some
integral surgery on L and Stein fillable by the trace of the surgery.

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Front Diagrams

Legendrian links in S3 have diagrams called front diagrams (invented by
Arnold) which essentially determine the links up to isotopy through
Legendrians.
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Stabilization of a Legendrian Knot

The following two operations on Legendrian links (given from their front
diagrams) are called (respectively positive and negative) stabilizations.
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Geography of Surgeries under Stabilizations

Theorem (Onaran)

If L is a Legendrian link in (S3, ξstd), then after a sufficient number of
positive and negative stabilizations (s+ and s−) on L, sn1

+ sn2
− (L) can be

embedded in the page of a planar open book which supports the standard
contact structure on S3. In particular Legendrian surgery on sn1

+ sn2
− (L) is

supported by a planar open book.

Theorem (M)

If L is a Legendrian link with n components in (S3, ξstd), then after a
sufficient number of positive and negative stabilizations (s+ and s−) on
L, any Stein filling (X , ω) of Legendrian surgery on sn1

+ sn2
− (L) has

χ(X ) = 1 + n and σ(X ) = −n.
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An Open Question

Question

If L is a Legendrian link in (S3, ξstd), then after a sufficient number of
positive and negative stabilizations (s+ and s−) on L, is any Stein filling
(X , ω) of Legendrian surgery on sn1

+ sn2
− (L) diffeomorphic to the trace?

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations



Thanks!

Thanks for listening.

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations
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A∞ category?



Theorem (M.)

There exists a product on Generating Family Cohomology

µ2 : GH i (F )⊗ GH j(F )→ GH i+j(F ).

that is invariant under Legendrian isotopy:

GH i (F )⊗ GH j(F ) GH i+j(F )

GH i (F̂ )⊗ GH j(F̂ ) GH i+j(F̂ )

µ2

∼= ∼=

µ̂2



Theorem (in progress)

There exists maps

mk : C i1(F )⊗ · · · ⊗ C ik (F ) −→ C
∑

` i`+k−2(F )

such that (C (F ), {mk}∞k=1) is an A∞ algebra, i.e.,∑
i+j+`=k

mi+1+` ◦ (1⊗i ⊗mj ⊗ 1⊗`) = 0.

Furthermore, this A∞ algebra is invariant up to A∞ quasi-isomorphism
under Legendrian isotopy.



A∞ Structure from Generating Families

Technique: Morse Flow Trees

mk : C⊗k+ (wF ) −→ C+(wF ) counts isolated trees:
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4
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p4
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∇w45
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∇w12

∇w23

∇w34

∇w24

A∞ relations come from compactifying 1-dimensional spaces of trees:∑
i+j+k=l

mi+1+k ◦ (1⊗i ⊗mj ⊗ 1⊗k) = 0.
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Objects: Generating families F

for Legendrians Λ ⊂ J1(M)
for Lagrangians L ⊂ T ∗(M)

Morphisms: Generating family cochain complex C (F1,F2)

Higher compositions from gradient flow trees
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Goal

To study fillings of certain (2n + 1)-dimensional contact manifolds by
pseudoholomorphic curves and, by using this result,

prove the Weinstein conjecture for that class.
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Motivation

Theorem (Wendl, 2008)

Let (M3, ξ = ker λ) be a planar contact manifold. Then there exists an almost
complex structure J on the symplectization R×M3 such that (R×M3, (esλ)) is
foliated by embedded, finite energy, planar J-holomorphic curves of index 2.
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Motivation

Theorem (Wendl, 2008)

Let (M3, ξ = ker λ) be a planar contact manifold. Then there exists an almost
complex structure J on the symplectization R×M3 such that (R×M3, (esλ)) is
foliated by embedded, finite energy, planar J-holomorphic curves of index 2.

This result can be used in various applications to planar contact manifolds such as

the Weinstein conjecture,

equivalence and strong and Stein fillability.

Bahar Acu (USC, UCLA) The Weinstein Conjecture Tech Topology Conference 3 / 9



Generalization attempt

Question
Can we do the same thing in higher dimensions?
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Generalization attempt

Question
Can we do the same thing in higher dimensions?

Answer
Not easy!

Automatic transversality and intersection theory do not exist in dim > 4.
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Generalization attempt

Question
Can we do the same thing in higher dimensions?

Answer
Not easy!

Automatic transversality and intersection theory do not exist in dim > 4.

Remedy

Iterated planar Lefschetz fibrations.

Idea: carry 4-dimensional phenomena used to prove Wendl’s theorem to higher
dimensions inductively!
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The fruit of the attempt

Theorem (A.)

Let (M2n+1, ξ) be an iterated planar contact manifold. Then there exists a
compatible J on R×M such that R×M is filled by planar finite energy
J-holomorphic curves, i.e. there exists a planar J-holomorphic curve through
every point in R×M.
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The Weinstein Conjecture

Conjecture (Weinstein, 1978)

Every contact form on a closed (2n + 1)-dimensional manifold has a closed Reeb
orbit.
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The Weinstein Conjecture

Conjecture (Weinstein, 1978)

Every contact form on a closed (2n + 1)-dimensional manifold has a closed Reeb
orbit.

It is TRUE when

dimM=3, ξ is overtwisted. (Hofer)

dimM=3, π2(M) 6= 0, ξ is tight (Hofer)

M is a solid torus (Etnyre, Ghrist)

dimM=3, ξ is supported by a planar open book. (Abbas, Cieliebak, Hofer)

dimM=3, λ is arbitrary. (Taubes)

dimM=2n + 1, ξ is plastikstufe-overtwisted. (Albers-Hofer)
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Iterated planar Lefschetz fibrations

Definition

A Weinstein domain (W 2n, ω), n ≥ 2, admits an iterated planar Lefschetz
fibration if

there exists a sequence of Lefschetz fibrations f2, . . . , fn where fi : W 2i → D
for i = 2, . . . , n.

Each regular fiber of fi+1 is the total space of fi , i.e., W 2i is a regular fiber of
fi+1.

f2 : W 4 → D is a planar Lefschetz fibration.
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Iterated planar Lefschetz fibrations

Definition

A Weinstein domain (W 2n, ω), n ≥ 2, admits an iterated planar Lefschetz
fibration if

there exists a sequence of Lefschetz fibrations f2, . . . , fn where fi : W 2i → D
for i = 2, . . . , n.

Each regular fiber of fi+1 is the total space of fi , i.e., W 2i is a regular fiber of
fi+1.

f2 : W 4 → D is a planar Lefschetz fibration.

Examples

1) W = T ∗Sn since T ∗S2 ⊂ T ∗S3 ⊂ · · · ⊂ T ∗Sn.
2) Ak -singularity: {(z1, . . . , zn) ∈ Cn | z21 + . . . , z2n−1 + zk+1

n = 1} ⊂ (Cn, ωstd)
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The Weinstein Conjecture in Higher Dimensions

An iterated planar contact manifold = a contact manifold supporting an open
book whose pages admit an iterated planar Lefschetz fibration.
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The Weinstein Conjecture in Higher Dimensions

An iterated planar contact manifold = a contact manifold supporting an open
book whose pages admit an iterated planar Lefschetz fibration.

Theorem (A.)

Let (M, ξ) be a (2n + 1)-dimensional iterated planar contact manifold. Then M
satisfies the Weinstein conjecture.
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Thanks!

Bahar Acu (USC, UCLA) The Weinstein Conjecture Tech Topology Conference 9 / 9





PSL2(C) Character variety and Dehn surgeries

Huygens C. Ravelomanana

University of Georgia

December 10, 2016

Huygens C. Ravelomanana PSL2(C) Character variety and Dehn surgeries



knot K ⊂Y 3



knot K ⊂Y 3

surgery of slope r



knot K ⊂Y 3

surgery of slope r

new manifold Y 3
K

(r )



knot K ⊂Y 3

surgery of slope r

new manifold Y 3
K

(r )

surgery of slope s



knot K ⊂Y 3

surgery of slope r

new manifold Y 3
K

(r )

surgery of slope s

new manifold Y 3
K

(s)



knot K ⊂Y 3

surgery of slope r

new manifold Y 3
K

(r )

surgery of slope s

new manifold Y 3
K

(s)

Y 3
K

(r ) ∼=Y 3
K

(s) ?



knot K ⊂Y 3

surgery of slope r

new manifold Y 3
K

(r )

surgery of slope s

new manifold Y 3
K

(s)

Y 3
K

(r ) ∼=Y 3
K

(s) ?

Allowing orientation reversing

Huygens C. Ravelomanana PSL2(C) Character variety and Dehn surgeries



Examples

If K is the unknot in S3, then S3
K

(p/q) =L(p,q)
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Examples

If K is the unknot in S3, then S3
K

(p/q) =L(p,q) so

S3
K

(
p/q1

)
∼= S3

K

(
p/q2

)
iff ±q1 ≡ q±12 [mod p],

for relatively prime pairs of integers (p,q1) and (p,q2).
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Examples

If K is the unknot in S3, then S3
K

(p/q) =L(p,q) so

S3
K

(
p/q1

)
∼= S3

K

(
p/q2

)
iff ±q1 ≡ q±12 [mod p],

for relatively prime pairs of integers (p,q1) and (p,q2).

Assume YK :=Y \ int (N (K )) is boundary irreducible and

irreducible. (This exclude the unknot in S3 case.)
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Examples
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Examples

If K is an amphicheiral knot in S3, then S3
K

(r ) ∼=S3
K

(−r ).
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Examples

If K is an amphicheiral knot in S3, then S3
K

(r ) ∼=S3
K

(−r ).

+2 -2

(Small Seifert-fibered)
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Let’s fix a slope s and define

C (s) =
{
slope r 6= s| YK (r ) ∼=YK (s)

}
.
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Let’s fix a slope s and define

C (s) =
{
slope r 6= s| YK (r ) ∼=YK (s)

}
.

Question

Question: When is C (s) 6= ; ?

Huygens C. Ravelomanana PSL2(C) Character variety and Dehn surgeries



Let’s fix a slope s and define

C (s) =
{
slope r 6= s| YK (r ) ∼=YK (s)

}
.

Question

Question: When is C (s) 6= ; ?

Observation

If Y =S3 and K is an amphicheiral knot then C (s) 6= ;.
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Let’s fix a slope s and define

C (s) =
{
slope r 6= s| YK (r ) ∼=YK (s)

}
.

Question

Question: When is C (s) 6= ; ?

Observation

If Y =S3 and K is an amphicheiral knot then C (s) 6= ;.
Moreover C (s) = {−s} for all known cases.
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Let’s fix a slope s and define

C (s) =
{
slope r 6= s| YK (r ) ∼=YK (s)

}
.

Question

Question: When is C (s) 6= ; ?

Observation

If Y =S3 and K is an amphicheiral knot then C (s) 6= ;.
Moreover C (s) = {−s} for all known cases.

Main Question

Do we have ♯C (s) ≤ 1 in general ?
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Main result
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Main result

Theorem (R.)

Let’s assume YK (s) is small-Seifert. If Hom (π1(Y ),PSL2(C))

contains only diagonalisable representations and ||s||CS is not a
multiple of s ·λ. Then ♯C (s) ≤ 1.
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Main result

Theorem (R.)

Let’s assume YK (s) is small-Seifert. If Hom (π1(Y ),PSL2(C))

contains only diagonalisable representations and ||s||CS is not a
multiple of s ·λ. Then ♯C (s) ≤ 1.

Here , || ||CS is a semi-norm on H1(∂YK ;R) similar to the
Culler-Shalen semi-norm and λ is the rational longitude of K .
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Main result

Theorem (R.)

Let’s assume YK (s) is small-Seifert. If Hom (π1(Y ),PSL2(C))

contains only diagonalisable representations and ||s||CS is not a
multiple of s ·λ. Then ♯C (s) ≤ 1.

Here , || ||CS is a semi-norm on H1(∂YK ;R) similar to the
Culler-Shalen semi-norm and λ is the rational longitude of K .

The norm ||s||CS is the degree count of a regular function

fs : X̃ (YK ) →C, χ 7→χ(s)
2
−4

restricted to one-dimensional components.
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Proof

Huygens C. Ravelomanana PSL2(C) Character variety and Dehn surgeries



Proof

• If r ∈C (s) then ||r ||CS = ||s||CS provided that
Hom (π1(Y ),PSL2(C)) contains only diagonalisable
representations.
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Proof

• If r ∈C (s) then ||r ||CS = ||s||CS provided that
Hom (π1(Y ),PSL2(C)) contains only diagonalisable
representations.

• If ||s||CS is not a multiple of s ·λ then the line determined
by r and s passes through the interior of the || ||CS -ball of
radius ||s||CS .
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|| ||CS -Ball of radius ||s||CS
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The	genus	of	
a	smooth	
filling	is	not	
determined	
by	the	knot.
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Contact	
Manifold:

(ℝ#, 𝜉 = 𝑘𝑒𝑟 𝑑𝑧 − 𝑦𝑑𝑥 )

A	knot	is	
Legendrian
if	all	of	its	tangent	
vectors	lie	in	the	

planes	of	the	contact	
structure.
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Front Projection (xz) Lagrangian Projection (xy)

Contact	
Manifold:

(ℝ#, 𝜉 = 𝑘𝑒𝑟 𝑑𝑧 − 𝑦𝑑𝑥 )

A	knot	is	
Legendrian
if	all	of	its	tangent	
vectors	lie	in	the	

planes	of	the	contact	
structure.



Symplectic	
Manifold:
(ℝ×ℝ#,𝜔 = 𝑑 𝑒2𝛼 )

A	surface	is	

Lagrangian if
𝜔 𝑣⃑, 𝑤 = 0, ∀𝑣⃑, 𝑤 ∈ 𝑇;𝐿

Our	Lagrangian fillings:
Exact, Maslov 0
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What	does	the	polynomial	of	a	Legendrian knot	tell	
us	about	the	genus/immersion	points	of	an	
immersed	Lagrangian filling?



Example:	Γ t = 1𝑡C? + +0𝑡L + 𝑡 + 0𝑡CL + 1𝑡?
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• Any	immersed	filling	has	at	least	1	immersion	point	of	index	2.
• Potentially	immersed	genus	0	filling	

• Can	add	more	immersion	points	in	pairs	of	consecutive	indices.
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• Any	immersed	filling	has	at	least	1	immersion	point	of	index	2.
• Potentially	immersed	genus	0	filling	

• Can	add	more	immersion	points	in	pairs	of	consecutive	indices.

My	Research	Results

genus	1	filling	with	an	additional	
immersion	point	of	index	1
genus	g	filling	with	an	additional	g	
immersion	points	of	index	1



Thank	you!
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Background
Lagrangian fillings of Legendrian (2, n) torus knot

Exact Lagrangian fillings

For a Legendrian knot Λ in (R3, kerα), where α = dz − ydx , an
exact Lagrangian filling of Λ is a 2-dimensional surface L in
(Rt × R3, ω = d(etα)) such that

L is cylindrical over Λ when t is big
enough;

there exists a function f : L→ R such

that etα
∣∣∣
TL

= df and f is constant on

Λ.

t

Λ

L
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Background
Lagrangian fillings of Legendrian (2, n) torus knot

Questions

Given a Legendrian knot, we can ask the following questions.

Does it have an exact Lagrangian filling?

What does an exact Lagrangian filling look like?

How many exact Lagrangian fillings does it have?
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The EHK construction
Distinguish fillings
Future directions

Minimum cobordisms and pinch moves

The minimum cobordism

∅

The pinch move
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Future directions

Construction

b1 b2 b3

∅
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Background
Lagrangian fillings of Legendrian (2, n) torus knot

The EHK construction
Distinguish fillings
Future directions

The Catalan number

The EHK construction gives
Legendrian (2, n) torus link

Sn
/{

(··· ,i ,j ,··· ,k,··· )∼(··· ,j ,i ,··· ,k,··· ), for any i<k<j
}

exact Lagrangian fillings.

This is called the n-th Catalan number,

Cn =
1

n + 1

(
2n

n

)
.
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Lagrangian fillings of Legendrian (2, n) torus knot

The EHK construction
Distinguish fillings
Future directions

Distinguish fillings

To distinguish these Cn fillings, we compute augmentations to
Z2[H1(L)], which counts the homology class of holomorphic disks.
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Background
Lagrangian fillings of Legendrian (2, n) torus knot

The EHK construction
Distinguish fillings
Future directions

Conclusion

Theorem (P. ’16)

The Cn exact Lagrangian fillings of the Legendrian (2, n) torus
links are of different exact Lagrangian isotopy classes.
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Future directions

Augmentation Category Constructible Sheaves Category

Contact Topology Algebraic Geometry

[EHK , ′12] [STWZ , ′15]

Cluster Algebra
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Augmentation Category Constructible Sheaves Category
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