LIGHTNING TALKS I TECH TOPOLOGY CONFERENCE December 10, 2016 Top-dimensional cohomology in the mapping class group

 $\operatorname{Mod}(\Sigma_g) := \operatorname{Homeo}^+(\Sigma_g) / \sim$

Neil J. Fullarton Rice University (joint with Andrew Putman)

Gauntlet thrown: Harer-Zagier computed $\chi(Mod(\Sigma_g))$ (and it's huge)

Gauntlet thrown: Harer-Zagier computed $\chi(Mod(\Sigma_g))$ (and it's huge)

e.g. $\operatorname{Mod}(\Sigma_g, \ell) := \ker \left(\operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/\ell) \right)$, the principal level ℓ mapping class group.

e.g. $\operatorname{Mod}(\Sigma_g, \ell) := \ker \left(\operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/\ell) \right)$, the principal level ℓ mapping class group.

<u>Theorem (F-Putman)</u>. Let $g, \ell \geq 2$ and $p \mid \ell$ be prime. Then

$$\dim_{\mathbb{Q}} H^{4g-5}(\operatorname{Mod}(\Sigma_g, \ell); \mathbb{Q}) \ge \frac{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}{g(p^{2g}-1)}.$$

e.g. $\operatorname{Mod}(\Sigma_g, \ell) := \ker \left(\operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/\ell) \right)$, the principal level ℓ mapping class group.

<u>Theorem (F-Putman)</u>. Let $g, \ell \geq 2$ and $p \mid \ell$ be prime. Then

$$\dim_{\mathbb{Q}} H^{4g-5}(\operatorname{Mod}(\Sigma_{g}, \ell); \mathbb{Q}) \geq \frac{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}{g(p^{2g}-1)}.$$

$$\underbrace{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}_{\text{poly. with}}$$

$$\underbrace{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}_{\text{poly. with}}.$$

e.g. $\operatorname{Mod}(\Sigma_g, \ell) := \ker \left(\operatorname{Mod}(\Sigma_g) \to \operatorname{Sp}_{2g}(\mathbb{Z}) \to \operatorname{Sp}_{2g}(\mathbb{Z}/\ell) \right)$, the principal level ℓ mapping class group.

<u>Theorem (F-Putman)</u>. Let $g, \ell \geq 2$ and $p \mid \ell$ be prime. Then

$$\dim_{\mathbb{Q}} H^{4g-5}(\operatorname{Mod}(\Sigma_{g}, \ell); \mathbb{Q}) \geq \frac{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}{g(p^{2g}-1)}.$$

$$\underbrace{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}_{\text{poly. with}}$$

$$\underbrace{|\operatorname{Sp}_{2g}(\mathbb{Z}/p)|}_{\text{poly. with}}.$$

<u>Corollary.</u> The *coherent cohomological dimension* of moduli space is at least g - 2.

(1) Duality:

$H^{4g-5}(\operatorname{Mod}(\Sigma_g, \ell); \mathbb{Q}) \cong H_0(\operatorname{Mod}(\Sigma_g, \ell); \operatorname{St}(\Sigma_g))$

(1) Duality:

$H^{4g-5}(\operatorname{Mod}(\Sigma_g, \ell); \mathbb{Q}) \cong H_0(\operatorname{Mod}(\Sigma_g, \ell); \operatorname{St}(\Sigma_g))$

Recall:

$$H_0(G;M) = M/\langle m - g \cdot m \mid m \in M, g \in G \rangle$$

(1) Duality:

$$H^{4g-5}(\operatorname{Mod}(\Sigma_g, \ell); \mathbb{Q}) \cong H_0(\operatorname{Mod}(\Sigma_g, \ell); \operatorname{St}(\Sigma_g))$$

Recall:

$$H_0(G; M) = M/\langle m - g \cdot m \mid m \in M, g \in G \rangle$$

Takeaway: must understand the action

$$\operatorname{Mod}(\Sigma_g, \ell) \circlearrowright \operatorname{St}(\Sigma_g)$$

 $\operatorname{St}_{2g}(\mathbb{Z}/p)$ (via Tits building)

 $\operatorname{St}_{2g}(\mathbb{Z}/p)$ (via Tits building)

 $\operatorname{St}_{2g}(\mathbb{Z}/p)$ (via Tits building)

(2) An ill-defined map to the classical period:

 $\operatorname{St}(\Sigma_g)$ (via the curve cx.)

(3) Null-homologous curves break relations in $\operatorname{St}_{2g}(\mathbb{Z}/p)$

(3) Null-homologous curves break relations in $\operatorname{St}_{2g}(\mathbb{Z}/p)$ Solution:

(3) Null-homologous curves break relations in $\operatorname{St}_{2g}(\mathbb{Z}/p)$ Solution:

(3) Null-homologous curves break relations in $\operatorname{St}_{2g}(\mathbb{Z}/p)$ Solution:

Kill the span \mathcal{SB} of such 'separated' bases:

Picard groups of moduli spaces of Riemann surfaces with symmetry

Kevin Kordek Texas A&M University

- Let $g \ge 2$ and suppose $H < Mod(S_g)$ is a finite subgroup.
- (Nielsen Realization) H lifts to a group of automorphisms of some Riemann surface structure on S_g .

Problem:

Investigate the structure of the moduli space M_g^H of genus g Riemann surfaces with a group of automorphisms acting topologically like H.

Theorem (González-Díez + Harvey)

 $M_g^H = Teich_g^H / Mod_H(S_g)$

- Teich^{*H*}_{*g*} is the fixed locus of *H* in Teichmüller space Teich_{*g*} (contractible complex submanifold!)
- $Mod_H(S_g)$ is the normalizer of H in $Mod(S_g)$.

<u>Observation 1</u>: M_g^H is a quotient of a smooth complex quasiprojective variety by a finite group (a quasiprojective orbifold).

<u>Observation 2</u>: M_g^H has the same rational cohomology as $Mod_H(S_g)$.

The Picard group is an algebro-geometric invariant:

Pic $M_g^H = \{\text{isomorphism classes of algebraic line bundles on } M_g^H\}$ (Zariski-locally trivial, algebraic transition functions).

Theorem (K.)

Suppose $H < Mod(S_g)$ is finite+abelian. Let g' = genus of S_g/H . 1 If g' = 0, then Pic M_g^H is finite. 2 If $g' \ge 3$, then Pic M_g^H is finitely generated. Idea of proof of Part 2:

• Show the (rational) first Chern class

$$c_1: \mathsf{Pic}\; M^H_g \otimes \mathbb{Q} o H^2(M^H_g, \mathbb{Q})$$

is injective.

• Comes down to showing that

$$H^1(M_g^H, \mathbb{Q}) \cong H^1(\operatorname{Mod}_H(S_g), \mathbb{Q}) = 0.$$
The proof

• (Birman-Hilden, Harvey-MacLachlan)

 \implies Mod_H(S_g)/H \cong finite-index Γ < Mod(S_{h,n})

where $n = \# \{ \text{branch points of } S_g \to S_g/H \}.$

The proof

• (Birman-Hilden, Harvey-MacLachlan)

 \implies Mod_H(S_g)/H \cong finite-index Γ < Mod(S_{h,n})

where $n = \# \{ \text{branch points of } S_g \to S_g/H \}.$

• Key step:

H abelian \implies Γ contains all Dehn twists on separating curves.

• (Birman-Hilden, Harvey-MacLachlan)

 $\implies \operatorname{Mod}_H(S_g)/H \cong \operatorname{finite-index} \Gamma < \operatorname{Mod}(S_{h,n})$

where $n = \# \{ \text{branch points of } S_g \to S_g/H \}.$

• Key step:

H abelian \implies Γ contains all Dehn twists on separating curves.

• A theorem of Putman + fiddling $\implies H^1(\Gamma, \mathbb{Q}) = 0.$

• *H* finite
$$\implies H^1(Mod_H(S_g), \mathbb{Q}) = 0.$$

Some questions:

- What happens when h = 1, 2?
- What if *H* is non-abelian?

Thank you!

Sutured Khovanov Homology and Tight Links

I. Banfield¹

¹Department of Mathematics Boston College

Tech Topology Conference, 2016

イロン イボン イヨン イヨン

3

Ian Banfield

 What is the contact-geometric information contained in Khovanov homology?

イロト イポト イヨト イヨト

3

2 Strongly Quasipositive and Tight Links

3 Staircases

- What is the contact-geometric information contained in Khovanov homology?
- 2 Strongly Quasipositive and Tight Links
- 3 Staircases
- A Conjecture

What is the contact-geometric information contained in Khovanov H

イロン イボン イヨン イヨン

ъ

What is the contact-geometric information contained in Khovanov h

ヘロト ヘ戸ト ヘヨト ヘヨト

Knot Homology Theories and Contact Structures

- (Hedden, Rudolph, 2007) Knot Floer homology detects membership in the class of links inducing the tight contact structure on S^3 .
- Is a similar statement true for Khovanov homology?

What is the contact-geometric information contained in Khovanov h

イロト イポト イヨト イヨト

• Generators: Smoothings of a link diagram.

- **Maps**: measure the behavior of smoothings under a change of the resolution of a crossing.
- For braid diagrams, get a filtration by singular homology class of the generators. The associated graded complex is the **sutured Khovanov complex**.

What is the contact-geometric information contained in Khovanov h

イロト イポト イヨト イヨト

- Generators: Smoothings of a link diagram.
- **Maps**: measure the behavior of smoothings under a change of the resolution of a crossing.
- For braid diagrams, get a filtration by singular homology class of the generators. The associated graded complex is the **sutured Khovanov complex**.

What is the contact-geometric information contained in Khovanov h

- Generators: Smoothings of a link diagram.
- **Maps**: measure the behavior of smoothings under a change of the resolution of a crossing.
- For braid diagrams, get a filtration by singular homology class of the generators. The associated graded complex is the **sutured Khovanov complex**.

What is the contact-geometric information contained in Khovanov h

э

(Sutured) Khovanov Chain complex - Picture

Band Generators

Definition

Let B_n be the braid group on n stands. The elements

are called **band generators** and generate the braid group B_n .

イロン 不得 とくほ とくほとう

э

Strongly Quasipositive Links and Tight Links

Definition (Rudolph)

A link $L \subset S^3$ is **strongly quasipositive** if it admits a braid representative which contains positive band generators only. **Example** $\beta = a_{1,6}a_{1,4}a_{2,6}a_{2,5}$.

イロン イボン イヨン イヨン

Theorem (Giroux, Rudolph)

The fibered links inducing the tight contact structure on S^3 are exactly the fibered strongly quasipositive links. Such a link is called **tight**.

イロト イポト イヨト イヨト

ъ

A Conjecture

Staircase Braid Closures

Definition (B.)

A staircase braid is a strongly quasipositive braid $\beta \in B_n$ which contains the Dual Garside element $\delta = \sigma_{n-1}\sigma_{n-2}\dots\sigma_1$.

Example

A Conjecture

Properties of Staircases

Theorem (B.)

Staircase braid closures are fibered and so are tight. Further, the monodromy is a product of Dehn twists.

Theorem (B. - Rudolph)

Closures of positive braids are staircase braid closures. Conversely, staircase braid closures are stably positive braid closures.

Theorem (B.)

All inclusions are proper:

 $\{positive \ braids\} \subset \{staircase \ braids\} \subset \{tight \ links\}$

Ian Banfield

A Conjecture

Properties of Staircases

Theorem (B.)

Staircase braid closures are fibered and so are tight. Further, the monodromy is a product of Dehn twists.

Theorem (B. - Rudolph)

Closures of positive braids are staircase braid closures. Conversely, staircase braid closures are stably positive braid closures.

Theorem (B.)

All inclusions are proper:

 $\{positive \ braids\} \subset \{staircase \ braids\} \subset \{tight \ links\}$

Ian Banfield

A Conjecture

Properties of Staircases

Theorem (B.)

Staircase braid closures are fibered and so are tight. Further, the monodromy is a product of Dehn twists.

Theorem (B. - Rudolph)

Closures of positive braids are staircase braid closures. Conversely, staircase braid closures are stably positive braid closures.

Theorem (B.)

All inclusions are proper:

 $\{positive \ braids\} \subset \{staircase \ braids\} \subset \{tight \ links\}$

(1)

Conjecture

A braid closure $\hat{\beta} \subset S^3$ is tight if and only if the sutured Khovanov homology of $\hat{\beta}$ is

$$SKh_{i}(\hat{\beta}) = \begin{cases} 0 & \text{if } i < 0 \\ V^{n} & \text{if } i = 0 \\ V^{n-2} & \text{if } i = 1 \\ \star & \text{if } i > 1. \end{cases}$$
(2)

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ○ ○ ○

Thank you for listening!

Stein fillings of Legendrian surgeries with enough stabilizations

Alex Moody

University of Texas at Austin

December 10,2016

Alex Moody Stein fillings of Legendrian surgeries with enough stabilizations

Definition

A contact 3-manifold is (for the purposes of this talk) a closed orientable 3-manifold Y equipped with a two dimensional coorientable subbundle ξ of TY satisfying a nonintegrability condition (locally looks like $\alpha = 0$ for some 1-form α with $\alpha \wedge d\alpha > 0$).

Definition

A symplectic filling of (Y, ξ) is a compact symplectic 4-manifold (X, ω) with boundary Y where ξ is the complex tangencies for a nice (compatible) almost complex structure, and a little more structure (a Liouville vector field near the boundary).

A Stein filling is a particular kind of symplectic filling.

Example

The unit 4-ball B^4 in \mathbb{C}^2 is a Stein filling of (S^3, ξ_{std}) .

Example

If $f : \mathbb{C}^3 \to \mathbb{C}$ is a complex polynomial and 0 is a regular value of f. Then $f^{-1}(0) \cap B^6$ is a Stein filling of $f^{-1}(0) \cap S^5$ for some large enough round B^6 . For instance if we let $f(x, y, z) = x^2 + y^3 + z^5 - 1$ we get a Stein filling of the Poincare homology sphere.

Question (Classification)

Given (Y, ξ) a contact 3-manifold. What are all the Stein fillings (X, ω) of (Y, ξ) up to symplectic deformation, symplectomorphism or diffeomorphism?

Question (Geography)

Given (Y, ξ) a contact 3-manifold. What are the possible values for $\chi(X)$ and $\sigma(X)$ for (X, ω) a Stein filling of (Y, ξ) ?

Symplectic fillings can often be completely classified in the case where (Y, ξ) is a boundary of some neighborhood of symplectic spheres plumbed together (Eliashberg,McDuff,Lisca,Ohta and Ono, Schöenberger,Starkson), or when they are supported by relatively simple planar open books (Plamenevskaya and Van-Horn Morris, Sivek and Van-Horn Morris, Kaloti and Li).

Theorem (Stipsicz)

If (Y,ξ) is symplectic cobordant to (S^3,ξ_{std}) , then there are only a finite number of possible values of $\chi(X)$ and $\sigma(X)$.

Theorem (Etnyre)

If (Y,ξ) is supported by a planar open book then it is symplectic cobordant to (S^3,ξ_{std}) .

Definition

A Legendrian link L in (S^3, ξ_{std}) is an oriented link in S^3 with $TL \subset \xi_{std}$.

Theorem (Weinstein, Eliashberg)

Given any Legendrian link in (S^3, ξ_{std}) there is a natural way to associate a contact 3-manifold Legendrian surgery on L which is topologically some integral surgery on L and Stein fillable by the trace of the surgery.

Front Diagrams

Legendrian links in S^3 have diagrams called front diagrams (invented by Arnold) which essentially determine the links up to isotopy through Legendrians.

Stabilization of a Legendrian Knot

The following two operations on Legendrian links (given from their front diagrams) are called (respectively positive and negative) stabilizations.

Theorem (Onaran)

If L is a Legendrian link in (S^3, ξ_{std}) , then after a sufficient number of positive and negative stabilizations $(s_+ \text{ and } s_-)$ on L, $s_+^{n_1} s_-^{n_2}(L)$ can be embedded in the page of a planar open book which supports the standard contact structure on S^3 . In particular Legendrian surgery on $s_+^{n_1} s_-^{n_2}(L)$ is supported by a planar open book.

Theorem (M)

If L is a Legendrian link with n components in (S^3, ξ_{std}) , then after a sufficient number of positive and negative stabilizations $(s_+ \text{ and } s_-)$ on L, any Stein filling (X, ω) of Legendrian surgery on $s_+^{n_1} s_-^{n_2}(L)$ has $\chi(X) = 1 + n$ and $\sigma(X) = -n$.

Question

If L is a Legendrian link in (S^3, ξ_{std}) , then after a sufficient number of positive and negative stabilizations $(s_+ \text{ and } s_-)$ on L, is any Stein filling (X, ω) of Legendrian surgery on $s_+^{n_1} s_-^{n_2}(L)$ diffeomorphic to the trace?

Thanks for listening.

A ►

∃ ► < ∃ ►</p>

2
Algebraic Structures for Legendrian and Lagrangian Submanifolds with Generating Families

Ziva Myer

Bryn Mawr College

Tech Topology Conference 2016

Contact Manifold $(J^1M = T^*M \times \mathbb{R}, \xi)$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Contact Manifold $(J^1M = T^*M \times \mathbb{R}, \xi)$

Legendrian submanifold $\Lambda \subset J^1 M$ $T\Lambda \subset \xi = \ker(dz - \sum y_i dx_i).$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Contact Manifold $(J^1M = T^*M imes \mathbb{R}, \xi)$

Legendrian submanifold $\Lambda \subset J^1 M$ $T\Lambda \subset \xi = \ker(dz - \sum y_i dx_i).$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Important feature: Reeb Chords

Contact Manifold $(J^1M = T^*M imes \mathbb{R}, \xi)$

Legendrian submanifold $\Lambda \subset J^1 M$ $T\Lambda \subset \xi = \ker(dz - \sum y_i dx_i).$

The standard contact structure on \mathbb{R}^3 : $\xi = \ker(dz - ydx)$.

Important feature: Reeb Chords

Goal: Define algebraic invariants for Legendrians from Reeb chords.

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

• An effective but not complete invariant of Λ .

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

- An effective but not complete invariant of Λ .
- Defined using cochain groups generated by Reeb chords of $\Lambda.$

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

- An effective but not complete invariant of Λ .
- Defined using cochain groups generated by Reeb chords of Λ.

Motivating Questions

Can we build additional invariant algebraic structure off of $GH^*(F)$ such as

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

- An effective but not complete invariant of Λ .
- Defined using cochain groups generated by Reeb chords of Λ.

Motivating Questions

Can we build additional invariant algebraic structure off of $GH^*(F)$ such as

• ring structure?

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

- An effective but not complete invariant of Λ .
- Defined using cochain groups generated by Reeb chords of Λ.

Motivating Questions

Can we build additional invariant algebraic structure off of $GH^*(F)$ such as

- ring structure?
- A_{∞} algebra?

 $\Lambda \stackrel{F}{\rightsquigarrow} \{GH^*(F)\}_F$

- An effective but not complete invariant of Λ .
- Defined using cochain groups generated by Reeb chords of Λ.

Motivating Questions

Can we build additional invariant algebraic structure off of $GH^*(F)$ such as

- ring structure?
- A_{∞} algebra?
- A_{∞} category?

Theorem (M.)

There exists a product on Generating Family Cohomology

$$\mu_2: GH^i(F) \otimes GH^j(F) \to GH^{i+j}(F).$$

that is invariant under Legendrian isotopy:

$$\begin{array}{ccc} GH^{i}(F)\otimes GH^{j}(F) & \stackrel{\mu_{2}}{\longrightarrow} & GH^{i+j}(F) \\ & \downarrow \cong & \downarrow \cong \\ GH^{i}(\widehat{F})\otimes GH^{j}(\widehat{F}) & \stackrel{\widehat{\mu_{2}}}{\longrightarrow} & GH^{i+j}(\widehat{F}) \end{array}$$

Theorem (in progress)

There exists maps

$$m_k: C^{i_1}(F) \otimes \cdots \otimes C^{i_k}(F) \longrightarrow C^{\sum_{\ell} i_{\ell}+k-2}(F)$$

such that $(C(F), \{m_k\}_{k=1}^{\infty})$ is an A_{∞} algebra, i.e.,

$$\sum_{i+j+\ell=k}m_{i+1+\ell}\circ(1^{\otimes i}\otimes m_j\otimes 1^{\otimes \ell})=0.$$

Furthermore, this A_{∞} algebra is invariant up to A_{∞} quasi-isomorphism under Legendrian isotopy.

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees $m_k: C_+^{\otimes k}(w_F) \longrightarrow C_+(w_F)$ counts isolated trees:

A_{∞} Structure from Generating Families

Technique: Morse Flow Trees $m_k: C_+^{\otimes k}(w_F) \longrightarrow C_+(w_F)$ counts isolated trees:

 A_{∞} relations come from compactifying 1-dimensional spaces of trees:

$$\sum_{i+j+k=l} m_{i+1+k} \circ (1^{\otimes i} \otimes m_j \otimes 1^{\otimes k}) = 0.$$

- Objects: Generating families F
 - for Legendrians $\Lambda \subset J^1(M)$
 - for Lagrangians $L \subset T^*(M)$

- Objects: Generating families F
 - for Legendrians $\Lambda \subset J^1(M)$
 - for Lagrangians $L \subset T^*(M)$
- Morphisms: Generating family cochain complex $C(F_1, F_2)$

- Objects: Generating families F
 - for Legendrians $\Lambda \subset J^1(M)$
 - for Lagrangians $L \subset T^*(M)$
- Morphisms: Generating family cochain complex $C(F_1, F_2)$
- Higher compositions from gradient flow trees

- Objects: Generating families F
 - for Legendrians $\Lambda \subset J^1(M)$
 - for Lagrangians $L \subset T^*(M)$
- Morphisms: Generating family cochain complex $C(F_1, F_2)$
- Higher compositions from gradient flow trees

Thank you!

The Weinstein Conjecture for Iterated Planar Contact Structures

Bahar Acu

University of Southern California, University of California, Los Angeles

Lightning Talks Session I Tech Topology Conference December 10, 2016 To study fillings of certain (2n + 1)-dimensional contact manifolds by pseudoholomorphic curves and, by using this result, prove the Weinstein conjecture for that class.

Theorem (Wendl, 2008)

Let $(M^3, \xi = \ker \lambda)$ be a planar contact manifold. Then there exists an almost complex structure J on the symplectization $\mathbb{R} \times M^3$ such that $(\mathbb{R} \times M^3, (e^s \lambda))$ is foliated by embedded, finite energy, planar J-holomorphic curves of index 2.

Theorem (Wendl, 2008)

Let $(M^3, \xi = \ker \lambda)$ be a planar contact manifold. Then there exists an almost complex structure J on the symplectization $\mathbb{R} \times M^3$ such that $(\mathbb{R} \times M^3, (e^s \lambda))$ is foliated by embedded, finite energy, planar J-holomorphic curves of index 2.

This result can be used in various applications to planar contact manifolds such as

- the Weinstein conjecture,
- equivalence and strong and Stein fillability.

Question

Can we do the same thing in higher dimensions?

Question

Can we do the same thing in higher dimensions?

Answer

Not easy!

Automatic transversality and intersection theory do not exist in dim > 4.

Question

Can we do the same thing in higher dimensions?

Answer

Not easy!

Automatic transversality and intersection theory do not exist in $\dim > 4$.

Remedy

Iterated planar Lefschetz fibrations.

Idea: carry 4-dimensional phenomena used to prove Wendl's theorem to higher dimensions inductively!

(日)

Theorem (A.)

Let (M^{2n+1}, ξ) be an iterated planar contact manifold. Then there exists a compatible J on $\mathbb{R} \times M$ such that $\mathbb{R} \times M$ is filled by planar finite energy J-holomorphic curves, i.e. there exists a planar J-holomorphic curve through every point in $\mathbb{R} \times M$.

Conjecture (Weinstein, 1978)

Every contact form on a closed (2n + 1)-dimensional manifold has a closed Reeb orbit.

Conjecture (Weinstein, 1978)

Every contact form on a closed (2n + 1)-dimensional manifold has a closed Reeb orbit.

It is **TRUE** when

- dimM=3, ξ is overtwisted. (Hofer)
- dimM=3, $\pi_2(M) \neq 0$, ξ is tight (Hofer)
- *M* is a solid torus (Etnyre, Ghrist)
- dimM=3, ξ is supported by a planar open book. (Abbas, Cieliebak, Hofer)
- dimM=3, λ is arbitrary. (Taubes)
- dimM=2n+1, ξ is plastikstufe-overtwisted. (Albers-Hofer)

Iterated planar Lefschetz fibrations

Definition

A Weinstein domain (W^{2n}, ω) , $n \ge 2$, admits an **iterated planar Lefschetz** fibration if

- there exists a sequence of Lefschetz fibrations f_2, \ldots, f_n where $f_i : W^{2i} \to \mathbb{D}$ for $i = 2, \ldots, n$.
- Each regular fiber of f_{i+1} is the total space of f_i , i.e., W^{2i} is a regular fiber of f_{i+1} .
- $f_2: W^4 \to \mathbb{D}$ is a planar Lefschetz fibration.

Iterated planar Lefschetz fibrations

Definition

A Weinstein domain (W^{2n}, ω) , $n \ge 2$, admits an **iterated planar Lefschetz** fibration if

- there exists a sequence of Lefschetz fibrations f_2, \ldots, f_n where $f_i : W^{2i} \to \mathbb{D}$ for $i = 2, \ldots, n$.
- Each regular fiber of f_{i+1} is the total space of f_i , i.e., W^{2i} is a regular fiber of f_{i+1} .
- $f_2: W^4 \to \mathbb{D}$ is a planar Lefschetz fibration.

Examples

1)
$$W = T^* S^n$$
 since $T^* S^2 \subset T^* S^3 \subset \cdots \subset T^* S^n$.
2) A_k -singularity: $\{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_1^2 + \ldots, z_{n-1}^2 + z_n^{k+1} = 1\} \subset (\mathbb{C}^n, \omega_{std})$

< □ > < 同 > < 回 >

The Weinstein Conjecture in Higher Dimensions

An **iterated planar contact manifold** = a contact manifold supporting an open book whose pages admit an iterated planar Lefschetz fibration.

An **iterated planar contact manifold** = a contact manifold supporting an open book whose pages admit an iterated planar Lefschetz fibration.

Theorem (A.)

Let (M, ξ) be a (2n + 1)-dimensional iterated planar contact manifold. Then M satisfies the Weinstein conjecture.
Thanks!

æ

イロト イロト イヨト イヨト

$PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

Huygens C. Ravelomanana

University of Georgia

December 10, 2016

Huygens C. Ravelomanana PSL₂(C) Character variety and Dehn surgeries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Huygens C. Ravelomanana PSL₂C Character variety and Dehn surgeries

< 3 > < 3 >

If K is the unknot in S^3 , then $S^3_K(p/q) = L(p,q)$

Huygens C. Ravelomanana $PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

A D A D A D A

If K is the unknot in S^3 , then $S^3_K(p/q) = L(p,q)$ so

$$S_K^3(p/q_1) \cong S_K^3(p/q_2) \quad \text{iff} \ \pm q_1 \equiv q_2^{\pm 1} \ [\text{mod } p],$$

for relatively prime pairs of integers (p, q_1) and (p, q_2) .

伺 と く ヨ と く ヨ と

If K is the unknot in S^3 , then $S^3_K(p/q) = L(p,q)$ so

$$S_K^3\left(p/q_1\right) \cong S_K^3\left(p/q_2\right) \quad \text{iff} \ \pm q_1 \equiv q_2^{\pm 1} \ [\text{mod } p],$$

for relatively prime pairs of integers (p, q_1) and (p, q_2) .

Assume $Y_K := Y \setminus int(\mathcal{N}(K))$ is boundary irreducible and irreducible. (This exclude the unknot in S^3 case.)

Examples

Huygens C. Ravelomanana $PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

イロト イヨト イヨト イヨト

2

If K is an amphicheiral knot in S^3 , then $S^3_K(r) \cong S^3_K(-r)$.

Huygens C. Ravelomanana PSL₂(C) Character variety and Dehn surgeries

伺 と く ヨ と く ヨ と

If K is an amphicheiral knot in S^3 , then $S^3_K(r) \cong S^3_K(-r)$.

(Small Seifert-fibered)

$$C(s) = \{ \text{slope } r \neq s | Y_K(r) \cong Y_K(s) \}.$$

< 回 > < 三 > < 三 >

$$C(s) = \{ \text{slope } r \neq s | Y_K(r) \cong Y_K(s) \}.$$

Question

Question: When is $C(s) \neq \emptyset$?

伺 ト イヨト イヨト

э

$$C(s) = \{ \text{slope } r \neq s | Y_K(r) \cong Y_K(s) \}.$$

Question

Question: When is $C(s) \neq \emptyset$?

Observation

If $Y = S^3$ and K is an amphicheiral knot then $C(s) \neq \emptyset$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$C(s) = \{ \text{slope } r \neq s | Y_K(r) \cong Y_K(s) \}.$$

Question

Question: When is $C(s) \neq \emptyset$?

Observation

If $Y = S^3$ and K is an amphicheiral knot then $C(s) \neq \emptyset$. Moreover $C(s) = \{-s\}$ for all known cases.

向下 イヨト イヨト

$$C(s) = \{ \text{slope } r \neq s | Y_K(r) \cong Y_K(s) \}.$$

Question

Question: When is $C(s) \neq \emptyset$?

Observation

If $Y = S^3$ and K is an amphicheiral knot then $C(s) \neq \emptyset$. Moreover $C(s) = \{-s\}$ for all known cases.

Main Question

Do we have $\sharp C(s) \leq 1$ in general ?

伺 ト イヨト イヨト

Huygens C. Ravelomanana $PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

イロト イヨト イヨト イヨト

5 90C

Theorem $(\mathbf{R}.)$

Let's assume $Y_K(s)$ is small-Seifert. If Hom $(\pi_1(Y), PSL_2(\mathbb{C}))$ contains only diagonalisable representations and $||s||_{CS}$ is not a multiple of $s \cdot \lambda$. Then $\sharp C(s) \leq 1$.

「マト・コート・・コート

Theorem (R.)

Let's assume $Y_K(s)$ is small-Seifert. If Hom $(\pi_1(Y), PSL_2(\mathbb{C}))$ contains only diagonalisable representations and $||s||_{CS}$ is not a multiple of $s \cdot \lambda$. Then $\sharp C(s) \leq 1$.

Here, $|| ||_{CS}$ is a semi-norm on $H_1(\partial Y_K; \mathbb{R})$ similar to the Culler-Shalen semi-norm and λ is the rational longitude of K.

伺 と く ヨ と く ヨ と

Theorem (R.)

Let's assume $Y_K(s)$ is small-Seifert. If $\operatorname{Hom}(\pi_1(Y), PSL_2(\mathbb{C}))$ contains only diagonalisable representations and $||s||_{CS}$ is not a multiple of $s \cdot \lambda$. Then $\sharp C(s) \leq 1$.

Here, $|| ||_{CS}$ is a semi-norm on $H_1(\partial Y_K; \mathbb{R})$ similar to the Culler-Shalen semi-norm and λ is the rational longitude of K.

The norm $||s||_{CS}$ is the degree count of a regular function

$$f_s: \widetilde{X}(Y_K) \to \mathbb{C}, \quad \chi \mapsto \chi(s)^2 - 4$$

restricted to one-dimensional components.

伺 と く ヨ と く ヨ と

Proof

Huygens C. Ravelomanana $PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• If $r \in C(s)$ then $||r||_{CS} = ||s||_{CS}$ provided that Hom $(\pi_1(Y), PSL_2(\mathbb{C}))$ contains only diagonalisable representations.

3

• If $r \in C(s)$ then $||r||_{CS} = ||s||_{CS}$ provided that Hom $(\pi_1(Y), PSL_2(\mathbb{C}))$ contains only diagonalisable representations.

• If $||s||_{CS}$ is not a multiple of $s \cdot \lambda$ then the line determined by r and s passes through the interior of the $|| ||_{CS}$ -ball of radius $||s||_{CS}$.

伺 と く ヨ と く ヨ と

Huygens C. Ravelomanana $PSL_2(\mathbb{C})$ Character variety and Dehn surgeries

Immersed Lagrangian Fillings of Legendrian Knots

Tech Topology Conference

December 10, 2016

Samantha Pezzimenti

Bryn Mawr College

The genus of a smooth filling is not determined by the knot.

Contact Manifold: $(\mathbb{R}^3, \xi = ker(dz - ydx))$

Contact Manifold: $(\mathbb{R}^3, \xi = ker(dz - ydx))$

A knot is Legendrian if all of its tangent vectors lie in the planes of the contact structure.

Front Projection (xz)

Lagrangian Projection (xy)

Contact Manifold: $(\mathbb{R}^3, \xi = ker(dz - ydx))$

A knot is **Legendrian** if all of its tangent vectors lie in the planes of the contact structure.

Symplectic Manifold: $(\mathbb{R} \times \mathbb{R}^3, \omega = d(e^t \alpha))$

Symplectic Manifold: $(\mathbb{R} \times \mathbb{R}^3, \omega = d(e^t \alpha))$

A surface is **Lagrangian** if $\omega(\vec{v}, \vec{w}) = 0, \forall \vec{v}, \vec{w} \in T_pL$

Symplectic Manifold: $(\mathbb{R} \times \mathbb{R}^3, \omega = d(e^t \alpha))$

A surface is **Lagrangian** if $\omega(\vec{v}, \vec{w}) = 0, \forall \vec{v}, \vec{w} \in T_pL$

Our Lagrangian fillings: Exact, Maslov 0

Mountain Range for $m(5_2)$

What does the polynomial of a Legendrian knot tell us about the genus/immersion points of an **immersed Lagrangian filling**?

Example: $\Gamma(t) = 1t^{-2} + 0t^{0} + t + 0t^{-0} + 1t^{2}$

Example:
$$\Gamma(t) = 1t^{-2} + 0t^{0} + t + 0t^{-0} + 1t^{2}$$

• Any immersed filling has at least 1 immersion point of index 2.

Example:
$$\Gamma(t) = 1t^{-2} + +0t^{0} + t + 0t^{-0} + 1t^{2}$$

- Any immersed filling has at least 1 immersion point of index 2.
- Potentially immersed genus 0 filling

Example:
$$\Gamma(t) = 1t^{-2} + +0t^{0} + t + 0t^{-0} + 1t^{2}$$

- Any immersed filling has at least 1 immersion point of index 2.
- Potentially immersed genus 0 filling

genus 1 filling with an additional immersion point of index 1

Example:
$$\Gamma(t) = 1t^{-2} + +0t^{0} + t + 0t^{-0} + 1t^{2}$$

- Any immersed filling has at least 1 immersion point of index 2.
- Potentially immersed genus 0 filling

genus 1 filling with an additional immersion point of index 1 genus g filling with an additional g immersion points of index 1

Example:
$$\Gamma(t) = 1t^{-2} + +0t^{0} + t + 0t^{-0} + 1t^{2}$$

- Any immersed filling has at least 1 immersion point of index 2.
- Potentially immersed genus 0 filling

genus 1 filling with an additional immersion point of index 1 genus g filling with an additional g immersion points of index 1

• Can add more immersion points in pairs of consecutive indices.

Thank you!

Exact Lagrangian fillings of Legendrian (2, *n*) torus links

Yu Pan

Duke University

Tech Topology Conference Dec. 10, 2016

Yu Pan Exact Lagrangian fillings of Legendrian (2, n) torus links

Exact Lagrangian fillings

For a Legendrian knot Λ in $(\mathbb{R}^3, \ker \alpha)$, where $\alpha = dz - ydx$, an exact Lagrangian filling of Λ is a 2-dimensional surface L in $(\mathbb{R}_t \times \mathbb{R}^3, \omega = d(e^t \alpha))$ such that

- L is cylindrical over Λ when t is big enough;
- there exists a function $f: L \to \mathbb{R}$ such that $e^t \alpha \Big|_{TL} = df$ and f is constant on Λ .

Questions

Given a Legendrian knot, we can ask the following questions.

- Does it have an exact Lagrangian filling?
- What does an exact Lagrangian filling look like?
- How many exact Lagrangian fillings does it have?

伺 ト イ ヨ ト イ ヨ ト

The EHK construction Distinguish fillings Future directions

Minimum cobordisms and pinch moves

• The minimum cobordism

• The pinch move

The EHK construction Distinguish fillings Future directions

Construction

(日) (同) (三) (三)

æ

The EHK construction Distinguish fillings Future directions

Construction

<ロ> <同> <同> < 同> < 同>

æ

Yu Pan Exact Lagrangian fillings of Legendrian (2, *n*) torus links

The EHK construction Distinguish fillings Future directions

The Catalan number

The EHK construction gives Legendrian (2, n) torus link

$$S_n / \{(\dots, i, j, \dots, k, \dots) \sim (\dots, j, i, \dots, k, \dots), \text{ for any } i < k < j\}$$

exact Lagrangian fillings.

This is called the *n*-th Catalan number,

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

Image: A Image: A
The EHK construction Distinguish fillings Future directions

Distinguish fillings

To distinguish these C_n fillings, we compute augmentations to $\mathbb{Z}_2[H_1(L)]$, which counts the homology class of holomorphic disks.

同 ト イ ヨ ト イ ヨ ト

The EHK construction Distinguish fillings Future directions

Conclusion

Theorem (P. '16)

The C_n exact Lagrangian fillings of the Legendrian (2, n) torus links are of different exact Lagrangian isotopy classes.

イロト イポト イヨト イヨト

3

Future directions

The EHK construction Distinguish fillings Future directions

Augmentation Category

Constructible Sheaves Category

Yu Pan Exact Lagrangian fillings of Legendrian (2, n) torus links

- 4 同 6 4 日 6 4 日 6

The EHK construction Distinguish fillings Future directions

Future directions

Augmentation Category

Constructible Sheaves Category

Contact Topology

Algebraic Geometry

The EHK construction Distinguish fillings Future directions

Future directions

Augmentation Category

Constructible Sheaves Category

Contact Topology

Algebraic Geometry

[*EHK*, '12]

[STWZ, '15]

< 日 > < 同 > < 三 > < 三 >

э

The EHK construction Distinguish fillings Future directions

Future directions

Augmentation Category

Constructible Sheaves Category

Contact Topology

Algebraic Geometry

[*EHK*, '12]

[STWZ, '15]

Cluster Algebra

< 日 > < 同 > < 三 > < 三 >

э