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Symn acts naturally on Cn by permuting coordinates.

Each transposition (i j) fixes the hyperplane zi = zj ;

Each product of transpositions fixes an intersection of hyperplanes.

These hyperplanes form the braid arrangement

An = {~z ∈ Cn | zi = zj for some i , j}

Goal: Understand the topology of Cn −An
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Motivation: π1(Cn −An) is the pure braid group.

This is a (pure) braid!

How about the homology?
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The homology of Cn −An is well known (Arnol’d ’69):

1. Betti numbers: coefficients of (1 + t)(1 + 2t) · · · (1 + (n− 1)t)

2. H∗(Cn −An) is torsion-free.

What about other hyperplane arrangements?

Orlik-Solomon (’80): For any complex hyperplane arrangement A,

1. We can compute H∗(Cn −A)

2. H∗(Cn −A) is torsion-free.

But this is not the whole story...
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Milnor (’68): For any complex hyperplane arrangement A,

Cn −A is a fiber bundle over S1.

1. Can we compute the homology of the Milnor fiber?

2. Is the homology of the Milnor fiber torsion-free?

Problem: Orlik-Solomon doesn’t help!

Homology is too hard...unknown even for the braid arrangement.
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Conjecture (Randell ’11): Every Milnor fiber has torsion-free

homology.

−→ counterexample by Denham-Suciu in ’14

Theorem (D-McCammond ’16): The Milnor fiber of the

braid arrangement A6 has torsion in its homology.
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The spherical manifold realization problem

É Every closed three-manifold can be obtained by
performing surgery on a link in S3.
(Lickorish–Wallace)

É Focus: Which closed 3–manifolds with finite
fundamental groups can be realized by surgeries on
nontrivial knots in S3?

É Closed 3–manifolds with finite fundamental groups
=
Spherical manifolds

É A spherical 3-manifold Y, with G = π1(Y), falls into
one of the following five types, depending on the
structure of G/Z(G):
C or cyclic, D or dihedral, T or tetrahedral, O or
octahedral, I or icosahedral.
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What is known?

É The spherical manifold realization problem:
Which spherical manifolds can be realized by
integral surgeries on nontrivial knots in S3?

É Solution for C–type manifolds (lens spaces) by
Greene

É Solution for T, O, and I–type manifolds by Gu

É This leaves the D–type manifolds (also known as the
prism manifolds) as the only remaining case.
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Prism manifolds

É Given a pair of relatively prime integers p > 1 and
q, let P(p,q) be the oriented prism manifold with
Seifert invariants

(−1; (2,1), (2,1), (p,q)).

É We provide the solution of the realization problem
for prism manifolds P(p,q) with q < 0.
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Realizable P(p,q), q < 0

Type P(p,q)

1A P
�

p,− 1
2(p

2 − 3p+ 4)
�

1B P
�

p,− 1
22(p

2 − 3p+ 4)
�

2 P
�

p,− 1
|4r+2|(r

2p+ 1)
�

3 P
�

p,− 1
2r (p+ 1)(p+ 4)

�

4 P
�

p,− 1
2r2

�

(2r + 1)2p+ 1
�

�

5 P
�

p,− 1
r2−2r−1

(r2p+ 1)
�

Sporadic P(11,−30), P(17,−31), P(13,−47), P(23,−64)



Conjectural list of realizable P(p,q), q > 0

Type P(p,q)

1A P
�

p, 1
2(p

2 + 3p+ 4)
�

1B P
�

p, 1
22(p

2 + 3p+ 4)
�

2 P
�

p, 1
|4r+2|(r

2p− 1)
�

3 P
�

p, 1
2r (p− 1)(p− 4)

�

4 P
�

p, 1
2r2

�

(2r + 1)2p− 1
�

�

5 P
�

p, 1
r2−2r−1

(r2p− 1)
�

Sporadic P(11,19), P(11,30), P(13,34)
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When is a Knot Diagram Legendrian?
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Introduction

▶ A knot diagram is an immersion S1 → T ∗R equipped with
crossing data:

▶ Two knot diagrams are combinatorially equivalent if they
are isotopic without Reidemeister moves.

▶ When is a knot diagram combinatorially equivalent to the
Lagrangian projection of a Legendrian knot?
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Why We Care

▶ My immediate goal is to use this in detecting if a Legendrian
knot is stabilized.

▶ We can always stabilize a knot. There is no easy way to tell if
it can be de-stabilized, that works in all circumstances.
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Definitions

▶ Define a minimal polygon to be a bounded component of
T ∗R− K . Index them P1 through PN .

▶ Index the crossings of K as c1 through cM . Put signs on each
crossing:

▶ If K is Legendrian, then by Stokes’ Theorem, the area of the
minimal polygon Pi is the signed sum of the actions of the
adjacent Reeb chords.
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An If Condition

▶ Let AK be the M × N matrix whose (i , j) entry is the signed
sum of the number of times crossing i is adjacent to minimal
polygon Pj .

▶ Let x be an N-dimensional vector whose entries are
non-negative integers. Then, if K is Legendrian:

N∑
i=1

xiArea(Pi ) =
M∑
j=1

(AT
Kx)jAction(cj)

▶ So, if we can find x ̸= 0 so that (AT
Kx)j ≤ 0 for all j , K

cannot be Legendrian. Because if it was, we would have a
sum of areas with non-positive area.
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An Example
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An If and Only If Condition

This goes both ways:

Theorem: K is not Legendrian if and only if there exists a vector
x such that (AT

Kx)j ≤ 0 for all j .

We can determine if a Legendrian knot can be de-stabilized using
this approach, by undoing the Reidemeister Type I move and
checking if the resulting knot is Legendrian.
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University of Illinois at Urbana-Champaign
MSRI Postdoc

Tech Topology Conference 2016

Funda GÜLTEPE Calculating distance by twisting and projecting



Motivating Example: Distance estimate on Farey
graph

1/0

−1/1

E1

E2

1/1

0/1
Figure: Walking on the Farey graph with 1 right, two left, 1 right, two
left and two right turns, from E1 to E2.
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Generalizing the picture

So we have: Start with a group (SL2(Z)) and an associated
object (Torus).

Find a nice graph on which group acts nicely (Farey Graph
F), (i.e, find a way to express group elements (matrices) in
terms of vertices/edges of the graph)
Define projections to smaller components (into annuli)
Count big enough ones to get an estimate for the word
distance.

So, lets do the following:
1 Torus→ Surface S = Ss

g with genus g ≥ 2 and s boundary
components

2 Farey Graph→ Curve complex C(S)

3 Edge in Farey graph→ self homeo. of S (mapping class)
TOOL:

Subsurface projection: Project curves to subsurfaces

Funda GÜLTEPE Calculating distance by twisting and projecting



Generalizing the picture

So we have: Start with a group (SL2(Z)) and an associated
object (Torus).

Find a nice graph on which group acts nicely (Farey Graph
F), (i.e, find a way to express group elements (matrices) in
terms of vertices/edges of the graph)
Define projections to smaller components (into annuli)
Count big enough ones to get an estimate for the word
distance.

So, lets do the following:
1 Torus→ Surface S = Ss

g with genus g ≥ 2 and s boundary
components

2 Farey Graph→ Curve complex C(S)

3 Edge in Farey graph→ self homeo. of S (mapping class)
TOOL:

Subsurface projection: Project curves to subsurfaces
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Main Theorem

Fn: Free group of rank n

Out(Fn) = Aut(Fn)/ Inn(Fn)

The Mapping Class Group of S, denoted Mod(S) is,
Mod(S) = Homeo+(S)/isotopy

Let ι : Mod(Ss
g)→ Out(Fn) be the map induced from

π1(Ss
g) ' Fn. we obtain the following.

Theorem in Progress (with Rafi and Qing)
There is a distance formula for geometric outer automorphisms.

Funda GÜLTEPE Calculating distance by twisting and projecting



Topological model for Out(Fn)

Take a surface with π1(S) = Fn, Thicken it, then double it to
]n(S2 × S1).

Arcs on S → Disks in H → Spheres in ]n(S2 × S1)

Funda GÜLTEPE Calculating distance by twisting and projecting



Realize mapping classes as arc systems and project them
into subsurfaces. (including annuli)

dMod(S)(f1, f2) �
∑
Y⊆S

[dA(Y )(T1,T2)]k

Thicken arc systems to sphere systems (ADD twisting to
replace annulus proj. ):∑
Y⊆S

[dA(Y )(T1,T2)]k ≺
∑
Y⊆S

[dS(Y )(σ1, σ2)]k+
∑
α∈Fn

[twistα(σ1, σ2)]k .

Using Bestvina-Feighn subfactor projections:∑
Y⊆S

[dS(Y )(σ1, σ2)]k ≺ dOut(Fn)(ιf1, ιf2)

Finally using our twisting number distribution along folding
lines: ∑

α∈Fn

[twistα(σ1, σ2)]k ≺ dOut(Fn)(ιf1, ιf2)
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Funda GÜLTEPE Calculating distance by twisting and projecting



Realize mapping classes as arc systems and project them
into subsurfaces. (including annuli)

dMod(S)(f1, f2) �
∑
Y⊆S

[dA(Y )(T1,T2)]k

Thicken arc systems to sphere systems (ADD twisting to
replace annulus proj. ):∑
Y⊆S

[dA(Y )(T1,T2)]k ≺
∑
Y⊆S

[dS(Y )(σ1, σ2)]k+
∑
α∈Fn

[twistα(σ1, σ2)]k .

Using Bestvina-Feighn subfactor projections:∑
Y⊆S

[dS(Y )(σ1, σ2)]k ≺ dOut(Fn)(ιf1, ιf2)

Finally using our twisting number distribution along folding
lines: ∑

α∈Fn

[twistα(σ1, σ2)]k ≺ dOut(Fn)(ιf1, ιf2)
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THANK YOU!

Funda GÜLTEPE Calculating distance by twisting and projecting





Random Groups

Random Groups and Cubulations

Yen Duong, University of Illinois at Chicago

Tech Topology Conference 2016

December 2, 2016



Random Groups

What is a Random Group?

How many words of length l in an alphabet of m letters?

(2m) choices for first letter
(2m − 1) choices for subsequent letters
2m(2m − 1)(l−1) total such words

Definition

Choose 0 < d < 1. Fix m generators a1, . . . , am. Choose l > 0,
and with uniform probability choose (2m − 1)dl many words of
length l to form a relator set R. Then 〈a1, . . . , am|R〉 is a random
group at density d.
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Random Groups

Random Groups can have properties

Definition

Now let l →∞. If |Groups with P|
|All random groups| → 1 as l →∞, we say that

random groups at density d have property P (asymptotically
almost surely).

If d > 1/2, random groups are trivial or Z/2Z (Gromov).

If d < 1/6, random groups act freely and cocompactly on a
CAT (0) cube complex (Ollivier-Wise).

If d > 1/3, any action on a CAT (0) cube complex has a
global fixed point [has Property (T)](Zuk).
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Random Groups

Cube Complexes

Good thing you went to Dani Wise’s talk!
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Random Groups

Making a cube complex from a Cayley graph

Vertices: choice of okay orientations

Edges: flip one orientation

Higher dimensional cells: if skeleton appears



Random Groups

Making a cube complex from a Cayley graph

Vertices: choice of okay orientations

Edges: flip one orientation

Higher dimensional cells: if skeleton appears



Random Groups

Making a cube complex from a Cayley graph

Vertices: choice of okay orientations

Edges: flip one orientation

Higher dimensional cells: if skeleton appears



Random Groups

Making a cube complex from a Cayley graph

Vertices: choice of okay orientations

Edges: flip one orientation

Higher dimensional cells: if skeleton appears



Random Groups

Making a cube complex from a Cayley graph

Vertices: choice of okay orientations

Edges: flip one orientation

Higher dimensional cells: if skeleton appears



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph



Random Groups

Making a cube complex from a Cayley graph





Divergence of CAT(0) Cube Complexes and
Right-Angled Coxeter Groups
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Right-Angled Coxeter Groups

Γ, graph

S = {s1, s2, ..., sn}, vertices of Γ

E , edge set of Γ

Definition (Right-Angled Coxeter Group (RACG))

WΓ =< S | s2
i = 1, si sj = sjsi for (si , sj) ∈ E >

RACGs act geometrically on a natural CAT(0) cube complex.

CUNY Graduate Center
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Divergence

G a finitely generated group.

Definition (Divergence)

Div(G ) is the supremum over all lengths of minimal paths in the
Cayley graph of G , which avoid a ball of radius r , connecting two
points that are distance about 2r apart.

The divergence function roughly measures the fastest rate a pair of
geodesic rays can stray apart from one another.

·β(0)
r
β(r)β(−r)
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Divergence

Div(G ) is a quasi-isometry invariant.
(under a coarse equivalence of functions)

We say Div(G ) is linear, quadratic, r1.5, exponential, etc.
Multiplicative and additive constants are not very important.
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From Graphs to Groups

There is a bijection between isomorphism classes of RACGs
and graphs Γ [Radcliffe ’99].

WΓ is finite if and only if Γ is a clique.

WΓ is δ-hyperbolic if and only if Γ does not contain an
induced square [Moussong ’88].
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RACGs Divergence Results

Question: What can be said about Div(WΓ) from Γ?

Theorem (Dani-Thomas, Behrstock–Falgas-Ravry–Hagen–Susse)

Div(WΓ) is linear ⇐⇒ Γ is a non-trivial graph join.

Theorem (Dani–Thomas)

Γ is not a non-trivial join and is triangle-free.

Div(WΓ) is quadratic ⇐⇒ Γ is CFS.

Additionally, if Γ is not CFS, then Div(WΓ) is at least cubic.

Triangle-free → CAT(0) cube complex is 2–dimensional
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Main Theorem

Dani–Thomas’s Theorem generalizes to RACGs of arbitrary
dimension.

Theorem (L.)

Suppose Γ is not a non-trivial join.

Div(WΓ) is quadratic ⇐⇒ Γ is CFS.

Additionally, if Γ is not CFS, then Div(WΓ) is at least cubic.

Theorem follows from more general results on CAT(0) cube
complexes.

A different theorem also lets us to recognize infinite families
of RACGs of polynomial divergence of any integer degree.
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CFS Condition

Γ �(Γ)
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Application: Random RACGs

Γ(n, p(n)): “random” n vertex graph, each edge has probability
p(n) of occuring. (Erdős-Rényi model)

Theorem (Behrstock–Falgas-Ravry–Hagen–Susse, L.)

p(n) bounded away from 1, ε > 0, Γ = Γ(p(n), n) random graph.

If p(n) > n−
1
2

+ε, then WΓ asymptotically almost surely exhibits
quadratic divergence.

If p(n) < n−
1
2
−ε, then WΓ asymptotically almost surely exhibits at

least cubic divergence.
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Thank You!
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Divergence Definition

Fix constants 0 < δ ≤ 1, λ ≥ 0 and consider the linear function
ρ(r) = δr − λ. Let a, b, c ∈ X and set k = d(c , {a, b}).

divγ(a, b, c , δ)

is the length of the shortest path from a to b which avoids the ball
of radius ρ(k) about c .

DivXγ (r , δ)

is the supremum of divγ(a, b, c, δ) over all a, b, c with d(a, b) ≤ r .
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CFS Graphs

Given a Coxeter Diagram Γ, the square graph, �(Γ), is the graph
with vertex set:

V (�(Γ)) = {induced 4-cycles in Γ}

And edge set:

E (�(Γ)) = {(F1,F2) | F1∩F2 ⊂ Γ contains a pair of nonadjacent vertices}

Γ is CFS if �(Γ) contains a component, C , such that for every
v ∈ Γ, there is a 4-cycle F ∈ C with v a vertex of F .
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