LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 11, 2016

The Milnor Fiber of the Braid Arrangement

Michael Dougherty December 10, 2016 Tech Topology Conference

University of California, Santa Barbara

SYM_n acts naturally on \mathbb{C}^n by permuting coordinates.

Each transposition $(i \ j)$ fixes the hyperplane $z_i = z_j$; Each product of transpositions fixes an intersection of hyperplanes.

These hyperplanes form the braid arrangement

$$\mathcal{A}_n = \{ \vec{z} \in \mathbb{C}^n \mid z_i = z_j \text{ for some } i, j \}$$

Goal: Understand the topology of $\mathbb{C}^n - \mathcal{A}_n$

Motivation: $\pi_1(\mathbb{C}^n - \mathcal{A}_n)$ is the *pure braid group*.

This is a (pure) braid!

How about the homology?

The homology of $\mathbb{C}^n - \mathcal{A}_n$ is well known (Arnol'd '69):

- 1. Betti numbers: coefficients of $(1 + t)(1 + 2t) \cdots (1 + (n 1)t)$
- 2. $H_*(\mathbb{C}^n \mathcal{A}_n)$ is torsion-free.

What about other hyperplane arrangements?

Orlik-Solomon ('80): For any complex hyperplane arrangement A,

- 1. We can compute $H_*(\mathbb{C}^n \mathcal{A})$
- 2. $H_*(\mathbb{C}^n \mathcal{A})$ is torsion-free.

But this is not the whole story ...

Milnor ('68): For any complex hyperplane arrangement \mathcal{A} , $\mathbb{C}^n - \mathcal{A}$ is a fiber bundle over S^1 .

- 1. Can we compute the homology of the Milnor fiber?
- 2. Is the homology of the Milnor fiber torsion-free?

Problem: Orlik-Solomon doesn't help!

Homology is too hard...unknown even for the braid arrangement.

Conjecture (Randell '11): Every Milnor fiber has torsion-free homology.

 \longrightarrow counterexample by Denham-Suciu in '14

Conjecture (Randell '11): Every Milnor fiber has torsion-free homology.

 \longrightarrow counterexample by Denham-Suciu in '14

Theorem (D-McCammond '16): The Milnor fiber of the braid arrangement A_6 has torsion in its homology.

The prism manifold realization problem

Faramarz Vafaee

joint with W. Ballinger, C. Hsu, W. Mackey, Y. Ni, and T. Ochse (Summer Undergraduate Research Fellowship (SURF) program)

California Institute of Technology

December 2016

▲ロト ▲得ト ▲ヨト ▲ヨト - ヨー の々で

The spherical manifold realization problem

- Every closed three-manifold can be obtained by performing surgery on a link in S³. (Lickorish–Wallace)
- Focus: Which closed 3–manifolds with finite fundamental groups can be realized by surgeries on nontrivial knots in S³?

The spherical manifold realization problem

- Every closed three-manifold can be obtained by performing surgery on a link in S³. (Lickorish–Wallace)
- Focus: Which closed 3–manifolds with finite fundamental groups can be realized by surgeries on nontrivial knots in S³?
- Closed 3–manifolds with finite fundamental groups

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Spherical manifolds

The spherical manifold realization problem

- Every closed three-manifold can be obtained by performing surgery on a link in S³. (Lickorish–Wallace)
- Focus: Which closed 3–manifolds with finite fundamental groups can be realized by surgeries on nontrivial knots in S³?
- Closed 3–manifolds with finite fundamental groups

Spherical manifolds

A spherical 3-manifold Y, with G = π₁(Y), falls into one of the following five types, depending on the structure of G/Z(G):

C or cyclic, **D** or dihedral, **T** or tetrahedral, **O** or octahedral, **I** or icosahedral.

What is known?

- The spherical manifold realization problem: Which spherical manifolds can be realized by integral surgeries on nontrivial knots in S³?
- Solution for C-type manifolds (lens spaces) by Greene
- Solution for T, O, and I-type manifolds by Gu

What is known?

- The spherical manifold realization problem: Which spherical manifolds can be realized by integral surgeries on nontrivial knots in S³?
- Solution for C-type manifolds (lens spaces) by Greene
- Solution for T, O, and I-type manifolds by Gu
- This leaves the D-type manifolds (also known as the prism manifolds) as the only remaining case.

Prism manifolds

 Given a pair of relatively prime integers p > 1 and q, let P(p, q) be the oriented prism manifold with Seifert invariants

(-1; (2, 1), (2, 1), (p, q)).

Prism manifolds

 Given a pair of relatively prime integers p > 1 and q, let P(p, q) be the oriented prism manifold with Seifert invariants

(-1; (2, 1), (2, 1), (p, q)).

We provide the solution of the realization problem for prism manifolds P(p, q) with q < 0.</p>

<日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ()</p>

Realizable P(p, q), q < 0

Туре	<i>P</i> (<i>p</i> , <i>q</i>)
1A	$P\left(p,-rac{1}{2}(p^2-3p+4) ight)$
1B	$P(p, -\frac{1}{22}(p^2 - 3p + 4))$
2	$P(\rho, -\frac{1}{ 4r+2 }(r^2\rho+1))$
3	$P(p,-rac{1}{2r}(p+1)(p+4))$
4	$P(p, -\frac{1}{2r^2}((2r+1)^2p+1))$
5	$P\left(p,-\frac{1}{r^2-2r-1}(r^2p+1)\right)$
Sporadic	<i>P</i> (11, -30), <i>P</i> (17, -31), <i>P</i> (13, -47), <i>P</i> (23, -64)

Conjectural list of realizable P(p, q), q > 0

Туре	<i>P</i> (<i>p</i> , <i>q</i>)
1A	$P(p, \frac{1}{2}(p^2 + 3p + 4))$
18	$P(p, \frac{1}{22}(p^2 + 3p + 4))$
2	$P(p, \frac{1}{ 4r+2 }(r^2p-1))$
3	$P\left(p,\frac{1}{2r}(p-1)(p-4)\right)$
4	$P(p, \frac{1}{2r^2}((2r+1)^2p-1))$
5	$P\left(p, \frac{1}{r^2 - 2r - 1}(r^2p - 1)\right)$
Sporadic	<i>P</i> (11, 19), <i>P</i> (11, 30), <i>P</i> (13, 34)

Thank you

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

When is a Knot Diagram Legendrian?

Mark Lowell

December 1, 2016

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction

- A knot diagram is an immersion S¹ → T^{*}ℝ equipped with crossing data:
- Two knot diagrams are combinatorially equivalent if they are isotopic without Reidemeister moves.
- When is a knot diagram combinatorially equivalent to the Lagrangian projection of a Legendrian knot?

Why We Care

My immediate goal is to use this in detecting if a Legendrian knot is stabilized.

We can always stabilize a knot. There is no easy way to tell if it can be de-stabilized, that works in all circumstances.

Definitions

- Define a **minimal polygon** to be a bounded component of $\mathcal{T}^*\mathbb{R} \mathcal{K}$. Index them P_1 through P_N .
- ► Index the crossings of K as c₁ through c_M. Put signs on each crossing:

If K is Legendrian, then by Stokes' Theorem, the area of the minimal polygon P_i is the signed sum of the actions of the adjacent Reeb chords.

An If Condition

- ► Let A_K be the M × N matrix whose (i, j) entry is the signed sum of the number of times crossing i is adjacent to minimal polygon P_i.
- Let x be an N-dimensional vector whose entries are non-negative integers. Then, if K is Legendrian:

$$\sum_{i=1}^{N} x_i \operatorname{Area}(P_i) = \sum_{j=1}^{M} (A_{K}^{T} x)_j \operatorname{Action}(c_j)$$

So, if we can find x ≠ 0 so that (A^T_Kx)_j ≤ 0 for all j, K cannot be Legendrian. Because if it was, we would have a sum of areas with non-positive area.

An Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This goes both ways:

Theorem: K is not Legendrian *if and only if* there exists a vector x such that $(A_K^T x)_j \leq 0$ for all j.

We can determine if a Legendrian knot can be de-stabilized using this approach, by undoing the Reidemeister Type I move and checking if the resulting knot is Legendrian.

Calculating distance by twisting and projecting

Funda GÜLTEPE

University of Illinois at Urbana-Champaign MSRI Postdoc

Tech Topology Conference 2016

Funda GÜLTEPE

Calculating distance by twisting and projecting

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivating Example: Distance estimate on Farey graph

Figure: Walking on the Farey graph with 1 right, two left, 1 right, two left and two right turns, from E_1 to E_2 .

< A > < A > >

Generalizing the picture

So we have: Start with a group $(SL_2(\mathbb{Z}))$ and an associated object (Torus).

- Find a nice graph on which group acts *nicely*(Farey Graph *F*), (i.e, find a way to express group elements (matrices) in terms of vertices/edges of the graph)
- Define projections to smaller components (into annuli)
- Count big enough ones to get an estimate for the word distance.

< ロ > < 同 > < 回 > < 回 >

Generalizing the picture

So we have: Start with a group $(SL_2(\mathbb{Z}))$ and an associated object (Torus).

- Find a nice graph on which group acts *nicely*(Farey Graph *F*), (i.e, find a way to express group elements (matrices) in terms of vertices/edges of the graph)
- Define projections to smaller components (into annuli)
- Count big enough ones to get an estimate for the word distance.
- So, lets do the following:
 - Torus \rightarrow Surface $S = S_g^s$ with genus $g \ge 2$ and s boundary components
 - 2 Farey Graph \rightarrow Curve complex C(S)
- Solution Soluti Solution Solution Solution Solution Solution Solution Solu
 - Subsurface projection: Project curves to subsurfaces

Funda GÜLTEPE

Calculating distance by twisting and projecting

• \mathbb{F}_n : Free group of rank n

•
$$\operatorname{Out}(F_n) = \operatorname{Aut}(\mathbb{F}_n) / \operatorname{Inn}(\mathbb{F}_n)$$

• The Mapping Class Group of S, denoted Mod(S) is, $Mod(S) = Homeo^+(S)/isotopy$ Let $\iota : Mod(S_g^s) \to Out(\mathbb{F}_n)$ be the map induced from $\pi_1(S_g^s) \simeq \mathbb{F}_n$. we obtain the following.

Theorem in Progress (with Rafi and Qing)

There is a distance formula for geometric outer automorphisms.

• • • • • • • • • • •

Topological model for $Out(\mathbb{F}_n)$

Take a surface with $\pi_1(S) = \mathbb{F}_n$, Thicken it, then double it to $\sharp_n(S^2 \times S^1)$.

Arcs on $S \rightarrow$ Disks in $H \rightarrow$ Spheres in $\sharp_n(S^2 \times S^1)$

Funda GÜLTEPE

Calculating distance by twisting and projecting

 Realize mapping classes as arc systems and project them into subsurfaces. (including annuli)

$$d_{\mathsf{Mod}(\mathcal{S})}(f_1, f_2) \asymp \sum_{Y \subseteq \mathcal{S}} [d_{\mathcal{A}(Y)}(T_1, T_2)]_k$$

< ロ > < 同 > < 回 > < 回 >
Realize mapping classes as arc systems and project them into subsurfaces. (including annuli)

$$d_{\mathrm{Mod}(S)}(f_1, f_2) \asymp \sum_{Y \subseteq S} [d_{\mathcal{A}(Y)}(T_1, T_2)]_k$$

 Thicken arc systems to sphere systems (ADD twisting to replace annulus proj.):

$$\sum_{Y\subseteq S} [d_{\mathcal{A}(Y)}(T_1, T_2)]_k \prec \sum_{Y\subseteq S} [d_{\mathcal{S}(Y)}(\sigma_1, \sigma_2)]_k + \sum_{\alpha\in\mathbb{F}_n} [twist_{\alpha}(\sigma_1, \sigma_2)]_k.$$

 Realize mapping classes as arc systems and project them into subsurfaces. (including annuli)

$$d_{\mathsf{Mod}(\mathcal{S})}(f_1, f_2) \asymp \sum_{Y \subseteq \mathcal{S}} [d_{\mathcal{A}(Y)}(T_1, T_2)]_k$$

• Thicken arc systems to sphere systems (ADD twisting to replace annulus proj.):

$$\sum_{Y\subseteq S} [d_{\mathcal{A}(Y)}(T_1, T_2)]_k \prec \sum_{Y\subseteq S} [d_{\mathcal{S}(Y)}(\sigma_1, \sigma_2)]_k + \sum_{\alpha\in\mathbb{F}_n} [twist_\alpha(\sigma_1, \sigma_2)]_k.$$

Using Bestvina-Feighn subfactor projections:

$$\sum_{Y\subseteq S} [d_{S(Y)}(\sigma_1, \sigma_2)]_k \prec d_{\operatorname{Out}(\mathbb{F}_n)}(\iota f_1, \iota f_2)$$

Finally using our twisting number distribution along folding lines:

$$\sum_{\alpha \in \mathbb{F}_n} [twist_{\alpha}(\sigma_1, \sigma_2)]_k \prec d_{\operatorname{Out}(\mathbb{F}_n)}(\iota f_1, \iota f_2)$$

THANK YOU!

Funda GÜLTEPE

Calculating distance by twisting and projecting

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Random Groups and Cubulations

Yen Duong, University of Illinois at Chicago

Tech Topology Conference 2016

December 2, 2016

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How many words of length I in an alphabet of m letters?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

How many words of length l in an alphabet of m letters? (2m) choices for first letter

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

How many words of length l in an alphabet of m letters? (2m) choices for first letter (2m - 1) choices for subsequent letters

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How many words of length l in an alphabet of m letters? (2m) choices for first letter (2m-1) choices for subsequent letters $2m(2m-1)^{(l-1)}$ total such words

How many words of length l in an alphabet of m letters? (2m) choices for first letter (2m-1) choices for subsequent letters $2m(2m-1)^{(l-1)}$ total such words

Definition

Choose 0 < d < 1. Fix *m* generators a_1, \ldots, a_m . Choose l > 0, and with uniform probability choose $(2m - 1)^{dl}$ many words of length *l* to form a relator set *R*. Then $\langle a_1, \ldots, a_m | R \rangle$ is a random group at density *d*.

(日) (日) (日) (日) (日) (日) (日) (日)

Definition

Now let $l \to \infty$. If $\frac{|\text{Groups with P}|}{|\text{All random groups}|} \to 1$ as $l \to \infty$, we say that random groups at density d have property P (asymptotically almost surely).

(日) (日) (日) (日) (日) (日) (日) (日)

Definition

Now let $l \to \infty$. If $\frac{|\text{Groups with P}|}{|\text{All random groups}|} \to 1$ as $l \to \infty$, we say that random groups at density d have property P (asymptotically almost surely).

• If d > 1/2, random groups are trivial or $\mathbb{Z}/2\mathbb{Z}$ (Gromov).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

Now let $l \to \infty$. If $\frac{|\text{Groups with P}|}{|\text{All random groups}|} \to 1$ as $l \to \infty$, we say that random groups at density d have property P (asymptotically almost surely).

- If d > 1/2, random groups are trivial or $\mathbb{Z}/2\mathbb{Z}$ (Gromov).
- If d < 1/6, random groups act freely and cocompactly on a CAT(0) cube complex (Ollivier-Wise).

(日) (日) (日) (日) (日) (日) (日) (日)

Definition

Now let $l \to \infty$. If $\frac{|\text{Groups with P}|}{|\text{All random groups}|} \to 1$ as $l \to \infty$, we say that random groups at density d have property P (asymptotically almost surely).

- If d > 1/2, random groups are trivial or $\mathbb{Z}/2\mathbb{Z}$ (Gromov).
- If d < 1/6, random groups act freely and cocompactly on a CAT(0) cube complex (Ollivier-Wise).

(日) (日) (日) (日) (日) (日) (日) (日)

 If d > 1/3, any action on a CAT(0) cube complex has a global fixed point [has Property (T)](Zuk).

Cube Complexes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Cube Complexes

Good thing you went to Dani Wise's talk!

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

• Vertices: choice of okay orientations

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

- Vertices: choice of okay orientations
- Edges: flip one orientation

- Vertices: choice of okay orientations
- Edges: flip one orientation
- Higher dimensional cells: if skeleton appears

- Vertices: choice of okay orientations
- Edges: flip one orientation
- Higher dimensional cells: if skeleton appears

<□> <@> < E> < E> E のへぐ

▲ロト ▲畳 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

・ロト・日本・モート モー うへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

・ロト・日本・モート モー うへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 ・のへで

Divergence of CAT(0) Cube Complexes and Right-Angled Coxeter Groups

Ivan Levcovitz

CUNY Graduate Center

Divergence of CAT(0) Cube Complexes and Right-Angled Coxeter Groups

Right-Angled Coxeter Groups

- Γ, graph
- $S = \{s_1, s_2, ..., s_n\}$, vertices of Γ
- E, edge set of Γ

Definition (Right-Angled Coxeter Group (RACG))

$$W_{\Gamma} = < S \mid s_i^2 = 1, s_i s_j = s_j s_i \ \textit{for} \ (s_i, s_j) \in E >$$

CUNY Graduate Center

Divergence of CAT(0) Cube Complexes and Right-Angled Coxeter Groups

Right-Angled Coxeter Groups

- Γ, graph
- $S = \{s_1, s_2, ..., s_n\}$, vertices of Γ
- E, edge set of Γ

Definition (Right-Angled Coxeter Group (RACG))

$$W_{\Gamma} = < S \mid s_i^2 = 1, s_i s_j = s_j s_i \ \textit{for} \ (s_i, s_j) \in E >$$

RACGs act geometrically on a natural CAT(0) cube complex.

G a finitely generated group.

G a finitely generated group.

Definition (Divergence)

Div(G) is the supremum over all lengths of minimal paths in the Cayley graph of G, which avoid a ball of radius r, connecting two points that are distance about 2r apart.

G a finitely generated group.

Definition (Divergence)

Div(G) is the supremum over all lengths of minimal paths in the Cayley graph of G, which avoid a ball of radius r, connecting two points that are distance about 2r apart.

The divergence function roughly measures the fastest rate a pair of geodesic rays can stray apart from one another.

Div(G) is a quasi-isometry invariant.
(under a coarse equivalence of functions)
Divergence

Div(G) is a quasi-isometry invariant.
(under a coarse equivalence of functions)

We say Div(G) is linear, quadratic, r^{1.5}, exponential, etc.
Multiplicative and additive constants are not very important.

 There is a bijection between isomorphism classes of RACGs and graphs Γ [Radcliffe '99].

- There is a bijection between isomorphism classes of RACGs and graphs Γ [Radcliffe '99].
- W_{Γ} is finite if and only if Γ is a clique.

- There is a bijection between isomorphism classes of RACGs and graphs Γ [Radcliffe '99].
- W_{Γ} is finite if and only if Γ is a clique.
- W_Γ is δ-hyperbolic if and only if Γ does not contain an induced square [Moussong '88].

- There is a bijection between isomorphism classes of RACGs and graphs Γ [Radcliffe '99].
- W_{Γ} is finite if and only if Γ is a clique.
- W_Γ is δ-hyperbolic if and only if Γ does not contain an induced square [Moussong '88].

Question: What can be said about $Div(W_{\Gamma})$ from Γ ?

Question: What can be said about $Div(W_{\Gamma})$ from Γ ?

Theorem (Dani-Thomas, Behrstock–Falgas-Ravry–Hagen–Susse)

 $Div(W_{\Gamma})$ is linear $\iff \Gamma$ is a non-trivial graph join.

Question: What can be said about $Div(W_{\Gamma})$ from Γ ?

Theorem (Dani-Thomas, Behrstock–Falgas-Ravry–Hagen–Susse)

 $Div(W_{\Gamma})$ is linear $\iff \Gamma$ is a non-trivial graph join.

Theorem (Dani–Thomas)

 Γ is not a non-trivial join and is triangle-free.

 $Div(W_{\Gamma})$ is quadratic $\iff \Gamma$ is CFS.

Additionally, if Γ is not CFS, then $Div(W_{\Gamma})$ is at least cubic.

Question: What can be said about $Div(W_{\Gamma})$ from Γ ?

Theorem (Dani-Thomas, Behrstock–Falgas-Ravry–Hagen–Susse)

 $Div(W_{\Gamma})$ is linear $\iff \Gamma$ is a non-trivial graph join.

Theorem (Dani–Thomas)

 Γ is not a non-trivial join and is triangle-free.

 $Div(W_{\Gamma})$ is quadratic $\iff \Gamma$ is CFS.

Additionally, if Γ is not CFS, then $Div(W_{\Gamma})$ is at least cubic.

Triangle-free \rightarrow CAT(0) cube complex is 2–dimensional

Dani–Thomas's Theorem generalizes to RACGs of arbitrary dimension.

Dani–Thomas's Theorem generalizes to RACGs of arbitrary dimension.

Theorem (L.)

Suppose Γ is not a non-trivial join.

 $Div(W_{\Gamma})$ is quadratic $\iff \Gamma$ is CFS.

Additionally, if Γ is not CFS, then $Div(W_{\Gamma})$ is at least cubic.

Dani–Thomas's Theorem generalizes to RACGs of arbitrary dimension.

Theorem (L.)

Suppose Γ is not a non-trivial join.

 $Div(W_{\Gamma})$ is quadratic $\iff \Gamma$ is CFS.

Additionally, if Γ is not CFS, then $Div(W_{\Gamma})$ is at least cubic.

 Theorem follows from more general results on CAT(0) cube complexes.

Dani–Thomas's Theorem generalizes to RACGs of arbitrary dimension.

Theorem (L.)

Suppose Γ is not a non-trivial join.

 $Div(W_{\Gamma})$ is quadratic $\iff \Gamma$ is CFS.

Additionally, if Γ is not CFS, then $Div(W_{\Gamma})$ is at least cubic.

- Theorem follows from more general results on CAT(0) cube complexes.
- A different theorem also lets us to recognize infinite families of RACGs of polynomial divergence of any integer degree.

CFS Condition

CFS Condition

 $\Gamma(n, p(n))$: "random" *n* vertex graph, each edge has probability p(n) of occuring. (Erdős-Rényi model)

 $\Gamma(n, p(n))$: "random" *n* vertex graph, each edge has probability p(n) of occuring. (Erdős-Rényi model)

Theorem (Behrstock–Falgas-Ravry–Hagen–Susse, L.)

p(n) bounded away from 1, $\epsilon > 0$, $\Gamma = \Gamma(p(n), n)$ random graph.

If $p(n) > n^{-\frac{1}{2}+\epsilon}$, then W_{Γ} asymptotically almost surely exhibits quadratic divergence.

If $p(n) < n^{-\frac{1}{2}-\epsilon}$, then W_{Γ} asymptotically almost surely exhibits at least cubic divergence.

Thank You!

Divergence Definition

Fix constants $0 < \delta \le 1$, $\lambda \ge 0$ and consider the linear function $\rho(r) = \delta r - \lambda$. Let $a, b, c \in X$ and set $k = d(c, \{a, b\})$.

 $div_{\gamma}(a, b, c, \delta)$

is the length of the shortest path from a to b which avoids the ball of radius $\rho(k)$ about c.

$$Div_{\gamma}^{X}(r,\delta)$$

is the supremum of $div_{\gamma}(a, b, c, \delta)$ over all a, b, c with $d(a, b) \leq r$.

CFS Graphs

Given a Coxeter Diagram Γ , the square graph, $\Box(\Gamma)$, is the graph with vertex set:

 $V(\Box(\Gamma)) = \{ \text{induced 4-cycles in } \Gamma \}$

And edge set:

 $E(\Box(\Gamma)) = \{(F_1, F_2) \mid F_1 \cap F_2 \subset \Gamma \text{ contains a pair of nonadjacent vertices}\}$

 Γ is **CFS** if $\Box(\Gamma)$ contains a component, *C*, such that for every $v \in \Gamma$, there is a 4-cycle $F \in C$ with *v* a vertex of *F*.