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A bit of history

Question (Steiner (1832))

Which graphs Γ can be obtained as 1-skeletons of a (convex)
polyhedron in R3?

Theorem (Steinitz (1916))

Γ is the 1-skeleton of a polyhedron in R3 ⇐⇒ Γ is planar and
3–connected (suppressing 2 vertices leaves a connected graph).
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Constructing a 4-edge connected graph that is 2-connected but not 3-connected

How can i construct a graph  with these properties:G

 is -edge-connected;G 4
 is -vertex-connected;G 2
 is not -vertex-connected.G 3

I have managed to create a number of -edge-connected graphs but they always turn out to be -vertex connected - which I can't have.4 3

essentially, i have used trial and error thus far to construct some 4-edge-connected graphs but i'm struggling to see how i can do this
without the resulting graphs also being 3-connected.

4-edge connected meaning a graph in which between any two vertices there are 4 edge-disjoint paths between the two vertices. 2-
connected(meaning 2 vertex-connected) means a graph in which between any two vertices there are 2 vertex-disjoint paths.

It's a homework question for a module and could easily be a part of the final year exam - The question explicitly asks for a graph with
these three properties, and then to prove that it has these properties.

 (graph-theory) (connectedness)

edited Feb 26 '14 at 17:05 asked Feb 26 '14 at 16:41
user3355894
6 2

   

 –  

4-edge connected meaning a graph in which between any two vertices there are 4 edge-disjoint paths
between the two vertices. 2-connected(meaning 2 vertex-connected) means a graph in which between any
two vertices there are 2 vertex-disjoint paths. user3355894 Feb 26 '14 at 16:47

1   –  Please add that to the question directly, instead of just being a comment. Calvin Lin Feb 26 '14 at 16:48

   

 –  

@user3355894 as well adding the comment to the question, could you give some idea of why you think this
should exist, and what you have already tried e.g. how you are making these 4 edge connected graphs that
turn out to be three vertex connected Joe Tait Feb 26 '14 at 17:01

    –
  
Take two of the 4-edge-connected graph and attache them at two vertices you get a 2-connected graph.
hbm Feb 26 '14 at 17:16

1 Answer

What about such a graph:
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Polyhedra inscribed in the sphere

Question (Steiner (1832))

Which ones are inscribable in the sphere?

Theorem (Steinitz (1927))

∃ 3–connected graphs that are not inscribable in a sphere.
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Figure: Picture by D. Eppstein and M. B. Dillencourt.
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Polyhedra inscribed in the sphere

Question (Steiner
(1832))

Which 3–connected
graphs are inscribable
in the sphere?

The complete answer
was given by Rivin
(1992), using
hyperbolic geometry.
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Polyhedra inscribed in other quadrics

Question (Steiner (1832))

What about other quadrics?

Up to projective transformations, there are only 3 quadrics:

the sphere;

the cylinder;

the hyperboloid.

Jeff Danciger, Jean-Marc Schlenker and I answered, using anti-de
Sitter geometry and half-pipe geometry.
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Polyhedra inscribed in the cylinder and in the hyperboloid



Polyhedra inscribed in quadrics

Theorem (Danciger–M.–Schlenker (2014))

Let Γ be a planar graph. TFAE:

(C): Γ is inscribable in the cylinder C .

(H): Γ is inscribable in the hyperboloid H.

(S): Γ is inscribable in the sphere S and Γ admits a Hamiltonian
cycle (that is, a closed path visiting each vertex exactly once).

Rivin (1992) characterizes when Γ is inscribable in the sphere S .



Polyhedra inscribable in the sphere, but not in the
hyperboloid or cylinder

Figure: Picture by M. B. Dillencourt.



Polyhedra inscribable in the sphere, but not in the
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Figure: Pictures courtesy of M. B. Dillencourt.



Computational complexity

Theorem (Hodgson-Rivin-Smith (1992))

Given Γ, the problem of deciding if Γ is inscribable in a sphere is
decidable in polynomial time.

Using Dillencourt’s and our theorems, we can prove:

Corollary (Danciger-M.-Rivin-Schlenker (2014))

Given Γ, the problem of deciding if Γ is inscribable in a hyperboloid
or in a cylinder is NP-complete.
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Hyperbolic space

The hyperbolic space is the (open) unit ball

H3 = {x ∈ R4 | x21 + x22 + x23 − x24 < 0}/R∗

with distance

d(p, q) =
1

2
log
|qa||bp|
|pa||bq| .

Its isometry groups is PO(3, 1).

a

b

p

q H3
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Anti-de Sitter space AdS3

The anti-de Sitter space AdS3 is a Lorentzian analogue of H3.

AdS3 = {x ∈ R4 | x21 + x22 − x23 − x24 < 0}/R∗.
Its isometry group is PO(2, 2).

∃ embeddings H2 ↪→ AdS3.

The faces are space-like, and the dihedral angles are in R. 10/11/2015, 08:59de_sitter.gif 242×264 pixels
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Half-pipe space HP3

The half-pipe space HP3:

Limit of both H3 and AdS3.

HP3 = {x ∈ R4 |
x21 + x22 − x24 < 0}/R∗.
R2,1 oO(2, 1).

∃ embeddings H2 ↪→ HP3.

The faces are space-like, and
the dihedral angles are in R.
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Figure 2.6: An isometry that point-wise fixes � acts as a Lorentz boost on tangent planes
orthogonal to � (shown right) and as a pure translation along �̂.

for better visualization of the geometry.

2.4 Transversely hyperbolic foliations

Let X be a (n � k)-dimensional model geometry. A transversely (X, G) foliation on a

manifold Mn is a smooth foliation by k-dimensional leaves so that locally the space of

leaves has an (X, G) structure. More concretely, a transversely (X, G) foliation is defined

by charts '↵ : U↵ ! Rk ⇥ X so that each transition map '↵ � '�1
� = (f, g) respects the

product structure and acts on the first factor by a smooth function f (not necessarily defined

on all of Rk) and on the second factor by the restriction of an element g 2 G. As we do not

require the smooth functions f to be analytic, a transversely (X, G) foliation is not itself

an (X 0, G0) structure.

Consider the case k = 1, with X = Hn�1, G = Isom(Hn�1). Then a transversely

(X,G) structure on M is called a transversely hyperbolic foliation. By the same analytic

continuation process described in Section 2.1, we can build a pseudo-developing map D :

fM ! X, which is a local submersion equivariant with respect to a representation ⇢ : ⇡1M !
G, again called the holonomy representation. This degenerate developing map encapsulates

all of the information about the foliation and its transverse structure.

Transversely hyperbolic foliations arise as limits of degenerating hyperbolic structures.

Assume for simplicity that M is orientable. Consider a path Dt : fM ! Hn of developing

maps for hyperbolic structures such that D0 = limt!0 Dt collapses to a local submersion

3.2. RESCALING THE DEGENERATION - DEFINITION OF HPN 35

3.2 Rescaling the degeneration - definition of HPn

Figure 3.1: For each s > 0, the hyperboloid xT ⌘sx = �1 gives a model for H2 (left four
figures). As s ! 0+, the limit is the hyperboloid model for HP2 (shown right). The
distinguished codimension one hyperbolic space P ⇠= H1 is shown in red.

The space X0 is a natural intermediary space between Hn and AdSn. However, as the

metric ⌘0 is degenerate, the full group of isometries of X0 makes the structure too flimsy

to be of much use in our transition context. In order to determine a useful structure group

for X0 we examine the degeneration context in which we hope to construct a transition. In

this section, we will not pay close attention to technical details about collapsing.

Consider a family of developing maps

Dt : fM ! X1 with holonomy ⇢t : ⇡1M ! G1 = SO(n, 1),

defined for t > 0. Suppose that at time t = 0, our developing maps collapse to D0,

a local submersion onto the co-dimension one hyperbolic space Pn�1. In particular the

last coordinate xn+1 converges to the zero function. The holonomy representations ⇢t

then converge to a representation ⇢0 with image in the subgroup H0
⇠= PO(n � 1, 1) that

preserves Pn�1. The one dimensional foliation defined by the local submersion D0 has a

natural transverse Hn�1 structure. The foliation together with its transverse structure is

called a transversely hyperbolic foliation (see Section 2.4). We assume for simplicity that

the the fibers of the foliation can be consistently oriented so that in particular the holonomy

representation ⇢0 of the transverse structure has image in the subgroup

H+
0 =

( 
A 0

0 1

!
: A 2 SO(n � 1, 1)

)
/{±I} ⇠= PSO(n � 1, 1).

Next, apply the rescaling map rt to get the family rtDt : fM ! Xt. This does not change

the intrinsic hyperbolic geometry, but extrinsically in RPn this stretches out the collapsing



Geometric transitions

H2–structures collapse down to a point. After rescaling, they limit
to E2–structures and then transition to S2–structures.

(H2,PO(2, 1)) (R2,R2 oO(2)) (S2,PO(3))

Chapter 1

Introduction

1.1 Geometric transitions: from H3 to AdS3

The study of deformation spaces of geometric structures is a rich subject with many inter-

esting questions. Of particular interest is the question of how and why geometric structures

degenerate. The overarching philosophy in three dimensions, based loosely on Thurston’s

geometrization program, is that when a path of geometric manifolds degenerates, the de-

generation is calling for a transition to a di↵erent type of geometry in order to continue the

path. One prominent example of this is the transition from hyperbolic to spherical, studied

by Hodgson [Hod86] and Porti [Por98]. A path of hyperbolic structures (say compact with

collapse

rescale

Figure 1.1: Hyperbolic structures on a sphere with three cone points (of equal angle) collapse
down to a point as the cone angles increase to 2⇡

3 . After rescaling the metric, the structures
limit to a Euclidean sphere with cone points and then transition to spherical cone structures.

singularities) that collapses down to a point can be isotropically rescaled and made to con-

verge to a Euclidean structure. This Euclidean structure in turn determines a regeneration

from the collapsed structure (a point) to a path of expanding spherical structures (which

when rescaled also approximate the Euclidean structure). This phenomenon is an example

1

Jeff Danciger in his thesis studied a similar geometric transition
from H3 to AdS3 structure, passing through HP3.
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Ideal hyperbolic polyhedra

Dual of a graph

Given a planar graph Γ ⊂ R2, we define the dual graph Γ∗ by:

The vertices of Γ∗ are the connected components of R2 \ Γ.

The edges of Γ∗ correspond to adjacent connected
components.
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Ideal hyperbolic polyhedra

Dihedral angles in H3

Given a planar graph Γ ⊂ R2, E (Γ) = {edges of Γ}.
Let Γ∗ be the graph dual to Γ. Then E (Γ∗) = E (Γ)

Theorem (Rivin (1992))

Let θ : E (Γ) −→ R. There is a non-planar convex ideal polyhedron
in H3 with 1–skeleton Γ and exterior dihedral angles given by θ if
and only if:

(i) ∀e ∈ E (Γ), θ(e) ∈ (0, π);

(ii) ∀ cycle c in Γ∗ bounding a face,
∑

e∈c θ(e) = 2π;

(iii) ∀ cycle c in Γ∗ not bounding a face,
∑

e∈c θ(e) > 2π.

Rivin extended a result proved by Andreev (1970) for compact and
ideal polyhedra P of finite volume with dihedral angles ≤ π/2.



Ideal AdS and HP polyhedra

Dihedral angles in AdS3 or HP3

Given a planar graph Γ ⊂ R2, E (Γ) = {edges of Γ}.
Let Γ∗ be the graph dual to Γ. Then E (Γ∗) = E (Γ)

Theorem (Danciger-M.- Schlenker (2014))

Let θ : E (Γ) −→ R. There is a non-planar convex ideal polyhedron
in AdS3 or HP3 with 1–skeleton Γ and exterior dihedral angles
given by θ if and only if:

(i) The edges on which θ < 0 form a Hamiltonian cycle γ in Γ;

(ii) ∀ cycle c in Γ∗ bounding a face,
∑

e∈c θ(e) = 0;

(iii) ∀ cycle c in Γ∗ not bounding a face, and containing at most
two edges of γ,

∑
e∈c θ(e) > 0.



Ideal AdS and HP polyhedra

Induced metrics

Theorem (Rivin (1992))

Any complete hyperbolic metric of finite area on Σ0,N is induced
on a unique ideal hyperbolic polyhedron (up to global isometry).

Rivin extended a result proved by Alexandrov (1944-50) for
compact polyhedra.

Theorem (Danciger-M.- Schlenker)

Any complete hyperbolic metric of finite area on Σ0,N and any
closed path going through each vertex exactly once are induced on
a unique ideal polyhedron P ⊂ AdS3 (up to global isometry).



Sketch of the proof: (H) ⇔ (S)

The main theorem

Theorem (Danciger–M.–Schlenker (2014))

Let Γ be a planar graph. TFAE:

(C): Γ is inscribable in the cylinder C .

(H): Γ is inscribable in the hyperboloid H.

(S): Γ is inscribable in the sphere S and Γ admits a Hamiltonian
cycle.



Sketch of the proof: (H) ⇔ (S)

Proof of (H) ⇐= (S)

Let P be a (convex) polyhedron inscribed in S with 1–skeleton Γ,
γ be an Hamiltonian cycle, and let θ : E (Γ) −→ (0, π) be the
dihedral angle map, which satisfies Rivin’s conditions.

We define θ′ : E (Γ) −→ R 6=0 by

θ′(e) =

{
θ(e) if e * γ
θ(e)− π if e ⊆ γ

Then θ′ satisfies our conditions, so P can be inscribed in H.
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Sketch of the proof of the main theorem

Statement of the theorem

Theorem (Danciger-M.- Schlenker (2014))

Given θ : E (Γ) −→ R, ∃ an ideal polyhedron in AdS3 or HP3 with
1–skeleton Γ and exterior dihedral angles given by θ if and only if:

(i) The edges on which θ < 0 form a Hamiltonian cycle γ in Γ;

(ii) ∀ cycle c in Γ∗ bounding a face,
∑

e∈c θ(e) = 0;

(iii) ∀ cycle c in Γ∗ not bounding a face, and containing at most
two edges of γ,

∑
e∈c θ(e) > 0.

Theorem (Danciger-M.- Schlenker (2014))

The following maps are homeo:

ΨHP : HPPolyN −→ A
Φ: AdSPolyN = AdSPolyN ∪ polygN −→ T (Σ0,N)

ΨAdS : AdSPolyN −→ A
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Sketch of the proof of the main theorem

Tools the proof

Earthquakes and bending:

P ∈ AdSPolyN ; pL, pR ∈ polygN ; mL,mR ∈ T (Σ0,N);
mL,mR determines P w/ bending θ ∈ RE ⇐⇒ mL = E2θmR .

Figure: Pictures courtesy of S. Kerckhoff and Y. Kabaya.



Sketch of the proof of the main theorem

Sketch of the proof (continuation...)

1 ΨHP is a homeo:

P ∈ HPPolyN ; (p,V ) ; (m,W );
Given θ, solve for p by minimizing a length function.

2 Φ is a homeo:

Φ proper (direct proof);
Φ is a local homeo (use Pogolorov map);

3 ΨAdS is a homeo:

ΨAdS proper (direct proof);
ΨAdS is a local homeo (duality b/ metric and angle data);
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Exotic Delaunay traingulations

Exotic Delaunay traingulations (w/ J. Danciger & J.-M. Schlenker)

Euclidean space E2:
Circles

Minkowski space R1,1:
Hyperbolas

‘Limit space’ R1,0,1:
Parabolas

Theorem (Danciger-M.-Schlenker)

For any quadratic form Q on Rd and for any finite set X ⊂ Rd , ∃
a unique Q-Delaunay triangulation of CH(X ).



Bending conjecture

QF(Σ) ⊂ {hyp str on Σ× R}.
Theorem (Bers)

QF(Σ) ∼= T (Σ)× T (Σ).

Conjecture (Bending in H3)

QF(Σ) ∼=ML(Σ)×ML(Σ).

The �-equivariance of this retraction is easy to see, as hitting the whole picture by an
element of � doesn’t change the convex hull of the limit set, and if y in the closest point
in C⇤ to x then �y is the closest point in C⇤ to �x. If K ⇢ ⌦ is compact, then r(K)
is compact, and lies in the interior of H3. If �K \ K 6= ? for infinitely many �’s, then
�(r(K)) \ r(K) = r(�(K)) \ r(K) 6= ? for infinitely many �, which is a contradiction.

We now have that � acts properly discontinuously on H3 [ ⌦, and H3 [ ⌦/� = M , a
manifold with boundary. ⌦/� = @M is called the conformal boundary at infinity: as
PSL2(C) acts conformally on the boundary sphere bC, ⌦/� comes with the structure of a
Riemann surface. Note that M is not necessarily compact.

Limit sets of Surface Groups-

Let � be a surface group. If � ⇢ PSL2(R) preserves a copy of H2 inside H3, then in non-
elementary cases the limit set is a circle, and the group is a Fuchsian group. The domain
of discontinuity is a disjoint union of two disks, ⌦+ and ⌦�, and H2/� is conformally
equivalent to both ⌦+/� and ⌦�/� (the retraction r is in fact conformal in the case when
C⇤ is a totally geodesic disc).

As a more interesting case, we can consider the case when the limit set is a general Jordan
curve. This is the called the quasi-Fuchsian case. A Jordan curve still separates the sphere
into two discs, and in fact ⌦+/� and ⌦�/� will still be homeomorphic to a single surface
S, and M ' S ⇥ [0, 1] ' C⇤/�.

Λ Λ

Ω+
Ω+

Ω−
Ω−

Fuchsian Case quasi-Fuchsian Case

One can show that a group that is bi-Lipschitz equivalent to a Fuchsian group is quasi-
Fuchsian. Furthermore, Ber’s simultaneous uniformization theorem gives that there is a
one-to-one correspondence between quasi-Fuchsian groups considered up to an appropri-
ate equivalence and pairs of points (X,Y ) in Teichmüller space, the space of hyperbolic
structures on X and Y. A central question that will be addressed in these lectures is how
information about the pair (X,Y ) gives information about the quasi-Fuchsian groups and
its quotient manifold.
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Definition 2.1. (Convex core) Given ⇢ 2 QF(⌃), the convex core C⇢

of the hyperbolic 3–manifold M⇢ is the smallest non-empty convex subset of the
3–manifold M⇢ such that the inclusion is a homotopy equivalence. Hence it is the
smallest convex subset which carries all the fundamental groups. Another definition
is C⇢ = CH(⇤⇢)/�⇢, where CH(⇤⇢) is the convex hull of ⇤⇢.

Theorem 2.2 (Thurston).
Given ⇢ 2 QF(⌃), the boundary @C⇢ of the convex core of M⇢ is a pleated

surface.

Definition 2.3 (Laminations)

• A geodesic lamination � is a closed set of pairwise disjoint complete simple
geodesics on S.

• A transverse measure on � is a measure on the arcs transverse to the leaves of
� invariant under pushforward maps.

• The space of measured laminations ML(⌃) on ⌃ is the set of pairs (�, µ), where
� is a geodesic lamination and µ is a transverse measure on �.

Definition 2.3

Figure 4: A quasi-Fuchsian manifold with the associated convex core.

Definition 2.4 (Pleated surface) A pleated surface in a hyperbolic 3-
manifold is a surface which is totally geodesic almost everywhere and such that
the locus of points where it fails to be totally geodesic is a geodesic lamination.
They are almost polyhedral surfaces.
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GH(Σ) ⊂ {AdS str on Σ× R}.
Theorem (Mess)

GH(Σ) ∼= T (Σ)× T (Σ).

Conjecture (Bending in AdS3)

GH(Σ) ∼=ML(Σ)×ML(Σ).

Simultaneous Uniformization and Limits of Kleinian Groups

Je↵ Brock

August 20, 2007

•Simultaneous Uniformization and Quasi-Fuchsian Groups

Bers’ simultaneous uniformization theorem gives that for two hyperbolic structures X and
Y on a given surface S, there is a quasi-Fuchsian group �(X,Y ) such that the quotient by
�(X,Y ) of the Riemann sphere minus the limit set ⇤ is X [ Y . Let Q(X,Y ) denote the
3-manifold H3/�(X,Y ).

Λ

Ω+

Ω−

H
3

Γ(X,Y)
= Q(X,Y)

H    C
3

U

Ω−

Ω+

Γ(X,Y)

Γ(X,Y)

Γ(X,Y)

In fact, the simultaneous uniformization theorem gives that for two conformal structures
X and Y there exist infinitely many subgroups of PSL2(C) as above. Not only do we get
to specify the hyperbolic structures on the boundary but also an isomorphism between the
fundamental groups of the two boundary surfaces. In order to describe this more clearly,
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Proof of (H) =⇒ (S)

Let P be a (convex) polyhedron inscribed in H. Let
θ : E (Γ) −→ R 6=0 be the dihedral angle map which satisfies our
conditions, and let γ be the cycle of its ‘negative’ edges..

We can choose t > 0 s.t.

∀e ∈ E (Γ), tθ(e) ∈ (−π, π);

∀ cycle c in Γ∗ not bounding a face, then the sum of the
values of tθ on the edges of c is > −π.

Let θ′ : E (Γ) −→ (0, π) be defined by

θ′(e) =

{
tθ(e) if e * γ
π + tθ(e) if e ⊆ γ

Then θ′ satisfies Rivin’s conditions. Therefore P be a (convex)
polyhedron inscribed in S .
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