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Which graphs T can be obtained as 1-skeletons of a (convex)
polyhedron in R3?

Theorem (Steinitz (1916))

I is the 1-skeleton of a polyhedron in R3 <= T is planar and
3—connected (suppressing 2 vertices leaves a connected graph).
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Polyhedra inscribed in the sphere

Question (Steiner (1832))

Which ones are inscribable in the sphere?

Theorem (Steinitz (1927))

4 3—connected graphs that are not inscribable in a sphere.
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Figure: Picture by D. Eppstein and M. B. Dillencourt.
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Polyhedra inscribed in the sphere

Question (Steiner
(1832))
Which 3—connected

graphs are inscribable
in the sphere?

The complete answer
was given by Rivin
(1992), using

hyperbolic geometry.

Figure: Pictures by M. Grady.
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Polyhedra inscribed in other quadrics

Question (Steiner (1832))
What about other quadrics?

Up to projective transformations, there are only 3 quadrics:
@ the sphere;
@ the cylinder;

@ the hyperboloid.

Jeff Danciger, Jean-Marc Schlenker and | answered, using anti-de
Sitter geometry and half-pipe geometry.



Polyhedra inscribed in the cylinder and in the hyperboloid




Polyhedra inscribed in quadrics

Theorem (Danciger—M.—Schlenker (2014))
Let I be a planar graph. TFAE:

(C): T is inscribable in the cylinder C.
(H): T is inscribable in the hyperboloid H.

(S): T is inscribable in the sphere S and I admits a Hamiltonian
cycle (that is, a closed path visiting each vertex exactly once).

Rivin (1992) characterizes when I is inscribable in the sphere S.



Polyhedra inscribable in the sphere, but not in the
hyperboloid or cylinder

Figure: Picture by M. B. Dillencourt.



Polyhedra inscribable in the sphere, but not in the

hyperboloid or cylinder
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Computational complexity

Theorem (Hodgson-Rivin-Smith (1992))

Given I, the problem of deciding if I is inscribable in a sphere is
decidable in polynomial time.




Computational complexity

Theorem (Hodgson-Rivin-Smith (1992))

Given I, the problem of deciding if T is inscribable in a sphere is
decidable in polynomial time.

Using Dillencourt’s and our theorems, we can prove:

Corollary (Danciger-M.-Rivin-Schlenker (2014))

Given I, the problem of deciding if T is inscribable in a hyperboloid
or in a cylinder is NP-complete.




Hyperbolic space

The hyperbolic space is the (open) unit ball
H3 = {x e R*| X12+x§+x§—xf < 0}/R*

with distance
qal|bp

|pal|bg|

1
d(p.q) = S log

Its isometry groups is PO(3,1).




Anti-de Sitter space AdS3

The anti-de Sitter space AdS? is a Lorentzian analogue of H3.
AdS® = {x e R* | x? + x3 — x5 — xi < 0}/R*.
o Its isometry group is PO(2,2).

e 3 embeddings H? — AdS3.
@ The faces are space-like, and the dihedral angles are in R.




Half-pipe space HP?

The half-pipe space HP3: Q

o Limit of both H3 and AdS3. 5
o HP? = {x € R*|

x2 +x2 — x2 < 0} /R*.
o R%1 % 0(2,1). +
e J embeddings H? — HP3.

@ The faces are space-like, and
the dihedral angles are in R. Q
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Geometric transitions

H?-structures collapse down to a point. After rescaling, they limit
to E2—structures and then transition to S2—structures.

(H? PO(2,1)) (R2,R? x O(2)) (S2, PO(3))
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Jeff Danciger in his thesis studied a similar geometric transition
from H? to AdS? structure, passing through HP3.



Ideal hyperbolic polyhedra

Dual of a graph

Given a planar graph I C R?, we define the dual graph I'* by:
o The vertices of '™ are the connected components of R? \ T.

@ The edges of [* correspond to adjacent connected
components.

Figure: Pictures courtesy of J. Weeks (left) and M. Grady (right).



Ideal hyperbolic polyhedra

Dihedral angles in H?3

Given a planar graph I € R?, E(T') = {edges of '}.
Let I be the graph dual to I'. Then E(I'*) = E(I)

Theorem (Rivin (1992))

Let 0: E(I') — R. There is a non-planar convex ideal polyhedron
in H3 with 1-skeleton T and exterior dihedral angles given by 0 if
and only if:

(i) Ve € E(T),0(e) € (0,7),;

(i) V cycle ¢ in T* bounding a face, )

0(e) = 2m;
0(e) > 2m.

eecc

(iii) V cycle ¢ in T* not bounding a face,

eecc

Rivin extended a result proved by Andreev (1970) for compact and
ideal polyhedra P of finite volume with dihedral angles < 7/2.



Ideal AdS and HP polyhedra

Dihedral angles in AdS® or HP?

Given a planar graph ' C R?, E(T) = {edges of I'}.
Let I be the graph dual to I'. Then E(I'*) = E(I)

Theorem (Danciger-M.- Schlenker (2014))
Let 0: E(I') — R. There is a non-planar convex ideal polyhedron
in AdS® or HP? with 1-skeleton I and exterior dihedral angles
given by 6 if and only if:
(i) The edges on which § < 0 form a Hamiltonian cycle y in T;
(i) V cycle c in T* bounding a face, ) ... 0(e) =0;
(iii) V cycle ¢ in T* not bounding a face, and containing at most
two edges of v, Y~ ... 0(e) > 0.




Ideal AdS and HP polyhedra

Induced metrics

Theorem (Rivin (1992))

Any complete hyperbolic metric of finite area on > y is induced
on a unique ideal hyperbolic polyhedron (up to global isometry).

Rivin extended a result proved by Alexandrov (1944-50) for
compact polyhedra.

Theorem (Danciger-M.- Schlenker)

Any complete hyperbolic metric of finite area on ¥o y and any
closed path going through each vertex exactly once are induced on
a unique ideal polyhedron P C AdS3® (up to global isometry).




Sketch of the proof: (H) < (S)

The main theorem

Theorem (Danciger—-M.=Schlenker (2014))
Let I be a planar graph. TFAE:

(C): T is inscribable in the cylinder C.
(H): T is inscribable in the hyperboloid H.

(S): T is inscribable in the sphere S and I admits a Hamiltonian
cycle.




Sketch of the proof: (H) < (S)

Proof of (H) < (S)

Let P be a (convex) polyhedron inscribed in S with 1-skeleton T,
~ be an Hamiltonian cycle, and let 6 : E(I') — (0, 7) be the
dihedral angle map, which satisfies Rivin's conditions.



Sketch of the proof: (H) < (S)

Proof of (H) < (S)

Let P be a (convex) polyhedron inscribed in S with 1-skeleton T,
~ be an Hamiltonian cycle, and let 6 : E(I') — (0, 7) be the
dihedral angle map, which satisfies Rivin's conditions.

We define ¢’ : E(I') — Ry by

0(e) = { f(e) ife vy

O(e)—m ifeCr

Then 8’ satisfies our conditions, so P can be inscribed in H.



Sketch of the proof of the main theorem

Statement of the theorem

Theorem (Danciger-M.- Schlenker (2014))

Given 0: E(I') — R, 3 an ideal polyhedron in AdS® or HIP® with
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Sketch of the proof of the main theorem

Statement of the theorem

Theorem (Danciger-M.- Schlenker (2014))
Given 0: E(I') — R, 3 an ideal polyhedron in AdS® or HIP® with
1-skeleton I and exterior dihedral angles given by 6 if and only if:
(i) The edges on which 6 < 0 form a Hamiltonian cycle y in T;
0(e) =0;
(i) ¥ cycle c in T* not bounding a face, and containing at most
two edges of v, > _..6(e) > 0.

(ii) ¥ cycle ¢ in T* bounding a face,

ecc

eec

Theorem (Danciger-M.- Schlenker (2014))

The following maps are homeo:
e Vyp: HPPolyy — A
e ®: AdSPolyy = AdSPolyy U polygy — T (Zo.n)
@ Vpgs: AdSPolyy, — A




Sketch of the proof of the main theorem

Tools the proof

Earthquakes and bending:
o P € AdSPolyy ~ pr, pr € polygy ~» my, mg € T(Xo,n);
o my, mg determines P w/ bending § € RE <= m = Eyymg.

Figure: Pictures courtesy of S. Kerckhoff and Y. Kabaya.



Sketch of the proof of the main theorem

Sketch of the proof (continuation...)

@ Vpyp is a homeo:
e P € HPPolyy ~ (p, V)~ (m, W);
e Given 6, solve for p by minimizing a length function.
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Sketch of the proof of the main theorem

Sketch of the proof (continuation...)

@ Vpyp is a homeo:

e P € HPPolyy ~ (p, V)~ (m, W);

e Given 6, solve for p by minimizing a length function.
@ o is a homeo:

o ® proper (direct proof);

o ®is a local homeo (use Pogolorov map);
© VW ags is a homeo:

o W45 proper (direct proof);
o Wyys is a local homeo (duality b/ metric and angle data);



Exotic Delaunay traingulations

Exotic Delaunay traingulations (w/ J. Danciger & J.-M. Schlenker)

VA
Euclidean space E: Minkowski space R11:  ‘Limit space’ RL0:!:
Circles Hyperbolas Parabolas

Theorem (Danciger-M.-Schlenker)

For any quadratic form Q on R? and for any finite set X C R9, 3
a unique Q-Delaunay triangulation of CH(X).




Bending conjecture

QF(X) C {hyp stron = x R}. GH(X) C {AdS str on ¥ x R}.
Theorem (Bers) Theorem (Mess)
QF(X) = T(X) x T(X). GH(X) = T(X) x T(X).

Conjecture (Bending in H?) Conjecture (Bending in AdS?)
QF(X) = ML(X) x ML(Y). GH(T) = ML(T) x ML(T).

F(X,Y)D SN = ”/l‘(x,?«) QX.Y)
t ==







Proof of (H) = (S)

Let P be a (convex) polyhedron inscribed in H. Let
6 : E(I') — Ro be the dihedral angle map which satisfies our
conditions, and let v be the cycle of its ‘negative’ edges..
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We can choose t > 0 s.t.

e Vee E(IN), th(e) € (—m,);
@ V cycle c in I'* not bounding a face, then the sum of the
values of tf on the edges of c is > —.



Proof of (H) = (S)

Let P be a (convex) polyhedron inscribed in H. Let

6 : E(I') — Ro be the dihedral angle map which satisfies our
conditions, and let v be the cycle of its ‘negative’ edges..

We can choose t > 0 s.t.

e Vee E(IN), th(e) € (—m,);

@ V cycle c in I'* not bounding a face, then the sum of the
values of tf on the edges of c is > —.

Let ' : E(T') — (0, 7) be defined by

vy to(e) ifed
H(e)—{ 7+ th(e) ifegfvy

Then 6’ satisfies Rivin's conditions. Therefore P be a (convex)
polyhedron inscribed in S.



