Polyhedra inscribed in quadrics and their geometry.

Sara Maloni
(joint w/ J. Danciger & J.-M. Schlenker)

University of Virginia

December 10, 2016
A bit of history

Question (Steiner (1832))

Which graphs Γ can be obtained as 1-skeletons of a (convex) polyhedron in \mathbb{R}^3?

Theorem (Steinitz (1916))

Γ is the 1-skeleton of a polyhedron in \mathbb{R}^3 \iff Γ is planar and 3–connected (suppressing 2 vertices leaves a connected graph).
A bit of history

Question (Steiner (1832))

Which graphs Γ can be obtained as 1-skeletons of a (convex) polyhedron in \mathbb{R}^3?

Theorem (Steinitz (1916))

Γ is the 1-skeleton of a polyhedron in \mathbb{R}^3 \iff Γ is planar and 3–connected (suppressing 2 vertices leaves a connected graph).
<table>
<thead>
<tr>
<th>Question (Steiner (1832))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which ones are inscribable in the sphere?</td>
</tr>
</tbody>
</table>
Polyhedra inscribed in the sphere

Question (Steiner (1832))

Which ones are inscribable in the sphere?

Theorem (Steinitz (1927))

∃ 3–connected graphs that are not inscribable in a sphere.

Figure: Picture by D. Eppstein and M. B. Dillencourt.
Polyhedra inscribed in the sphere

Question (Steiner (1832))

Which 3–connected graphs are inscribable in the sphere?
Polyhedra inscribed in the sphere

Question (Steiner (1832))

Which 3–connected graphs are inscribable in the sphere?

The complete answer was given by Rivin (1992), using *hyperbolic geometry*.

Figure: Pictures by M. Grady.
Polyhedra inscribed in other quadrics

Question (Steiner (1832))

What about other quadrics?
Up to projective transformations, there are only 3 quadrics:

- the sphere;
- the cylinder;
- the hyperboloid.
Up to projective transformations, there are only 3 quadrics:

- the sphere;
- the cylinder;
- the hyperboloid.

Jeff Danciger, Jean-Marc Schlenker and I answered, using anti-de Sitter geometry and half-pipe geometry.
Polyhedra inscribed in the cylinder and in the hyperboloid
Polyhedra inscribed in quadrics

Theorem (Danciger–M.–Schlenker (2014))

Let Γ be a planar graph. TFAE:

(C): Γ is inscribable in the cylinder C.

(H): Γ is inscribable in the hyperboloid H.

(S): Γ is inscribable in the sphere S and Γ admits a Hamiltonian cycle (that is, a closed path visiting each vertex exactly once).

Rivin (1992) characterizes when Γ is inscribable in the sphere S.
Polyhedra inscribable in the sphere, but not in the hyperboloid or cylinder

Figure: Picture by M. B. Dillencourt.
Polyhedra inscribable in the sphere, but not in the hyperboloid or cylinder

Figure: Pictures courtesy of M. B. Dillencourt.
Theorem (Hodgson-Rivin-Smith (1992))

Given Γ, the problem of deciding if Γ is inscribable in a sphere is decidable in **polynomial time**.
Computational complexity

Theorem (Hodgson-Rivin-Smith (1992))

Given \(\Gamma \), the problem of deciding if \(\Gamma \) is inscribable in a sphere is decidable in polynomial time.

Using Dillencourt’s and our theorems, we can prove:

Corollary (Danciger-M.-Rivin-Schlenker (2014))

Given \(\Gamma \), the problem of deciding if \(\Gamma \) is inscribable in a hyperboloid or in a cylinder is NP-complete.
Hyperbolic space

The *hyperbolic space* is the (open) unit ball

\[\mathbb{H}^3 = \{ \mathbf{x} \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 - x_4^2 < 0 \}/\mathbb{R}^* \]

with distance

\[d(p, q) = \frac{1}{2} \log \frac{|qa||bp|}{|pa||bq|}. \]

Its isometry groups is \(\text{PO}(3, 1) \).
The anti-de Sitter space AdS^3 is a Lorentzian analogue of \mathbb{H}^3.

$$\text{AdS}^3 = \{ \mathbf{x} \in \mathbb{R}^4 \mid x_1^2 + x_2^2 - x_3^2 - x_4^2 < 0 \}/\mathbb{R}^*.$$

- Its isometry group is $\text{PO}(2, 2)$.
- \exists embeddings $\mathbb{H}^2 \hookrightarrow \text{AdS}^3$.
- The faces are space-like, and the dihedral angles are in \mathbb{R}.
Half-pipe space \mathbb{HP}^3

The half-pipe space \mathbb{HP}^3:

- Limit of both \mathbb{H}^3 and AdS^3.
- $\mathbb{HP}^3 = \{x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 - x_4^2 < 0\}/\mathbb{R}^*$.
- $\mathbb{R}^{2,1} \ltimes O(2,1)$.
- \exists embeddings $\mathbb{H}^2 \hookrightarrow \mathbb{HP}^3$.
- The faces are space-like, and the dihedral angles are in \mathbb{R}.

The faces are space-like, and \mathbb{RP}_n this stretches out the collapsing.
Geometric transitions

\mathbb{H}^2–structures collapse down to a point. After rescaling, they limit to \mathbb{E}^2–structures and then transition to \mathbb{S}^2–structures.

$(\mathbb{H}^2, \text{PO}(2, 1))$ $(\mathbb{R}^2, \mathbb{R}^2 \rtimes \text{O}(2))$ $(\mathbb{S}^2, \text{PO}(3))$
Geometric transitions

\mathbb{H}^2–structures collapse down to a point. After rescaling, they limit to \mathbb{E}^2–structures and then transition to \mathbb{S}^2–structures.

$$(\mathbb{H}^2, \text{PO}(2,1)) \quad (\mathbb{R}^2, \mathbb{R}^2 \rtimes O(2)) \quad (\mathbb{S}^2, \text{PO}(3))$$

Jeff Danciger in his thesis studied a similar geometric transition from \mathbb{H}^3 to Ad\mathbb{S}^3 structure, passing through $\mathbb{H} \mathbb{P}^3$.
Given a planar graph $\Gamma \subset \mathbb{R}^2$, we define the *dual graph* Γ^* by:

- The vertices of Γ^* are the connected components of $\mathbb{R}^2 \setminus \Gamma$.
- The edges of Γ^* correspond to adjacent connected components.

Figure: Pictures courtesy of J. Weeks (left) and M. Grady (right).
Given a planar graph $\Gamma \subset \mathbb{R}^2$, $E(\Gamma) = \{\text{edges of } \Gamma\}$.

Let Γ^* be the graph dual to Γ. Then $E(\Gamma^*) = E(\Gamma)$

Theorem (Rivin (1992))

Let $\theta : E(\Gamma) \longrightarrow \mathbb{R}$. There is a non-planar convex ideal polyhedron in \mathbb{H}^3 with 1–skeleton Γ and exterior dihedral angles given by θ if and only if:

(i) $\forall e \in E(\Gamma), \theta(e) \in (0, \pi)$;

(ii) \forall cycle c in Γ^* bounding a face, $\sum_{e \in c} \theta(e) = 2\pi$;

(iii) \forall cycle c in Γ^* not bounding a face, $\sum_{e \in c} \theta(e) > 2\pi$.

Rivin extended a result proved by Andreev (1970) for compact and ideal polyhedra P of finite volume with dihedral angles $\leq \pi/2$.
Dihedral angles in AdS3 or HP3

Given a planar graph $\Gamma \subset \mathbb{R}^2$, $E(\Gamma) = \{\text{edges of } \Gamma\}$.

Let Γ^* be the graph dual to Γ. Then $E(\Gamma^*) = E(\Gamma)$

Theorem (Danciger-M.- Schlenker (2014))

Let $\theta : E(\Gamma) \to \mathbb{R}$. There is a non-planar convex ideal polyhedron in AdS3 or HP3 with 1–skeleton Γ and exterior dihedral angles given by θ if and only if:

(i) The edges on which $\theta < 0$ form a Hamiltonian cycle γ in Γ;

(ii) \forall cycle c in Γ^* bounding a face, $\sum_{e \in c} \theta(e) = 0$;

(iii) \forall cycle c in Γ^* not bounding a face, and containing at most two edges of γ, $\sum_{e \in c} \theta(e) > 0$.
Theorem (Rivin (1992))

Any complete hyperbolic metric of finite area on $\Sigma_{0,N}$ is induced on a unique ideal hyperbolic polyhedron (up to global isometry).

Rivin extended a result proved by Alexandrov (1944-50) for compact polyhedra.

Theorem (Danciger-M.- Schlenker)

Any complete hyperbolic metric of finite area on $\Sigma_{0,N}$ and any closed path going through each vertex exactly once are induced on a unique ideal polyhedron $P \subset \text{AdS}^3$ (up to global isometry).
The main theorem

Theorem (Danciger–M.–Schlenker (2014))

Let Γ be a planar graph. TFAE:

(C): Γ is inscribable in the cylinder C.

(H): Γ is inscribable in the hyperboloid H.

(S): Γ is inscribable in the sphere S and Γ admits a Hamiltonian cycle.
Let P be a (convex) polyhedron inscribed in S with 1–skeleton Γ, γ be an Hamiltonian cycle, and let $\theta : E(\Gamma) \to (0, \pi)$ be the dihedral angle map, which satisfies Rivin’s conditions.
Let P be a (convex) polyhedron inscribed in S with 1–skeleton Γ, γ be an Hamiltonian cycle, and let $\theta : E(\Gamma) \rightarrow (0, \pi)$ be the dihedral angle map, which satisfies Rivin’s conditions. We define $\theta' : E(\Gamma) \rightarrow \mathbb{R}_{\neq 0}$ by

$$
\theta'(e) = \begin{cases}
\theta(e) & \text{if } e \not\subseteq \gamma \\
\theta(e) - \pi & \text{if } e \subseteq \gamma
\end{cases}
$$

Then θ' satisfies our conditions, so P can be inscribed in H.
Sketch of the proof of the main theorem

Statement of the theorem

Theorem (Danciger-M.- Schlenker (2014))

Given $\theta : E(\Gamma) \rightarrow \mathbb{R}$, \exists an ideal polyhedron in AdS^3 or HP^3 with 1–skeleton Γ and exterior dihedral angles given by θ if and only if:

(i) The edges on which $\theta < 0$ form a Hamiltonian cycle γ in Γ;
(ii) \forall cycle c in Γ^* bounding a face, $\sum_{e \in c} \theta(e) = 0$;
(iii) \forall cycle c in Γ^* not bounding a face, and containing at most two edges of γ, $\sum_{e \in c} \theta(e) > 0$.
Statement of the theorem

Theorem (Danciger-M.- Schlenker (2014))

Given $\theta : E(\Gamma) \to \mathbb{R}$, there exists an ideal polyhedron in AdS^3 or $\mathbb{H}P^3$ with 1–skeleton Γ and exterior dihedral angles given by θ if and only if:

(i) The edges on which $\theta < 0$ form a Hamiltonian cycle γ in Γ;

(ii) \forall cycle c in Γ^* bounding a face, $\sum_{e \in c} \theta(e) = 0$;

(iii) \forall cycle c in Γ^* not bounding a face, and containing at most two edges of γ, $\sum_{e \in c} \theta(e) > 0$.

Theorem (Danciger-M.- Schlenker (2014))

The following maps are homeo:

- $\Psi_{\text{HP}} : \text{HPPoly}_N \to A$
- $\Phi : \overline{\text{AdSPoly}}_N = \text{AdSPoly}_N \cup \text{polyg}_N \to \mathcal{T}(\Sigma_{0,N})$
- $\Psi_{\text{AdS}} : \text{AdSPoly}_N \to A$
Sketch of the proof of the main theorem

Tools the proof

Earthquakes and bending:

- $P \in \text{AdSPoly}_N \sim p_L, p_R \in \text{polyg}_N \sim m_L, m_R \in \mathcal{T}(\Sigma_{0,N})$;
- m_L, m_R determines P w/ bending $\theta \in \mathbb{R}^E \iff m_L = E_{2\theta} m_R$.

Figure: Pictures courtesy of S. Kerckhoff and Y. Kabaya.
Sketch of the proof (continuation...)

1. Ψ_{HP} is a homeo:
 - $P \in \text{HPoly}_N \leadsto (p, V) \leadsto (m, W)$;
 - Given θ, solve for p by minimizing a length function.
Sketch of the proof of the main theorem

Sketch of the proof (continuation...)

1. \(\Psi_{HP} \) is a homeo:
 - \(P \in \text{HPoly}_N \rightarrow (p, V) \sim (m, W); \)
 - Given \(\theta \), solve for \(p \) by minimizing a length function.

2. \(\Phi \) is a homeo:
 - \(\Phi \) proper (direct proof);
 - \(\Phi \) is a local homeo (use Pogolorov map);
Sketch of the proof of the main theorem

Sketch of the proof (continuation...)

1. \(\Psi_{HP} \) is a homeo:
 - \(P \in \text{HPoly}_N \leadsto (p, V) \leadsto (m, W) \);
 - Given \(\theta \), solve for \(p \) by minimizing a length function.

2. \(\Phi \) is a homeo:
 - \(\Phi \) proper (direct proof);
 - \(\Phi \) is a local homeo (use Pogolorov map);

3. \(\Psi_{AdS} \) is a homeo:
 - \(\Psi_{AdS} \) proper (direct proof);
 - \(\Psi_{AdS} \) is a local homeo (duality b/ metric and angle data);
Exotic Delaunay triangulations (w/ J. Danciger & J.-M. Schlenker)

Euclidean space \mathbb{E}^2: Circles

Minkowski space $\mathbb{R}^{1,1}$: Hyperbolas

‘Limit space’ $\mathbb{R}^{1,0,1}$: Parabolas

Theorem (Danciger-M.-Schlenker)

For any quadratic form Q on \mathbb{R}^d and for any finite set $X \subset \mathbb{R}^d$, there exists a unique Q-Delaunay triangulation of $\text{CH}(X)$.
The equivariance of this retraction is easy to see, as hitting the whole picture by an element of \(\Gamma \) doesn't change the convex hull of the limit set, and if \(X \hookrightarrow Y \) then \(X \hookrightarrow Y \) doesn't change the convex hull of the limit set, and if \(X \hookrightarrow Y \) there exist infinitely many subgroups of \(\Gamma \) in \(\mathbf{H}^3 \) such that \(\Gamma \) acts conformally on the boundary sphere at infinity: as \(\Gamma \) acts on \(\mathbf{H}^3 \) and the limit set, the \(\mathbf{H}^3 \) is not necessarily compact.

Theorem (Bers)
\[
\text{QF}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma).
\]

Conjecture (Bending in \(\mathbf{H}^3 \))
\[
\text{QF}(\Sigma) \cong \mathcal{ML}(\Sigma) \times \mathcal{ML}(\Sigma).
\]

Theorem (Mess)
\[
\text{GH}(\Sigma) \subset \{ \text{AdS str on } \Sigma \times \mathbb{R} \}.
\]

Conjecture (Bending in \(\mathbb{A} \text{dS}^3 \))
\[
\text{GH}(\Sigma) \cong \mathcal{ML}(\Sigma) \times \mathcal{ML}(\Sigma).
\]

Bending conjecture

\[
\text{QF}(\Sigma) \subset \{ \text{hyp str on } \Sigma \times \mathbb{R} \}.
\]

\[
\text{GH}(\Sigma) \subset \{ \text{AdS str on } \Sigma \times \mathbb{R} \}.
\]
Proof of \((H) \iff (S)\)

Let \(P\) be a (convex) polyhedron inscribed in \(H\). Let \(\theta : E(\Gamma) \rightarrow \mathbb{R} \neq 0\) be the dihedral angle map which satisfies our conditions, and let \(\gamma\) be the cycle of its ‘negative’ edges.
Proof of \((H) \iff (S)\)

Let \(P\) be a (convex) polyhedron inscribed in \(H\). Let \(\theta : E(\Gamma) \to \mathbb{R} \neq 0\) be the dihedral angle map which satisfies our conditions, and let \(\gamma\) be the cycle of its ‘negative’ edges. We can choose \(t > 0\) s.t.

- \(\forall e \in E(\Gamma), \ t\theta(e) \in (-\pi, \pi)\);
- \(\forall\) cycle \(c\) in \(\Gamma^*\) not bounding a face, then the sum of the values of \(t\theta\) on the edges of \(c\) is \(\geq -\pi\).
Proof of \((H) \iff (S)\)

Let \(P\) be a (convex) polyhedron inscribed in \(H\). Let \(\theta : E(\Gamma) \rightarrow \mathbb{R}_{\neq 0}\) be the dihedral angle map which satisfies our conditions, and let \(\gamma\) be the cycle of its ‘negative’ edges.

We can choose \(t > 0\) s.t.

- \(\forall e \in E(\Gamma), \ t\theta(e) \in (-\pi, \pi)\);
- \(\forall \text{ cycle } c \text{ in } \Gamma^* \text{ not bounding a face, then the sum of the values of } t\theta \text{ on the edges of } c \text{ is } > -\pi\).

Let \(\theta' : E(\Gamma) \rightarrow (0, \pi)\) be defined by

\[
\theta'(e) = \begin{cases}
 t\theta(e) & \text{if } e \notin \gamma \\
 \pi + t\theta(e) & \text{if } e \subseteq \gamma
\end{cases}
\]

Then \(\theta'\) satisfies Rivin’s conditions. Therefore \(P\) be a (convex) polyhedron inscribed in \(S\).