A Quantitative Look at Lagrangian Cobordisms

Lisa Traynor

Bryn Mawr College

Joint work with Joshua M. Sabloff, Haverford College

December 2016

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

Tech Topology 1 / 36

A D M A A A M M

Lagrangians and Legendrians

Symplectic Manifold (X^{2n}, ω)

Lagrangian Submanifold $L^n: \omega|_{TL} \equiv 0$

Contact Manifold (Y^{2n+1}, ξ)

Legendrian Submanifold Λ^n : $T\Lambda \subset \xi$

Lagrangians and Legendrians

Symplectic Manifold (X^{2n}, ω)

Exact Symplectic : $\omega = d\lambda$

Lagrangian Submanifold $L^n: \omega|_{TL} \equiv 0$

Exact Lagrangian: $\lambda = df$

Contact Manifold (Y^{2n+1}, ξ)

Legendrian Submanifold Λ^n : $T\Lambda \subset \xi$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \ker \alpha)$

 $J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \ker \alpha)$ $J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$ Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^{s}\alpha))$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \ker \alpha)$ $J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$ Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^{s}\alpha))$ R^{2n+1}

• There are no closed, exact Lagrangians (Gromov);

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \ker \alpha)$ $J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$

Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^{s}\alpha))$

- There are no closed, exact Lagrangians (Gromov);
- For a Legendrian $\Lambda,$ the cylinder $\mathbb{R}\times\Lambda$ is an exact Lagrangian.

A Lagrangian cobordism from Λ_- to Λ_+ means:

A Lagrangian cobordism from Λ_- to Λ_+ means:

• Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;

A Lagrangian cobordism from Λ_{-} to Λ_{+} means:

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;
- *L* is Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L = \mathbb{R} \times \Lambda_{\pm}$$
 outside $[s_-, s_+]$;

A Lagrangian cobordism from Λ_{-} to Λ_{+} means:

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\};$
- *L* is Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L = \mathbb{R} \times \Lambda_{\pm}$$
 outside $[s_-, s_+]$;

• *L* is embedded and exact:

 $e^{s} \alpha|_{L} = df, \quad f = \text{ constant}_{\pm} \quad \text{outside } [s_{-}, s_{+}].$

A Lagrangian cobordism from Λ_{-} to Λ_{+} means:

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\};$
- *L* is Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

 $L = \mathbb{R} \times \Lambda_{\pm}$ outside $[s_-, s_+]$;

• *L* is embedded and exact:

 $e^{s} \alpha|_{L} = df$, $f = \text{constant}_{\pm}$ outside $[s_{-}, s_{+}]$.

Arise in relative SFT (Eliashberg-Givental-Hofer)

Lisa Traynor (Bryn Mawr)

Given Λ₋, Λ₊ ⊂ ℝ²ⁿ⁺¹, does there exist a Lagrangian cobordism between them?

• Given $\Lambda_-,\Lambda_+ \subset \mathbb{R}^{2n+1},$ does there exist a Lagrangian cobordism between them?

• Given $\Lambda_-,\Lambda_+ \subset \mathbb{R}^{2n+1},$ does there exist a Lagrangian cobordism between them?

• How topologically rigid are Lagrangian cobordisms?

• Given $\Lambda_-,\Lambda_+ \subset \mathbb{R}^{2n+1},$ does there exist a Lagrangian cobordism between them?

• How topologically rigid are Lagrangian cobordisms?

Fillings realize 4-ball genus!

• Given $\Lambda_-,\Lambda_+ \subset \mathbb{R}^{2n+1},$ does there exist a Lagrangian cobordism between them?

• How topologically rigid are Lagrangian cobordisms?

Fillings realize 4-ball genus!

A variety of qualitative questions have been studied by: Chantraine, Ekholm, Honda, Kálmán, Dimitroglou Rizell, Ghiggini, Golovko, Cornwell, Ng, Sivek, Bourgeois, Sabloff, Traynor, Capovilla-Searle, Hayden, Pan, ...

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

 (Length) Given Λ₋, Λ₊ ⊂ ℝ²ⁿ⁺¹, what is the minimal "length" of any cobordism between them?

$$h = s_{+} \rightarrow \square$$

$$0 = s_{-} \rightarrow \square$$

 (Length) Given Λ₋, Λ₊ ⊂ ℝ²ⁿ⁺¹, what is the minimal "length" of any cobordism between them?

$$h = s_{+} \rightarrow \square$$

$$0 = s_{-} \rightarrow \square$$

• (Width) Given a Lagrangian cobordism, what is its "width"?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Width of a Lagrangian Cobordism

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

2 Length of a Lagrangian cobordism

Width of a Lagrangian Cobordism

Isotopy Lemma (Eliashberg, Chantraine, Golovko, Ekholm-Honda-Kálmán, ...)

Suppose Λ_{-} and Λ_{+} are Legendrian isotopic. Then there exists a Lagrangian cobordism from Λ_{-} to Λ_{+} .

Isotopy Lemma (Eliashberg, Chantraine, Golovko, Ekholm-Honda-Kálmán, ...)

Suppose Λ_{-} and Λ_{+} are Legendrian isotopic. Then there exists a Lagrangian cobordism from Λ_{-} to Λ_{+} .

Remark: The Lagrangian is **not** the trace of the isotopy.

Most slices of the Lagrangian will not be Legendrian.

Lisa Traynor (Bryn Mawr)

Lagrangian Concordances from Isotopy

Qualitatively Symmetric Concordances:

-

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T)

If Λ_+ is obtained from Λ_- by a "cusp-surgery",

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T)

If Λ_+ is obtained from Λ_- by a "cusp-surgery",

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T)

If Λ_+ is obtained from Λ_- by a "cusp-surgery",

then there exists a Lagrangian cobordism from Λ_{-} to Λ_{+} .

Lagrangian genus 1 filling of a Legendrian $m(5_2)$:

Legendrian isotopy and cusp pinches as you move up!

< 🗇 > < 🖻

Length

Question: Given $\Lambda_-, \Lambda_+ \subset \mathbb{R}^{2n+1}$, what is the "minimal length" of any cobordism between them?

$$h = s_{+} \rightarrow \square$$
$$0 = s_{-} \rightarrow \square$$

minimal length = inf{h: \exists Lagrangian cobordism from Λ_{-} to Λ_{+} that is cylindrical outside[0, h]}.

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between

• a Legendrian and its vertical translate,

ъ.

Flexibility

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between

a Legendrian and its vertical translate,

a Legendrian and its horizontal translate,

< A > < 3

Flexibility

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between

a Legendrian and its vertical translate,

a Legendrian and its horizontal translate,

a Legendrian and its vertical expansion.

-

Rigidity

Theorem (Sabloff-T, '16)

There exist obstructions to arbitrarily short Lagrangian cobordisms between

Rigidity

Theorem (Sabloff-T, '16)

There exist obstructions to arbitrarily short Lagrangian cobordisms between

a Legendrian and its vertical contraction;

vertically shifted Hopf links:

$$\mathbf{v} \sim \begin{cases} \ln\left(\frac{1-u}{1-v}\right), & \text{if } u \leq v, \\ \ln\left(\frac{u}{v}\right), & \text{if } u \geq v. \end{cases}$$

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

Lower Bound to Length

(Step 1) Assign "capacities" to a Legendrian

 $c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup \{\infty\},\$

 ε is an augmentation of the DGA $\mathcal{A}(\Lambda)$, $\varepsilon : (\mathcal{A}(\Lambda), \partial) \to (\mathbb{F}_2, 0)$, $\theta \in LCH^*(\Lambda, \varepsilon).$

→

(Step 1) Assign "capacities" to a Legendrian

 $c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup \{\infty\},\$

 ε is an augmentation of the DGA $\mathcal{A}(\Lambda)$, $\varepsilon : (\mathcal{A}(\Lambda), \partial) \to (\mathbb{F}_2, 0)$, $\theta \in LCH^*(\Lambda, \varepsilon)$.

Example:

 $\exists 0 \neq \lambda \in LCH^{1}(U(r), \varepsilon); \qquad c(U(r), \varepsilon, \lambda) = r.$ Fundamental Class Fundamental Capacity

(Step 1) Assign "capacities" to a Legendrian

 $c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup \{\infty\},\$

 ε is an augmentation of the DGA $\mathcal{A}(\Lambda)$, $\varepsilon : (\mathcal{A}(\Lambda), \partial) \to (\mathbb{F}_2, 0)$, $\theta \in LCH^*(\Lambda, \varepsilon)$.

Example:

 $\exists 0 \neq \lambda \in LCH^{1}(U(r), \varepsilon); \qquad c(U(r), \varepsilon, \lambda) = r.$ Fundamental Class Fundamental Capacity For $\theta \neq 0$, $c(\Lambda, \varepsilon, \theta)$ is *always* the height of a Reeb chord!

э.

(Step 2) From ε_- , θ_- for Λ_- and Lagrangian cobordism *L* from Λ_- to Λ_+ , get induced ε_+ , θ_+ for Λ_+ .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(Step 2) From ε_- , θ_- for Λ_- and Lagrangian cobordism *L* from Λ_- to Λ_+ , get induced ε_+ , θ_+ for Λ_+ .

[Ekholm-Honda-Kálmán]

(Step 2) From ε_- , θ_- for Λ_- and Lagrangian cobordism *L* from Λ_- to Λ_+ , get induced ε_+ , θ_+ for Λ_+ .

[Ekholm-Honda-Kálmán]

Question: How do capacities $c(\Lambda_+, \varepsilon_+, \theta_+)$ and $c(\Lambda_-, \varepsilon_-, \theta_-)$ compare?

(Step 3) Relate capacities for ends of a Lagrangian cobordism.

Length-Capacity Inequality (Sabloff-T)

If L is a Lagrangian cobordism from Λ_- to Λ_+ that is cylindrical outside [0,h], then

 $e^0 c(\Lambda_-, \varepsilon_-, \theta_-) \leq e^h c(\Lambda_+, \varepsilon_+, \theta_+).$

(Step 3) Relate capacities for ends of a Lagrangian cobordism.

Length-Capacity Inequality (Sabloff-T)

If L is a Lagrangian cobordism from Λ_- to Λ_+ that is cylindrical outside [0,h], then

$$e^0 c(\Lambda_-, \varepsilon_-, \theta_-) \leq e^h c(\Lambda_+, \varepsilon_+, \theta_+).$$

Remember ε_+, θ_+ are induced by *L*.

(Step 3) Relate capacities for ends of a Lagrangian cobordism.

Length-Capacity Inequality (Sabloff-T)

If L is a Lagrangian cobordism from Λ_- to Λ_+ that is cylindrical outside [0,h], then

$$e^0 c(\Lambda_-, \varepsilon_-, heta_-) \leq e^h c(\Lambda_+, \varepsilon_+, heta_+).$$

Remember ε_+, θ_+ are induced by *L*.

Get lower bounds to length of a cobordism!

$$\ln\left(\frac{c(\Lambda_{-},\varepsilon_{-},\theta_{-})}{c(\Lambda_{+},\varepsilon_{+},\theta_{+})}\right) \leq h.$$

By Length-Capacity Inequality:

$$\ln\left(\frac{2}{1}\right) = \ln\left(\frac{c(U(2)),\varepsilon_-,\lambda_-)}{c(U(1)),\varepsilon_+,\lambda_+)}\right) = \ln\left(\frac{c(\Lambda_-,\varepsilon_-,\lambda_-)}{c(\Lambda_+,\varepsilon_+,\lambda_+)}\right) \le h.$$

< 47 ▶

By Length-Capacity Inequality:

$$\ln\left(\frac{2}{1}\right) = \ln\left(\frac{c(U(2)),\varepsilon_-,\lambda_-)}{c(U(1)),\varepsilon_+,\lambda_+)}\right) = \ln\left(\frac{c(\Lambda_-,\varepsilon_-,\lambda_-)}{c(\Lambda_+,\varepsilon_+,\lambda_+)}\right) \le h.$$

Question: Can we get arbitrarily close to $h = \ln 2$?

By Length-Capacity Inequality:

$$\ln\left(\frac{2}{1}\right) = \ln\left(\frac{c(U(2)),\varepsilon_-,\lambda_-)}{c(U(1)),\varepsilon_+,\lambda_+)}\right) = \ln\left(\frac{c(\Lambda_-,\varepsilon_-,\lambda_-)}{c(\Lambda_+,\varepsilon_+,\lambda_+)}\right) \le h.$$

Question: Can we get arbitrarily close to $h = \ln 2$? **Answer:** Yes!

Lisa Traynor (Bryn Mawr)

 \exists Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ of length *A*:

э

 \exists Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ of length A:

Legendrian isotopy: $\lambda_{s}(t) = (x(t), \rho(s)y(t), \rho(s)z(t))$

A D b 4 A b 4

∃ Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ of length *A*:

Legendrian isotopy: $\lambda_s(t) = (x(t), \rho(s)y(t), \rho(s)z(t))$ Lagrangian immersion: $\Gamma(s, t) = (s, x(t), \rho(s)y(t), \rho(s)z(t) + \rho'(s)z(t))$

 \exists Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ of length A:

Legendrian isotopy:

Embedding condition:

es/2 $\frac{d}{ds}(e^{s}\rho(s)) \neq 0$

∃ Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ of length *A*:

 $\lambda_{s}(t) = (\mathbf{x}(t), \rho(s)\mathbf{y}(t), \rho(s)\mathbf{z}(t))$

Legendrian isotopy:

Lagrangian immersion: $\Gamma(s,t) = (s,x(t),
ho(s)y(t),
ho(s)z(t)+
ho'(s)z(t))$

1 e^A/2

Embedding condition:

So,

 \exists embedded Lagrangian cobordism when $1 < e^A/2 \iff \ln 2 < A$.

э.

1/2

0 Å

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constructions of Lagrangian Cobordisms

Width of a Lagrangian Cobordism

4 6 1 1 4

Width of a Symplectic Manifold

$$B^{2n}(c) := \left\{ (x_1, y_1, \ldots, x_n, y_n) : \pi \sum_i (x_i^2 + y_i^2) \leq c \right\} \subset (\mathbb{R}^{2n}, \omega_0).$$

æ

$$B^{2n}(c) := \left\{ (x_1, y_1, \ldots, x_n, y_n) : \pi \sum_i (x_i^2 + y_i^2) \le c \right\} \subset (\mathbb{R}^{2n}, \omega_0).$$

Width of a symplectic manifold (X, ω) :

$$w(X) := \sup\{ oldsymbol{c} : \exists \psi : B^{2n}(oldsymbol{c})
ightarrow X, \psi^* \omega = \omega_0 \}.$$

4 A N

$$B^{2n}(c) := \left\{ (x_1, y_1, \ldots, x_n, y_n) : \pi \sum_i (x_i^2 + y_i^2) \leq c \right\} \subset (\mathbb{R}^{2n}, \omega_0).$$

Width of a symplectic manifold (X, ω) :

$$w(X):=\sup\{oldsymbol{c}:\exists\psi:B^{2n}(oldsymbol{c}) o X,\psi^*\omega=\omega_0\}.$$

We are working in $X = \mathbb{R} \times J^1 M$: $w(\mathbb{R} \times J^1 M) = \infty$.

Width of a Lagrangian

1

Given a Lagrangian submanifold $L \subset (X, \omega)$, relative width is:

$$w(X,L) = \sup \left\{ c \mid \exists \psi : B^{2n}(c) \to X, \psi^* \omega = \omega_0, \psi^{-1}(L) = B^{2n}(c) \cap \mathbb{R}^n \right\}$$

Given a Lagrangian submanifold $L \subset (X, \omega)$, relative width is:

 $w(X,L) = \sup \left\{ c \mid \exists \psi : B^{2n}(c) \to X, \psi^* \omega = \omega_0, \psi^{-1}(L) = B^{2n}(c) \cap \mathbb{R}^n \right\}.$

Introduced by Barraud and Cornea, '05.

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

Given a Lagrangian cobordism *L*, for $-\infty \le a < b \le \infty$,

$$L^b_a := \{(s, x, y, z) \in L : a < s < b\} \subset (a, b) \times J^1 M.$$

4 A N

Given a Lagrangian cobordism *L*, for $-\infty \le a < b \le \infty$,

$$L^b_a := \{(s, x, y, z) \in L : a < s < b\} \subset (a, b) \times J^1 M.$$

Question: Can we calculate $w(L_a^b)$, for some L, a, b?

Given a Lagrangian cobordism *L*, for $-\infty \le a < b \le \infty$,

$$L^b_a := \{(s, x, y, z) \in L : a < s < b\} \subset (a, b) \times J^1 M.$$

Question: Can we calculate $w(L_a^b)$, for some *L*, *a*, *b*? **Answer:** Yes!

Lemma

For any Lagrangian cobordism L, for any a,

$$w(L_a^\infty)=\infty.$$

イロト イ団ト イヨト イヨト

Lemma

For any Lagrangian cobordism L, for any a,

$$w(L_a^\infty) = \infty.$$

Proof Sketch:

Lemma

For any Lagrangian cobordism L, for any a,

 $w(L_a^\infty) = \infty.$

Proof Sketch:

Lemma

For any Lagrangian cobordism L, for any a,

 $w(L_a^\infty) = \infty.$

Proof Sketch:

Chop off top! We will consider:

$$a=-\infty,$$
 $s_+\leq b<+\infty.$

э

Cylindrical Lagrangian Cobordisms: $L = \mathbb{R} \times \Lambda$, for a Legendrian Λ .

A D M A A A M M

Cylindrical Lagrangian Cobordisms: $L = \mathbb{R} \times \Lambda$, for a Legendrian Λ .

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^b_{-\infty})$ for some Λ and for some *b*?

Cylindrical Lagrangian Cobordisms: $L = \mathbb{R} \times \Lambda$, for a Legendrian Λ .

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^b_{-\infty})$ for some Λ and for some *b*? Suffices to understand b = 0:

Lemma

For any Legendrian Λ ,

$$\mathit{W}\left((\mathbb{R} imes \Lambda)^{\mathit{b}}_{-\infty}
ight) = \mathit{e}^{\mathit{b}} \mathit{W}\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight).$$

Cylindrical Lagrangian Cobordisms: $L = \mathbb{R} \times \Lambda$, for a Legendrian Λ .

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^b_{-\infty})$ for some Λ and for some *b*? Suffices to understand b = 0:

Lemma

For any Legendrian Λ ,

$$\mathit{W}\left((\mathbb{R} imes \Lambda)^{\mathit{b}}_{-\infty}
ight) = \mathit{e}^{\mathit{b}} \mathit{W}\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight).$$

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^0_{-\infty})$ for some Λ ?

Cylindrical Lagrangian Cobordisms: $L = \mathbb{R} \times \Lambda$, for a Legendrian Λ .

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^b_{-\infty})$ for some Λ and for some *b*? Suffices to understand b = 0:

Lemma

For any Legendrian Λ ,

$$\mathit{W}\left((\mathbb{R} imes \Lambda)^{\mathit{b}}_{-\infty}
ight) = \mathit{e}^{\mathit{b}} \mathit{W}\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight).$$

Question: Can we calculate $w((\mathbb{R} \times \Lambda)^0_{-\infty})$ for some Λ ? **Answer:** Yes!

Lisa Traynor (Bryn Mawr)

э.

→
Width of Cylinder over Legendrian Unknot

Width of Cylinder over Legendrian Unknot

Theorem (Sabloff-T)

$$w((\mathbb{R} \times U(r))^0_{-\infty}) = 2r.$$

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

Tech Topology 28 / 36

• • • • • • • • • • •

Upperbound to Width of a Legendrian

 $w\left((\mathbb{R} \times U(r))^{\mathsf{0}}_{-\infty}\right) \leq 2r$ follows from:

Theorem (Sabloff-T)

Suppose Λ is a Legendrian that admits an augmentation. Then

$$\mathit{w}\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight) \leq 2\mathit{c}(\Lambda),$$

where $c(\Lambda)$ is the minimum fundamental capacity (for any augmentation).

Upperbound to Width of a Legendrian

 $w\left((\mathbb{R} \times U(r))^{\mathsf{0}}_{-\infty}\right) \leq 2r$ follows from:

Theorem (Sabloff-T)

Suppose Λ is a Legendrian that admits an augmentation. Then

$$\mathit{w}\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight) \leq 2\mathit{c}(\Lambda),$$

where $c(\Lambda)$ is the minimum fundamental capacity (for any augmentation).

size of ball \leq 2 "fundamental Reeb chord height" in $\partial=\Lambda$

4 A & 4

• Suppose there is an embedding ψ of $B(\alpha)$.

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class λ ∈ LCH*(Λ, ε), through ψ(0) ∈ L there is a J-holomorphic "disk" of area A ≤ c(Λ, ε, λ).

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class λ ∈ LCH*(Λ, ε), through ψ(0) ∈ L there is a J-holomorphic "disk" of area A ≤ c(Λ, ε, λ).
- There exists a holomorphic disk in B(α) with boundary in ∂B(α) ∪ ℝⁿ of area B ≤ A ≤ c(Λ, ε, λ). By analytic continuation, this extends to a holomorphic disk with boundary in ∂B(α) of area 2B ≤ 2c(Λ, ε, λ).

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class λ ∈ LCH*(Λ, ε), through ψ(0) ∈ L there is a J-holomorphic "disk" of area A ≤ c(Λ, ε, λ).
- There exists a holomorphic disk in B(α) with boundary in ∂B(α) ∪ ℝⁿ of area B ≤ A ≤ c(Λ, ε, λ). By analytic continuation, this extends to a holomorphic disk with boundary in ∂B(α) of area 2B ≤ 2c(Λ, ε, λ).
- Classical Isoperimetric Inequality shows $\alpha \leq 2B \leq 2c(\Lambda, \varepsilon, \lambda)$.

4 A & 4

Lowerbound to width of a Legendrian

 $2r \leq w\left((\mathbb{R} imes U(r))^0_{-\infty}
ight)$ follows from:

Theorem (Sabloff-T)

Suppose A has a "vertically extendable" Reeb chord of height r. Then

$$2r \leq w\left((\mathbb{R} imes \Lambda)^{\mathsf{0}}_{-\infty}
ight).$$

Lowerbound to width of a Legendrian

 $2r \leq w\left((\mathbb{R} imes U(r))^{0}_{-\infty}
ight)$ follows from:

Theorem (Sabloff-T)

Suppose A has a "vertically extendable" Reeb chord of height r. Then

$$2r \leq w\left((\mathbb{R} imes \Lambda)^{0}_{-\infty}
ight).$$

4 A & 4

$$\Psi: \mathbb{R} \times J^{1}M \to T^{*}\mathbb{R}_{+} \times T^{*}M$$
$$(s, x, y, z) \mapsto ((e^{s}, z), (x, e^{s}y))$$

æ

$$\Psi: \mathbb{R} \times J^1 M \to T^* \mathbb{R}_+ \times T^* M$$
$$(s, x, y, z) \mapsto ((e^s, z), (x, e^s y))$$

$$\Psi: \mathbb{R} \times J^1 M \to T^* \mathbb{R}_+ \times T^* M$$
$$(s, x, y, z) \mapsto ((e^s, z), (x, e^s y))$$

$$\Psi: \mathbb{R} \times J^1 M \to T^* \mathbb{R}_+ \times T^* M$$

(s, x, y, z) $\mapsto ((e^s, z), (x, e^s y))$

What if L is a non-cylindrical cobordism?

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of B(2)?

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of *B*(2)? **Answer:** Yes!

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of B(2)?

Answer: Yes!

Question: Can we embed a bigger ball?

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of B(2)?

Answer: Yes!

Question: Can we embed a bigger ball?

Answer: No!

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of B(2)?

Answer: Yes!

Question: Can we embed a bigger ball?

Answer: No!

Width does not see the negative end!

Lisa Traynor (Bryn Mawr)

Lagrangian Cobordisms

Upper Bound for Width of Lagrangian Cobordisms

Theorem (Sabloff-T)

If L is a Lagrangian cobordism from Λ_- to Λ_+ and Λ_- is fillable, then

$$w\left(L_{-\infty}^{0}
ight)\leq2c(\Lambda_{+}),$$

where $c(\Lambda_+)$ is the minimum fundamental capacity (for any augmentation).

4 A N

Upper Bound for Width of Lagrangian Cobordisms

Theorem (Sabloff-T)

If L is a Lagrangian cobordism from Λ_- to Λ_+ and Λ_- is fillable, then

$$w\left(L_{-\infty}^{0}
ight)\leq2c(\Lambda_{+}),$$

where $c(\Lambda_+)$ is the minimum fundamental capacity (for any augmentation).

Proof is similar in spirit to the proof when $L = \mathbb{R} \times \Lambda$:

Use Seidel Isomorphism to get the existence of a *J*-holomorphic disk through $\psi(0) \in \psi(B(\alpha))$.

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-} = U(2)$ and $\Lambda_{+} = U(1)$: $h \ge \ln 2$

3

< E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-} = U(2)$ and $\Lambda_{+} = U(1)$: $h \ge \ln 2$

Corollary

Suppose L is a Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ that is cylindrical outside [-h, 0]. Then

$$\ln 2 = \ln \left(\frac{2}{1}\right) = \ln \left(\frac{c(U(2))}{c(U(1))}\right) \le h.$$

-∢ ∃ >

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-} = U(2)$ and $\Lambda_{+} = U(1)$: $h \ge \ln 2$

Corollary

Suppose L is a Lagrangian cobordism from $\Lambda_{-} = U(2)$ to $\Lambda_{+} = U(1)$ that is cylindrical outside [-h, 0]. Then

$$\ln 2 = \ln \left(\frac{2}{1}\right) = \ln \left(\frac{c(U(2))}{c(U(1))}\right) \le h.$$

Proof:

$$2e^{-h}c(U(2)) = e^{-h}w((\mathbb{R} \times \Lambda_{-})^{0}_{-\infty}) = w((\mathbb{R} \times \Lambda_{-})^{-h}_{-\infty}) \leq w(L^{0}_{-\infty}) \leq 2c(U(1))$$

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Calculate widths of other Lagrangian cobordisms when Λ₋ admits an augmentation/filling!

A D M A A A M M

- Calculate widths of other Lagrangian cobordisms when Λ₋ admits an augmentation/filling!
- Can we calculate the width or length of a Lagrangian cobordism when Λ₋ does *not* admit an augmentation/filling?

For example, when Λ_{-} is *stabilized* or *loose*?

- Calculate widths of other Lagrangian cobordisms when Λ₋ admits an augmentation/filling!
- Can we calculate the width or length of a Lagrangian cobordism when Λ₋ does *not* admit an augmentation/filling?

For example, when Λ_{-} is *stabilized* or *loose*?

Thank you!