A Quantitative Look at Lagrangian Cobordisms

Lisa Traynor

Bryn Mawr College

Joint work with Joshua M. Sabloff, Haverford College

December 2016

Lagrangians and Legendrians

Symplectic Manifold $\left(X^{2 n}, \omega\right)$

Lagrangian Submanifold
$L^{n}:\left.\omega\right|_{T L} \equiv 0$

Contact Manifold ($Y^{2 n+1}, \xi$)

Legendrian Submanifold $\Lambda^{n}: T \Lambda \subset \xi$

Lagrangians and Legendrians

Symplectic Manifold ($X^{2 n}, \omega$)
Exact Symplectic : $\omega=d \lambda$
Lagrangian Submanifold
$L^{n}:\left.\omega\right|_{T L} \equiv 0$
Exact Lagrangian: $\lambda=d f$

Contact Manifold ($Y^{2 n+1}, \xi$)

Legendrian Submanifold $\Lambda^{n}: T \Lambda \subset \xi$

The Symplectization of a Contact Manifold

Standard Contact Manifold: $\left(\mathbb{R}^{2 n+1}, \operatorname{ker} \alpha\right)$

$$
J^{1}\left(\mathbb{R}^{n}\right)=T^{*} \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{2 n+1}, \quad \alpha=d z-\sum_{i} y_{i} d x_{i}
$$

The Symplectization of a Contact Manifold

Standard Contact Manifold: $\left(\mathbb{R}^{2 n+1}, \operatorname{ker} \alpha\right)$

$$
J^{1}\left(\mathbb{R}^{n}\right)=T^{*} \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{2 n+1}, \quad \alpha=d z-\sum_{i} y_{i} d x_{i}
$$

Symplectization: $\left(\mathbb{R} \times \mathbb{R}^{2 n+1}, d\left(e^{s} \alpha\right)\right)$

The Symplectization of a Contact Manifold

Standard Contact Manifold: $\left(\mathbb{R}^{2 n+1}, \operatorname{ker} \alpha\right)$

$$
J^{1}\left(\mathbb{R}^{n}\right)=T^{*} \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{2 n+1}, \quad \alpha=d z-\sum_{i} y_{i} d x_{i}
$$

Symplectization: $\left(\mathbb{R} \times \mathbb{R}^{2 n+1}, d\left(e^{s} \alpha\right)\right)$

- There are no closed, exact Lagrangians (Gromov);

The Symplectization of a Contact Manifold

Standard Contact Manifold: $\left(\mathbb{R}^{2 n+1}, \operatorname{ker} \alpha\right)$

$$
J^{1}\left(\mathbb{R}^{n}\right)=T^{*} \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{2 n+1}, \quad \alpha=d z-\sum_{i} y_{i} d x_{i}
$$

Symplectization: $\left(\mathbb{R} \times \mathbb{R}^{2 n+1}, d\left(e^{s} \alpha\right)\right)$

- There are no closed, exact Lagrangians (Gromov);
- For a Legendrian Λ, the cylinder $\mathbb{R} \times \Lambda$ is an exact Lagrangian.

Lagrangian Cobordisms between Legendrians

A Lagrangian cobordism from Λ_{-}to Λ_{+}means:

Lagrangian Cobordisms between Legendrians

A Lagrangian cobordism from Λ_{-}to Λ_{+}means:

- $\Lambda_{ \pm}$are Legendrian submanifolds in $\left\{s=s_{ \pm}\right\}$;

Lagrangian Cobordisms between Legendrians

A Lagrangian cobordism from Λ_{-}to Λ_{+}means:

- $\Lambda_{ \pm}$are Legendrian submanifolds in $\left\{s=s_{ \pm}\right\}$;
- L is Lagrangian and cylindrical over $\Lambda_{ \pm}$at $\pm \infty$:

$$
L=\mathbb{R} \times \Lambda_{ \pm} \quad \text { outside }\left[s_{-}, s_{+}\right] ;
$$

Lagrangian Cobordisms between Legendrians

A Lagrangian cobordism from Λ_{-}to Λ_{+}means:

- $\Lambda_{ \pm}$are Legendrian submanifolds in $\left\{s=s_{ \pm}\right\}$;
- L is Lagrangian and cylindrical over $\Lambda_{ \pm}$at $\pm \infty$:

$$
L=\mathbb{R} \times \Lambda_{ \pm} \quad \text { outside }\left[s_{-}, s_{+}\right] ;
$$

- L is embedded and exact:

$$
\left.e^{s} \alpha\right|_{L}=d f, \quad f=\text { constant }_{ \pm} \quad \text { outside }\left[s_{-}, s_{+}\right] .
$$

Lagrangian Cobordisms between Legendrians

A Lagrangian cobordism from Λ_{-}to Λ_{+}means:

- $\Lambda_{ \pm}$are Legendrian submanifolds in $\left\{s=s_{ \pm}\right\}$;
- L is Lagrangian and cylindrical over $\Lambda_{ \pm}$at $\pm \infty$:

$$
L=\mathbb{R} \times \Lambda_{ \pm} \quad \text { outside }\left[s_{-}, s_{+}\right]
$$

- L is embedded and exact:

$$
\left.e^{s} \alpha\right|_{L}=d f, \quad f=\text { constant }_{ \pm} \quad \text { outside }\left[s_{-}, s_{+}\right]
$$

Arise in relative SFT (Eliashberg-Givental-Hofer)

Qualitative Questions

- Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, does there exist a Lagrangian cobordism between them?

Qualitative Questions

- Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, does there exist a Lagrangian cobordism between them?

Non-symmetric relation!

Qualitative Questions

- Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, does there exist a Lagrangian cobordism between them?

Non-symmetric relation!

- How topologically rigid are Lagrangian cobordisms?

Qualitative Questions

- Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, does there exist a Lagrangian cobordism between them?

Non-symmetric relation!

- How topologically rigid are Lagrangian cobordisms?

Fillings realize 4-ball genus!

Qualitative Questions

- Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, does there exist a Lagrangian cobordism between them?

Non-symmetric relation!

- How topologically rigid are Lagrangian cobordisms?
-••

Fillings realize 4-ball genus!
A variety of qualitative questions have been studied by: Chantraine, Ekholm, Honda,
Kálmán, Dimitroglou Rizell, Ghiggini, Golovko, Cornwell, Ng, Sivek, Bourgeois, Sabloff,
Traynor, Capovilla-Searle, Hayden, Pan, ...

Quantitative Questions

- (Length) Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, what is the minimal "length" of any cobordism between them?

$$
\begin{aligned}
& \mathrm{h}=\mathrm{s}_{+} \rightarrow \square \\
& 0=\mathrm{s}_{-} \rightarrow \square
\end{aligned}
$$

Quantitative Questions

- (Length) Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, what is the minimal "length" of any cobordism between them?

$$
\begin{aligned}
& \mathrm{h}=\mathrm{s}_{+} \rightarrow \square \\
& 0=\mathrm{s}_{-} \rightarrow \square
\end{aligned}
$$

- (Width) Given a Lagrangian cobordism, what is its "width"?

Outline

(9) Constructions of Lagrangian Cobordisms

Outline

(9) Constructions of Lagrangian Cobordisms
(2) Length of a Lagrangian cobordism

Outline

（1）Constructions of Lagrangian Cobordisms
（2）Length of a Lagrangian cobordism
（3）Width of a Lagrangian Cobordism

Outline

(9) Constructions of Lagrangian Cobordisms
(2) Length of a Lagrangian cobordism
(3) Width of a Lagrangian Cobordism

Constructions of Lagrangian Concordances

Isotopy Lemma (Eliashberg, Chantraine, Golovko, Ekholm-Honda-Kálmán, ...)

Suppose Λ_{-}and Λ_{+}are Legendrian isotopic. Then there exists a Lagrangian cobordism from Λ_{-}to Λ_{+}.

Constructions of Lagrangian Concordances

Isotopy Lemma (Eliashberg, Chantraine, Golovko, Ekholm-Honda-Kálmán, ...)

Suppose Λ_{-}and Λ_{+}are Legendrian isotopic. Then there exists a Lagrangian cobordism from Λ_{-}to Λ_{+}.

Remark: The Lagrangian is not the trace of the isotopy.
Most slices of the Lagrangian will not be Legendrian.

Lagrangian Concordances from Isotopy

Qualitatively Symmetric Concordances:

Constructions of Lagrangian Cobordisms

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T) If Λ_{+}is obtained from Λ_{-}by a "cusp-surgery",

Constructions of Lagrangian Cobordisms

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T) If Λ_{+}is obtained from Λ_{-}by a "cusp-surgery",

Constructions of Lagrangian Cobordisms

Theorem (Dimitroglou Rizell, Ekholm-Honda-Kálmán, Bourgeois-Sabloff-T) If Λ_{+}is obtained from Λ_{-}by a "cusp-surgery",

then there exists a Lagrangian cobordism from Λ_{-}to Λ_{+}.

Construction Example

Lagrangian genus 1 filling of a Legendrian $m\left(5_{2}\right)$:

Legendrian isotopy and cusp pinches as you move up!

Outline

(1) Constructions of Lagrangian Cobordisms

(2) Length of a Lagrangian cobordism
(3) Width of a Lagrangian Cobordism

Length

Question: Given $\Lambda_{-}, \Lambda_{+} \subset \mathbb{R}^{2 n+1}$, what is the "minimal length" of any cobordism between them?

$$
\begin{aligned}
& \mathrm{h}=\mathrm{S}_{+} \rightarrow \square \\
& 0=\mathrm{S}_{-} \rightarrow \square
\end{aligned}
$$

minimal length $=\inf \left\{h: \exists\right.$ Lagrangian cobordism from Λ_{-}to Λ_{+} that is cylindrical outside $[0, h]\}$.

Flexibility

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between
(1) a Legendrian and its vertical translate,

Flexibility

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between
(1) a Legendrian and its vertical translate,

(2) a Legendrian and its horizontal translate,

Flexibility

Theorem (Sabloff-T, '16: Selecta Mathematica)

There exists an arbitrarily short Lagrangian cobordism between
(1) a Legendrian and its vertical translate,

(2) a Legendrian and its horizontal translate,

(3) a Legendrian and its vertical expansion.

Rigidity

Theorem (Sabloff-T, '16)

There exist obstructions to arbitrarily short Lagrangian cobordisms between
(1) a Legendrian and its vertical contraction;

Rigidity

Theorem (Sabloff-T, '16)

There exist obstructions to arbitrarily short Lagrangian cobordisms between
(1) a Legendrian and its vertical contraction;

(2) vertically shifted Hopf links:

$$
h \sim \begin{cases}\ln \left(\frac{1-u}{1-v}\right), & \text { if } u \leq v \\ \ln \left(\frac{u}{v}\right), & \text { if } u \geq v\end{cases}
$$

Lower Bound to Length

(Step 1) Assign "capacities" to a Legendrian

$$
c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup\{\infty\}
$$

ε is an augmentation of the DGA $\mathcal{A}(\Lambda)$, $\varepsilon:(\mathcal{A}(\Lambda), \partial) \rightarrow\left(\mathbb{F}_{2}, 0\right)$, $\theta \in L C H^{*}(\Lambda, \varepsilon)$.

Lower Bound to Length

(Step 1) Assign "capacities" to a Legendrian

$$
c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup\{\infty\}
$$

ε is an augmentation of the DGA $\mathcal{A}(\Lambda)$, $\varepsilon:(\mathcal{A}(\Lambda), \partial) \rightarrow\left(\mathbb{F}_{2}, 0\right)$, $\theta \in L C H^{*}(\Lambda, \varepsilon)$.

Example:

$$
\exists 0 \neq \lambda \in L C H^{1}(U(r), \varepsilon) ; \quad c(U(r), \varepsilon, \lambda)=r .
$$

Fundamental Class
Fundamental Capacity

Lower Bound to Length

(Step 1) Assign "capacities" to a Legendrian

$$
c(\Lambda, \varepsilon, \theta) \in \mathbb{R}_{>0} \cup\{\infty\}
$$

ε is an augmentation of the DGA $\mathcal{A}(\Lambda), \quad \varepsilon:(\mathcal{A}(\Lambda), \partial) \rightarrow\left(\mathbb{F}_{2}, 0\right)$, $\theta \in L C H^{*}(\Lambda, \varepsilon)$.

Example:

$$
\exists 0 \neq \lambda \in L C H^{1}(U(r), \varepsilon) ; \quad c(U(r), \varepsilon, \lambda)=r .
$$

Fundamental Class Fundamental Capacity
For $\theta \neq 0, c(\Lambda, \varepsilon, \theta)$ is always the height of a Reeb chord!

Lower Bound to Length

(Step 2) From $\varepsilon_{-}, \theta_{-}$for Λ_{-}and Lagrangian cobordism L from Λ_{-}to Λ_{+}, get induced $\varepsilon_{+}, \theta_{+}$for Λ_{+}.

Lower Bound to Length

(Step 2) From $\varepsilon_{-}, \theta_{-}$for Λ_{-}and Lagrangian cobordism L from Λ_{-}to Λ_{+}, get induced $\varepsilon_{+}, \theta_{+}$for Λ_{+}.
[Ekholm-Honda-Kálmán]

Lower Bound to Length

(Step 2) From $\varepsilon_{-}, \theta_{-}$for Λ_{-}and Lagrangian cobordism L from Λ_{-}to Λ_{+}, get induced $\varepsilon_{+}, \theta_{+}$for Λ_{+}.
[Ekholm-Honda-Kálmán]

Question: How do capacities $c\left(\Lambda_{+}, \varepsilon_{+}, \theta_{+}\right)$and $c\left(\Lambda_{-}, \varepsilon_{-}, \theta_{-}\right)$compare?

Lower Bound to Length

(Step 3) Relate capacities for ends of a Lagrangian cobordism.
Length-Capacity Inequality (Sabloff-T)
If L is a Lagrangian cobordism from Λ_{-}to Λ_{+}that is cylindrical outside $[0, h]$, then

$$
e^{0} c\left(\Lambda_{-}, \varepsilon_{-}, \theta_{-}\right) \leq e^{h} c\left(\Lambda_{+}, \varepsilon_{+}, \theta_{+}\right)
$$

Lower Bound to Length

(Step 3) Relate capacities for ends of a Lagrangian cobordism.

Length-Capacity Inequality (Sabloff-T)

If L is a Lagrangian cobordism from Λ_{-}to Λ_{+}that is cylindrical outside $[0, h]$, then

$$
e^{0} c\left(\Lambda_{-}, \varepsilon_{-}, \theta_{-}\right) \leq e^{h} c\left(\Lambda_{+}, \varepsilon_{+}, \theta_{+}\right)
$$

Remember $\varepsilon_{+}, \theta_{+}$are induced by L.

Lower Bound to Length

(Step 3) Relate capacities for ends of a Lagrangian cobordism.

Length-Capacity Inequality (Sabloff-T)

If L is a Lagrangian cobordism from Λ_{-}to Λ_{+}that is cylindrical outside $[0, h]$, then

$$
e^{0} c\left(\Lambda_{-}, \varepsilon_{-}, \theta_{-}\right) \leq e^{h} c\left(\Lambda_{+}, \varepsilon_{+}, \theta_{+}\right)
$$

Remember $\varepsilon_{+}, \theta_{+}$are induced by L.
Get lower bounds to length of a cobordism!

$$
\ln \left(\frac{c\left(\Lambda_{-}, \varepsilon_{-}, \theta_{-}\right)}{c\left(\Lambda_{+}, \varepsilon_{+}, \theta_{+}\right)}\right) \leq h
$$

Lower Bound to Length of a Contraction

By Length-Capacity Inequality:

$$
\ln \left(\frac{2}{1}\right)=\ln \left(\frac{\left.c(U(2)), \varepsilon_{-}, \lambda_{-}\right)}{\left.c(U(1)), \varepsilon_{+}, \lambda_{+}\right)}\right)=\ln \left(\frac{c\left(\Lambda_{-}, \varepsilon_{-}, \lambda_{-}\right)}{c\left(\Lambda_{+}, \varepsilon_{+}, \lambda_{+}\right)}\right) \leq h .
$$

Lower Bound to Length of a Contraction

By Length-Capacity Inequality:

$$
\ln \left(\frac{2}{1}\right)=\ln \left(\frac{\left.c(U(2)), \varepsilon_{-}, \lambda_{-}\right)}{\left.c(U(1)), \varepsilon_{+}, \lambda_{+}\right)}\right)=\ln \left(\frac{c\left(\Lambda_{-}, \varepsilon_{-}, \lambda_{-}\right)}{c\left(\Lambda_{+}, \varepsilon_{+}, \lambda_{+}\right)}\right) \leq h .
$$

Question: Can we get arbitrarily close to $h=\ln 2$?

Lower Bound to Length of a Contraction

By Length-Capacity Inequality:

$$
\ln \left(\frac{2}{1}\right)=\ln \left(\frac{\left.c(U(2)), \varepsilon_{-}, \lambda_{-}\right)}{\left.c(U(1)), \varepsilon_{+}, \lambda_{+}\right)}\right)=\ln \left(\frac{c\left(\Lambda_{-}, \varepsilon_{-}, \lambda_{-}\right)}{c\left(\Lambda_{+}, \varepsilon_{+}, \lambda_{+}\right)}\right) \leq h .
$$

Question: Can we get arbitrarily close to $h=\ln 2$?
Answer: Yes!

Upper Bound to Length of a Contraction

\exists Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ of length A :

Upper Bound to Length of a Contraction

\exists Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ of length A :

Legendrian isotopy:

$$
\lambda_{s}(t)=(x(t), \rho(s) y(t), \rho(s) z(t))
$$

Upper Bound to Length of a Contraction

\exists Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ of length A :
$1 / 2$
Legendrian isotopy: $\quad \lambda_{s}(t)=(x(t), \rho(s) y(t), \rho(s) z(t))$

Lagrangian immersion: $\quad \Gamma(s, t)=\left(s, x(t), \rho(s) y(t), \rho(s) z(t)+\rho^{\prime}(s) z(t)\right)$

Upper Bound to Length of a Contraction

\exists Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ of length A :

Legendrian isotopy: $\quad \lambda_{s}(t)=(x(t), \rho(s) y(t), \rho(s) z(t))$

Lagrangian immersion: $\quad \Gamma(s, t)=\left(s, x(t), \rho(s) y(t), \rho(s) z(t)+\rho^{\prime}(s) z(t)\right)$

Embedding condition:

$$
\frac{d}{d s}\left(e^{s} \rho(s)\right) \neq 0
$$

Upper Bound to Length of a Contraction

\exists Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ of length A :

Legendrian isotopy:

$$
\lambda_{s}(t)=(x(t), \rho(s) y(t), \rho(s) z(t))
$$

Lagrangian immersion: $\quad \Gamma(s, t)=\left(s, x(t), \rho(s) y(t), \rho(s) z(t)+\rho^{\prime}(s) z(t)\right)$

Embedding condition: $\quad \frac{d}{d s}\left(e^{s} \rho(s)\right) \neq 0$

So,
\exists embedded Lagrangian cobordism when $1<e^{A} / 2 \Longleftrightarrow \ln 2<A$.

Outline

(1) Constructions of Lagrangian Cobordisms

(2) Length of a Lagrangian cobordism

(3) Width of a Lagrangian Cobordism

Width of a Symplectic Manifold

$$
B^{2 n}(c):=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right): \pi \sum_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \leq c\right\} \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right) .
$$

Width of a Symplectic Manifold

$$
B^{2 n}(c):=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right): \pi \sum_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \leq c\right\} \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right) .
$$

Width of a symplectic manifold (X, ω) :

$$
w(X):=\sup \left\{c: \exists \psi: B^{2 n}(c) \rightarrow X, \psi^{*} \omega=\omega_{0}\right\} .
$$

Width of a Symplectic Manifold

$$
B^{2 n}(c):=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right): \pi \sum_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \leq c\right\} \subset\left(\mathbb{R}^{2 n}, \omega_{0}\right) .
$$

Width of a symplectic manifold (X, ω) :

$$
w(X):=\sup \left\{c: \exists \psi: B^{2 n}(c) \rightarrow X, \psi^{*} \omega=\omega_{0}\right\} .
$$

$$
B(c)
$$

We are working in $X=\mathbb{R} \times J^{1} M$: $w\left(\mathbb{R} \times J^{1} M\right)=\infty$.

Width of a Lagrangian

Given a Lagrangian submanifold $L \subset(X, \omega)$, relative width is:
$w(X, L)=\sup \left\{c \mid \exists \psi: B^{2 n}(c) \rightarrow X, \psi^{*} \omega=\omega_{0}, \psi^{-1}(L)=B^{2 n}(c) \cap \mathbb{R}^{n}\right\}$.

Width of a Lagrangian

Given a Lagrangian submanifold $L \subset(X, \omega)$, relative width is:

$$
w(X, L)=\sup \left\{c \mid \exists \psi: B^{2 n}(c) \rightarrow X, \psi^{*} \omega=\omega_{0}, \psi^{-1}(L)=B^{2 n}(c) \cap \mathbb{R}^{n}\right\}
$$

Introduced by Barraud and Cornea, '05.

Widths of Lagrangian Cobordisms

Given a Lagrangian cobordism L, for $-\infty \leq a<b \leq \infty$,

$$
L_{a}^{b}:=\{(s, x, y, z) \in L: a<s<b\} \subset(a, b) \times J^{1} M .
$$

Widths of Lagrangian Cobordisms

Given a Lagrangian cobordism L, for $-\infty \leq a<b \leq \infty$,

$$
L_{a}^{b}:=\{(s, x, y, z) \in L: a<s<b\} \subset(a, b) \times J^{1} M
$$

Question: Can we calculate $w\left(L_{a}^{b}\right)$, for some L, a, b ?

Widths of Lagrangian Cobordisms

Given a Lagrangian cobordism L, for $-\infty \leq a<b \leq \infty$,

$$
L_{a}^{b}:=\{(s, x, y, z) \in L: a<s<b\} \subset(a, b) \times J^{1} M
$$

Question: Can we calculate $w\left(L_{a}^{b}\right)$, for some L, a, b ?
Answer: Yes!

Infinite Width

Lemma
For any Lagrangian cobordism L, for any a,

$$
w\left(L_{a}^{\infty}\right)=\infty .
$$

Infinite Width

Lemma

For any Lagrangian cobordism L, for any a,

$$
w\left(L_{a}^{\infty}\right)=\infty
$$

Proof Sketch:

Infinite Width

Lemma

For any Lagrangian cobordism L, for any a,

$$
w\left(L_{a}^{\infty}\right)=\infty .
$$

Proof Sketch:

Infinite Width

Lemma

For any Lagrangian cobordism L, for any a,

$$
w\left(L_{a}^{\infty}\right)=\infty .
$$

Proof Sketch:

Chop off top! We will consider:

$$
a=-\infty, \quad s_{+} \leq b<+\infty
$$

Width of Cylindrical Lagrangian Cobordisms

Cylindrical Lagrangian Cobordisms: $L=\mathbb{R} \times \Lambda$, for a Legendrian Λ.

Width of Cylindrical Lagrangian Cobordisms

Cylindrical Lagrangian Cobordisms: $L=\mathbb{R} \times \Lambda$, for a Legendrian Λ.
Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)$ for some Λ and for some b ?

Width of Cylindrical Lagrangian Cobordisms

Cylindrical Lagrangian Cobordisms: $L=\mathbb{R} \times \Lambda$, for a Legendrian Λ.
Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)$ for some \wedge and for some b ? Suffices to understand $b=0$:

Lemma

For any Legendrian \wedge,

$$
w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)=e^{b} w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)
$$

Width of Cylindrical Lagrangian Cobordisms

Cylindrical Lagrangian Cobordisms: $L=\mathbb{R} \times \Lambda$, for a Legendrian Λ.
Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)$ for some Λ and for some b ? Suffices to understand $b=0$:

Lemma

For any Legendrian \wedge,

$$
w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)=e^{b} w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)
$$

Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)$ for some Λ ?

Width of Cylindrical Lagrangian Cobordisms

Cylindrical Lagrangian Cobordisms: $L=\mathbb{R} \times \Lambda$, for a Legendrian Λ.
Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)$ for some Λ and for some b ?
Suffices to understand $b=0$:

Lemma

For any Legendrian \wedge,

$$
w\left((\mathbb{R} \times \Lambda)_{-\infty}^{b}\right)=e^{b} w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)
$$

Question: Can we calculate $w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)$ for some Λ ?
Answer: Yes!

Width of Cylinder over Legendrian Unknot

Width of Cylinder over Legendrian Unknot

Theorem (Sabloff-T)

$$
w\left((\mathbb{R} \times U(r))_{-\infty}^{0}\right)=2 r
$$

Upperbound to Width of a Legendrian

$w\left((\mathbb{R} \times U(r))_{-\infty}^{0}\right) \leq 2 r$ follows from:

Theorem (Sabloff-T)

Suppose \wedge is a Legendrian that admits an augmentation. Then

$$
w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right) \leq 2 c(\Lambda)
$$

where $c(\Lambda)$ is the minimum fundamental capacity (for any augmentation).

Upperbound to Width of a Legendrian

$w\left((\mathbb{R} \times U(r))_{-\infty}^{0}\right) \leq 2 r$ follows from:

Theorem (Sabloff-T)

Suppose \wedge is a Legendrian that admits an augmentation. Then

$$
w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right) \leq 2 c(\Lambda)
$$

where $c(\Lambda)$ is the minimum fundamental capacity (for any augmentation).
size of ball ≤ 2 "fundamental Reeb chord height" in $\partial=\Lambda$

Obstructions to Embeddings:

Proof Sketch:

- Suppose there is an embedding ψ of $B(\alpha)$.

Obstructions to Embeddings:

Proof Sketch:

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class $\lambda \in L C H^{*}(\Lambda, \varepsilon)$, through $\psi(0) \in L$ there is a J-holomorphic "disk" of area $A \leq c(\Lambda, \varepsilon, \lambda)$.

Obstructions to Embeddings:

Proof Sketch:

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class $\lambda \in L C H^{*}(\Lambda, \varepsilon)$, through $\psi(0) \in L$ there is a J-holomorphic "disk" of area $A \leq c(\Lambda, \varepsilon, \lambda)$.
- There exists a holomorphic disk in $B(\alpha)$ with boundary in $\partial B(\alpha) \cup \mathbb{R}^{n}$ of area $B \leq A \leq c(\Lambda, \varepsilon, \lambda)$. By analytic continuation, this extends to a holomorphic disk with boundary in $\partial B(\alpha)$ of area $2 B \leq 2 c(\Lambda, \varepsilon, \lambda)$.

Obstructions to Embeddings:

Proof Sketch:

- Suppose there is an embedding ψ of $B(\alpha)$.
- By property of the fundamental class $\lambda \in L C H^{*}(\Lambda, \varepsilon)$, through $\psi(0) \in L$ there is a J-holomorphic "disk" of area $A \leq c(\Lambda, \varepsilon, \lambda)$.
- There exists a holomorphic disk in $B(\alpha)$ with boundary in $\partial B(\alpha) \cup \mathbb{R}^{n}$ of area $B \leq A \leq c(\Lambda, \varepsilon, \lambda)$. By analytic continuation, this extends to a holomorphic disk with boundary in $\partial B(\alpha)$ of area $2 B \leq 2 c(\wedge, \varepsilon, \lambda)$.
- Classical Isoperimetric Inequality shows $\alpha \leq 2 B \leq 2 c(\Lambda, \varepsilon, \lambda)$.

Lowerbound to width of a Legendrian

$2 r \leq w\left((\mathbb{R} \times U(r))_{-\infty}^{0}\right)$ follows from:

Theorem (Sabloff-T)

Suppose \wedge has a "vertically extendable" Reeb chord of height r. Then

$$
2 r \leq w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right)
$$

Lowerbound to width of a Legendrian

$2 r \leq w\left((\mathbb{R} \times U(r))_{-\infty}^{0}\right)$ follows from:

Theorem (Sabloff-T)

Suppose \wedge has a "vertically extendable" Reeb chord of height r. Then

$$
2 r \leq w\left((\mathbb{R} \times \Lambda)_{-\infty}^{0}\right) .
$$

Vertically Extendable

No Yes

Constructing Embeddings

Proof Sketch:

$$
\begin{aligned}
\Psi: \mathbb{R} \times J^{1} M & \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} M \\
(s, x, y, z) & \mapsto\left(\left(e^{s}, z\right),\left(x, e^{s} y\right)\right)
\end{aligned}
$$

Constructing Embeddings

Proof Sketch:

$$
\begin{aligned}
\Psi: \mathbb{R} \times J^{1} M & \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} M \\
(s, x, y, z) & \mapsto\left(\left(e^{s}, z\right),\left(x, e^{s} y\right)\right)
\end{aligned}
$$

Constructing Embeddings

Proof Sketch:

$$
\begin{aligned}
\Psi: \mathbb{R} \times J^{1} M & \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} M \\
(s, x, y, z) & \mapsto\left(\left(e^{s}, z\right),\left(x, e^{s} y\right)\right)
\end{aligned}
$$

Constructing Embeddings

Proof Sketch:

$$
\begin{aligned}
\Psi: \mathbb{R} \times J^{1} M & \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} M \\
(s, x, y, z) & \mapsto\left(\left(e^{s}, z\right),\left(x, e^{s} y\right)\right)
\end{aligned}
$$

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of $B(2)$?

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of $B(2)$?
Answer: Yes!

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of $B(2)$?
Answer: Yes!
Question: Can we embed a bigger ball?

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of $B(2)$?
Answer: Yes!
Question: Can we embed a bigger ball?
Answer: No!

Width of Non-Cylindrical Lagrangian Cobordisms

What if L is a non-cylindrical cobordism?

Example:

Question: Can we still find a symplectic embedding of $B(2)$?
Answer: Yes!
Question: Can we embed a bigger ball?
Answer: No!
Width does not see the negative end!

Upper Bound for Width of Lagrangian Cobordisms

Theorem (Sabloff-T)

If L is a Lagrangian cobordism from Λ_{-}to Λ_{+}and Λ_{-}is fillable, then

$$
w\left(L_{-\infty}^{0}\right) \leq 2 c\left(\Lambda_{+}\right)
$$

where $c\left(\Lambda_{+}\right)$is the minimum fundamental capacity (for any augmentation).

Upper Bound for Width of Lagrangian Cobordisms

Theorem (Sabloff-T)

If L is a Lagrangian cobordism from Λ_{-}to Λ_{+}and Λ_{-}is fillable, then

$$
w\left(L_{-\infty}^{0}\right) \leq 2 c\left(\Lambda_{+}\right)
$$

where $c\left(\Lambda_{+}\right)$is the minimum fundamental capacity (for any augmentation).

Proof is similar in spirit to the proof when $L=\mathbb{R} \times \Lambda$:
Use Seidel Isomorphism to get the existence of a J-holomorphic disk through $\psi(0) \in \psi(B(\alpha))$.

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-}=U(2)$ and $\Lambda_{+}=U(1): \quad h \geq \ln 2$

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-}=U(2)$ and $\Lambda_{+}=U(1): \quad h \geq \ln 2$

Corollary

Suppose L is a Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ that is cylindrical outside $[-h, 0]$. Then

$$
\ln 2=\ln \left(\frac{2}{1}\right)=\ln \left(\frac{c(U(2))}{c(U(1))}\right) \leq h .
$$

Length-Width Connection

Can reprove our earlier length result between $\Lambda_{-}=U(2)$ and $\Lambda_{+}=U(1): \quad h \geq \ln 2$

Corollary

Suppose L is a Lagrangian cobordism from $\Lambda_{-}=U(2)$ to $\Lambda_{+}=U(1)$ that is cylindrical outside $[-h, 0]$. Then

$$
\ln 2=\ln \left(\frac{2}{1}\right)=\ln \left(\frac{c(U(2))}{c(U(1))}\right) \leq h .
$$

Proof:

$2 e^{-h} c(U(2))=e^{-h} w\left(\left(\mathbb{R} \times \Lambda_{-}\right)_{-\infty}^{0}\right)=w\left(\left(\mathbb{R} \times \Lambda_{-}\right)_{-\infty}^{-h}\right) \leq w\left(L_{-\infty}^{0}\right) \leq 2 c(U(1))$

Questions

Much to be understood about length and width!

Questions

Much to be understood about length and width!

- Calculate widths of other Lagrangian cobordisms when Λ_{-}admits an augmentation/filling!

Questions

Much to be understood about length and width!

- Calculate widths of other Lagrangian cobordisms when Λ_{-}admits an augmentation/filling!
- Can we calculate the width or length of a Lagrangian cobordism when Λ_{-}does not admit an augmentation/filling?

For example, when Λ_{-}is stabilized or loose?

Questions

Much to be understood about length and width!

- Calculate widths of other Lagrangian cobordisms when Λ_{-}admits an augmentation/filling!
- Can we calculate the width or length of a Lagrangian cobordism when Λ_{-}does not admit an augmentation/filling?

For example, when Λ_{-}is stabilized or loose?

Thank you!

