Spectral Order Contact Invariant
Gordana Mastic (joint Y Kutluhan, Van Horn-Morris, wand)
Contact structure: $(M, 3)$
τ_{2} plane field

$$
\xi=\operatorname{ker} \alpha \quad \alpha \wedge d \alpha \neq 0
$$

Lutz, Martinet 70 's contact structures exist \uparrow on all oriented manifold
"Lute twist" give $D^{2} \hookrightarrow(M, 3) \quad$ oventuisted dish

$$
\text { st. }\}_{p}=T_{p} D \quad \forall \rho \in \partial D
$$

tight if no such dish
Dichotomy
tight overtursted
Bennequin: $\left(S_{1} \xi_{s t}\right)$ is tight

$$
\begin{aligned}
& \downarrow \\
& S^{3}=\partial B^{4} C \mathbb{C}^{2} \\
& \zeta_{p}=T_{p} S^{3} \cap J T_{p} S^{3}
\end{aligned}
$$

Eliashberg, Gromov:

such a 3 called tillable
(ω, ω, σ) Stein domain
also hove strong and weakly tillable
Elrashberg: overnustid contact structures are classified pto isotopy by alg. topology
tight contact structures: only in furctly many homotopy clares

- \#on all monitolds

Question: existence, uniqueness, classification How to recognize if a contact str. is tight
Giraux: every contact structure comes from Hurston Winkaluhamper construction gwen by some open book

$$
\text { TW: \{open books }\} \underset{\text { Giroux }}{\longrightarrow}\{\text { contact str\} }\}
$$

two open bock for some 3 related by pos stabilization
Open Bochs: $(s, \phi) \quad \phi \in \operatorname{Mop}(s, \partial s)$

contact invariant in Heegaard-Floer homology

$$
c(3) \in H \dot{F}(-M)
$$

1) $C(3)=0$ if 3 is oventuisted
2) $c(3) \neq 0$ if 3 is stein fitlable
3)

Question: $C(3)=0 \Longrightarrow$ OT?
No: Gay, Ghiggini...
if $(M, 3)$ contains Groux torsion, then $C(3)=0$

$$
\underbrace{T^{2} \times I}_{(x, y) \frac{I}{z}} \longleftrightarrow(M, \eta)
$$

Question: $c(3)=0 \Rightarrow$ Giroux torsion?
so if $(M, 3)$ contains this then $C(3)=0$
note open book gives Heegaard decomp

$$
\partial H_{1}=\partial H_{2}=\Sigma=S_{1 / 2} \cup\left(\begin{array}{r}
\left.-s_{0}\right) \\
\| \phi \\
s_{1}
\end{array}\right.
$$

$$
\begin{aligned}
& x_{3}=\left(x_{1}, x_{2}\right) \in \pi_{k} \cap \pi_{\beta} \\
& c(3)=\left[x_{3}\right] \in H F(-\mu)
\end{aligned}
$$

Th $\frac{m}{-}$ (Kutluhan-M-VHM- Wand)
there is an invariant $O(3) \in \mathbb{E}_{20} \cup\{\infty\}$ of $\}$
that has the following properties
(1) $o(3)=0$ if 3 is over twisted
(2) $o(3)=\infty$ if 3 is stein tillable
(3) O (3) is non-decreasing under Stein cobordisin

$$
\left(m_{1}, r_{1}\right)\left(m_{3} r_{2}\right) \Rightarrow 0\left(3_{1}\right)<0\left(3_{2}\right)
$$

spectral order can be detected in a single open book The : If $\left(\mu_{1}, i_{1}\right)$ and $\left(\mu_{2}, l_{2}\right)$ are two at stoss, then

$$
O\left(M_{1} \# M_{2}, \beta_{1} \# \beta_{2}\right)=\min \left(O\left(i_{1}\right), O\left(3_{2}\right)\right)
$$

There are families of examples $\left(M_{k_{1}} l_{k}\right)$ with o($\left.\xi_{k}\right)$ taking ∞ many values and $c\left(l_{k}\right)=0$
Question: $o(3)=0 \Rightarrow$ OT.?

$$
o(3)=\infty \Rightarrow \text { fillable? }
$$

$$
\begin{aligned}
& H F(-M)=H\left(C F\left(\sum, \alpha, \beta, z\right)\right) \\
&=H(C F(s, \phi, a, \tau)) \\
& \vartheta_{\partial}
\end{aligned}
$$

$$
\begin{array}{ll}
J_{+}(A) & =\text { filtration }=2 l \\
\partial=\partial_{0}+\partial_{1}+\ldots+\partial_{l}+\ldots & \text { o(3) "s first"" } \\
\partial_{l} & =\sum_{y} \sum_{\substack{A w / \\
J_{+}(A)=2 l}} \#() y
\end{array} l \text { stic(3) dies }
$$

examples:

$$
\begin{aligned}
& k \geq 2 \quad m>k \\
& \left(\mu_{h, m}, l_{1, m}\right) \\
& c(3)=0 \\
& \lceil k / 4\rceil \leq 0(3) \leq k
\end{aligned}
$$

