Satellites and Concordance

Allison N. Miller Rice University

December 8, 2018

Concordance of knots

Definition

Knots $K_0, K_1 \hookrightarrow S^3$ are concordant if

Concordance of knots

Definition

Knots $K_0, K_1 \hookrightarrow S^3$ are concordant if there is an annulus $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ with $\partial A = -K_0 \times \{0\} \sqcup K_1 \times \{1\}.$

Concordance of knots

Definition

Knots $K_0, K_1 \hookrightarrow S^3$ are concordant if there is an annulus $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ with $\partial \mathcal{A} = -K_0 \times \{0\} \sqcup K_1 \times \{1\}.$

Warning! Whether we require a smooth or just topological(ly flat) embedding of A matters!

A concordance from $T_{2,3}\# - T_{2,3}$ to the unknot!

The concordance set

Definition

$$\mathcal{C}_* := \{$$
knots in $S^3 \} / \sim_*$, where $* =$ sm, top

The concordance set monoid

Definition

$$\mathcal{C}_* := \{ \mathsf{knots in } S^3 \} / \sim_*, \ \mathsf{where} \ * = \mathsf{sm}, \mathsf{top} \}$$

The concordance set monoid

Definition

$$\mathcal{C}_* := \{ \mathsf{knots in } S^3 \} / \sim_*, \ \mathsf{where} \ * = \mathsf{sm}, \mathsf{top} \}$$

Theorem (Fox-Milnor) The map [K] + [J] := [K # J] is well-defined on C_* .

The concordance set monoid group!

Definition

$$\mathcal{C}_* := \{$$
knots in $S^3 \} / \sim_*$, where $* =$ sm, top

Theorem (Fox-Milnor)

The map [K] + [J] := [K # J] is well-defined on C_* . Moreover, it induces the structure of an abelian group!

Known: C^* contains a $\mathbb{Z}_2^{\infty} \oplus \mathbb{Z}^{\infty}$ -summand.

The concordance set monoid group!

Definition

$$\mathcal{C}_* := \{$$
knots in $S^3 \} / \sim_*$, where $* =$ sm, top

Theorem (Fox-Milnor)

The map [K] + [J] := [K # J] is well-defined on C_* . Moreover, it induces the structure of an abelian group!

Known: C^* contains a $\mathbb{Z}_2^{\infty} \oplus \mathbb{Z}^{\infty}$ -summand.

Unknown: $\mathbb{Q} \hookrightarrow \mathcal{C}_*$? $\mathbb{Z}_n \hookrightarrow \mathcal{C}_*$, n > 2?

The satellite construction

Any $P: S^1 \hookrightarrow D^2 \times S^1$ defines a map on the set of knots in S^3 :

The satellite construction

Any $P: S^1 \hookrightarrow D^2 \times S^1$ defines a map on the set of knots in S^3 :

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proof.

Let $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ be a concordance from K_0 to K_1 .

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proof.

Let $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ be a concordance from K_0 to K_1 . Consider

$$S^1 \times I \xrightarrow{P \times \mathsf{Id}} (D^2 \times S^1) \times I$$

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proof.

Let $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ be a concordance from K_0 to K_1 . Consider

$$S^1 \times I \xrightarrow{P imes \operatorname{Id}} (D^2 \times S^1) \times I = D^2 \times (S^1 \times I)$$

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proof.

Let $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ be a concordance from K_0 to K_1 . Consider

$$S^1 imes I \xrightarrow{P imes \mathsf{ld}} (D^2 imes S^1) imes I = D^2 imes (S^1 imes I) \cong
u(\mathcal{A}) \subset S^3 imes I,$$

Proposition

Let P be any pattern and K_0 and K_1 be concordant knots. Then $P(K_0)$ and $P(K_1)$ are concordant.

Proof.

Let $\mathcal{A} \colon S^1 \times I \hookrightarrow S^3 \times I$ be a concordance from K_0 to K_1 . Consider

$$S^1 imes I \xrightarrow{P imes \mathsf{ld}} (D^2 imes S^1) imes I = D^2 imes (S^1 imes I) \cong
u(\mathcal{A}) \subset S^3 imes I,$$

and observe that this is a concordance from $P(K_0)$ to $P(K_1)!$

Satellites and concordance

Motivating question: What can we say about $P: C \rightarrow C$?

Satellites and concordance

Motivating question: What can we say about $P : C \to C$? • When does *P* induce a surjection? injection? bijection?

Satellites and concordance

Motivating question: What can we say about $P : C \to C$?

- When does P induce a surjection? injection? bijection?
- When does P induce a group homomorphism?

Winding number

Definition

Given a pattern P, we have $[P] = k[\{pt\} \times S^1] \in H_1(D^2 \times S^1)$ for some $k \in \mathbb{Z}$. We call k =: w(P) the winding number of P.

Winding number

Definition

Given a pattern P, we have $[P] = k[\{pt\} \times S^1] \in H_1(D^2 \times S^1)$ for some $k \in \mathbb{Z}$. We call k =: w(P) the winding number of P.

Winding number

Definition

Given a pattern P, we have $[P] = k[\{pt\} \times S^1] \in H_1(D^2 \times S^1)$ for some $k \in \mathbb{Z}$. We call k =: w(P) the winding number of P.

Proposition (Folklore)

If P has $w(P) \neq \pm 1$, then P does not induce a surjection.

Proof.

"Easy": Uses classical invariants, e.g. Tristram-Levine signatures.

Proposition (Folklore) If P has $w(P) \neq \pm 1$, then P does not induce a surjection.

Proof.

"Easy": Uses classical invariants, e.g. Tristram-Levine signatures.

Theorem (Levine, 2014)

The Mazur pattern does not induce a surjection on $\mathcal{C}_{sm}.$

Proof.

Difficult: Uses (bordered) Heegaard Floer theory!

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on C but for which there are at least n distinct concordance classes K_1, \ldots, K_n such that $P(K_i)$ is slice for all i.

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on C but for which there are at least n distinct concordance classes K_1, \ldots, K_n such that $P(K_i)$ is slice for all i.

	$w(P) = \pm 1$	w(P) > 1	w(P) = 0
Surjective?	Not always (sm).	Never	Never
	Sometimes.		
Injective?	Sometimes.	?????	Not always.
	Always?	????	Ever?

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on C but for which there are at least n distinct concordance classes K_1, \ldots, K_n such that $P(K_i)$ is slice for all i.

	$w(P) = \pm 1$	w(P) > 1	w(P) = 0
Surjective?	Not always (sm).	Never	Never
	Sometimes.		
Injective?	Sometimes.	?????	Not always.
	Always?	????	Ever?

Bijective patterns?

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on C but for which there are at least n distinct concordance classes K_1, \ldots, K_n such that $P(K_i)$ is slice for all i.

	$w(P) = \pm 1$	w(P) > 1	w(P) = 0
Surjective?	Not always (sm). Sometimes.	Never	Never
	Sometimes.		
Injective?	Sometimes.	?????	Not always.
	Always?	????	Ever?

Bijective patterns? Yes!

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on C but for which there are at least n distinct concordance classes K_1, \ldots, K_n such that $P(K_i)$ is slice for all i.

		$w(P) = \pm 1$		w(P) > 1		w(P) = 0
	Surjective?	Not always (sm).		Never		Never
		Someti				
	Injective?	Sometimes.		?????		Not always.
		Always?		????		Ever?
						: boring: → K#J.

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on C_{sm} and do not act by connected sum.

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on C_{sm} and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95].

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on C_{sm} and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95]. Step 2: Compute some HF d-invariants of the dbcs of $P(P^{-1}(U))$ and $P^{-1}(U) \# P(U)$.

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on C_{sm} and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95]. Step 2: Compute some HF d-invariants of the dbcs of $P(P^{-1}(U))$ and $P^{-1}(U) \# P(U)$.

Hard problem:

Do any winding number 1 patterns not act by connected sum on \mathcal{C}_{top} ?

Question: Can a pattern induce a homomorphism on C?

Question: Can a pattern induce a homomorphism on C? **Answer:** Yes!

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{rev}$.

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{rev}$.

First obstruction:

If $P(U) \not\sim U$, then P does not induce a homomorphism.

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{rev}$.

First obstruction:

If $P(U) \not\sim U$, then P does not induce a homomorphism.

Proposition If $P(U) \sim U$, then P induces a homomorphism on C_{alg} .

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{rev}$.

First obstruction:

If $P(U) \not\sim U$, then P does not induce a homomorphism.

Proposition

If $P(U) \sim U$, then P induces a homomorphism on C_{alg} .

(i.e., the easily computed invariants- $\Delta_{\kappa}(t)$, $\sigma_{\kappa}(\omega)$ - can't help!)

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1) cable $C_{m,1}$ for m > 1 induce homomorphisms on C_{sm} .

Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1) cable $C_{m,1}$ for m > 1 induce homomorphisms on C_{sm} .

Proof.

Show that $P(-T_{2,3})$ is not smoothly concordant to $-P(T_{2,3})$ via e.g. the τ -invariant of Heegaard Floer homology.

Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1) cable $C_{m,1}$ for m > 1 induce homomorphisms on C_{sm} .

Proof.

Show that $P(-T_{2,3})$ is not smoothly concordant to $-P(T_{2,3})$ via e.g. the τ -invariant of Heegaard Floer homology.

Problem

Given a pattern P with P(U) slice, find an obstruction to P inducing a homomorphism on C_{top} .

Proposition (M.–Pinzón-Caicedo)

For any knot J, let P_J be the winding number 0 pattern shown. Then $P_J(U) \sim U$. Also, if $\sigma_J(e^{2\pi i/3}) \neq 0$, then P_J does not induce a homomorphism on C_{top} .

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_J be the winding number 0 pattern shown. Then $P_J(U) \sim U$. Also, if $\sigma_J(e^{2\pi i/3}) \neq 0$, then P_J does not induce a homomorphism on C_{top} .

The knot $P_J(K)$ with a genus 1 Seifert surface. **Proof.** • $P_J(U) \sim U$: blue curve.

Proposition (M.–Pinzón-Caicedo)

For any knot J, let P_J be the winding number 0 pattern shown. Then $P_J(U) \sim U$. Also, if $\sigma_J(e^{2\pi i/3}) \neq 0$, then P_J does not induce a homomorphism on C_{top} .

The knot $P_J(K)$ with a genus 1 Seifert surface. Proof.

P_J(*U*) ∼ *U*: blue curve.
 P_J(*J*) ∼ *U*: red curve.

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_J be the winding number 0 pattern shown. Then $P_J(U) \sim U$. Also, if $\sigma_J(e^{2\pi i/3}) \neq 0$, then P_J does not induce a homomorphism on C_{top} .

The knot $P_J(K)$ with a genus 1 Seifert surface. Proof.

- $P_J(U) \sim U$: blue curve.
- 2 $P_J(J) \sim U$: red curve.
- I P_J(#ⁿJ) ≁ U for n >> 0: Casson-Gordon signatures.

 $\left(\begin{array}{c} \mathsf{K} \hookrightarrow \mathsf{S}^3\\ \chi \colon \mathsf{H}_1(\Sigma(\mathsf{K})) \to \mathbb{Z}_m \end{array}\right)$

$$\left(\begin{array}{c} K \hookrightarrow S^3\\ \chi \colon H_1(\Sigma(K)) \to \mathbb{Z}_m \end{array}\right) \to \left(\begin{array}{c} \widetilde{S_0^3(K)}\\ \downarrow\\ S_0^3(K) \end{array}\right)$$

$$\begin{pmatrix} K \hookrightarrow S^3 \\ \chi \colon H_1(\Sigma(K)) \to \mathbb{Z}_m \end{pmatrix} \to \begin{pmatrix} \widetilde{S_0^3(K)} \\ \downarrow \\ S_0^3(K) \end{pmatrix} = \partial \begin{pmatrix} \widetilde{W} \\ \downarrow \\ W \end{pmatrix}$$

$$\begin{pmatrix} K \hookrightarrow S^3 \\ \chi \colon H_1(\Sigma(K)) \to \mathbb{Z}_m \end{pmatrix} \to \begin{pmatrix} \widetilde{S_0^3(K)} \\ \downarrow \\ S_0^3(K) \end{pmatrix} = \partial \begin{pmatrix} \widetilde{W} \\ \downarrow \\ W \end{pmatrix}$$

Theorem (Casson-Gordon) The quantity $\sigma(K, \chi) := \tilde{\sigma}(W) - \sigma(W)$ is an invariant of (K, χ) .

$$\left(\begin{array}{c} K \hookrightarrow S^{3} \\ \chi \colon H_{1}(\Sigma(K)) \to \mathbb{Z}_{m} \end{array}\right) \to \left(\begin{array}{c} \widetilde{S_{0}^{3}(K)} \\ \downarrow \\ S_{0}^{3}(K) \end{array}\right) = \partial \left(\begin{array}{c} \widetilde{W} \\ \downarrow \\ W \end{array}\right)$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi) := \widetilde{\sigma}(W) - \sigma(W)$ is an invariant of (K, χ) . Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi) = 0$.

$$\left(\begin{array}{c} \mathcal{K} \hookrightarrow S^{3} \\ \chi \colon \mathcal{H}_{1}(\Sigma(\mathcal{K})) \to \mathbb{Z}_{m} \end{array}\right) \to \left(\begin{array}{c} \widetilde{S_{0}^{3}(\mathcal{K})} \\ \downarrow \\ S_{0}^{3}(\mathcal{K}) \end{array}\right) = \partial \left(\begin{array}{c} \widetilde{W} \\ \downarrow \\ W \end{array}\right)$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi) := \widetilde{\sigma}(W) - \sigma(W)$ is an invariant of (K, χ) . Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi) = 0$.

(More precisely, there is a subgroup $M \le H_1(\Sigma(K))$ such that $|M|^2 = |H_1(\Sigma(K))|.$

$$\left(\begin{array}{c} \mathcal{K} \hookrightarrow S^{3} \\ \chi \colon \mathcal{H}_{1}(\Sigma(\mathcal{K})) \to \mathbb{Z}_{m} \end{array}\right) \to \left(\begin{array}{c} \widetilde{S_{0}^{3}(\mathcal{K})} \\ \downarrow \\ S_{0}^{3}(\mathcal{K}) \end{array}\right) = \partial \left(\begin{array}{c} \widetilde{W} \\ \downarrow \\ W \end{array}\right)$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi) := \widetilde{\sigma}(W) - \sigma(W)$ is an invariant of (K, χ) . Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi) = 0$.

(More precisely, there is a subgroup $M \le H_1(\Sigma(K))$ such that $|M|^2 = |H_1(\Sigma(K))|.$

3 $\lambda: H_1(\Sigma(K)) \times H_1(\Sigma(K)) \to \mathbb{Q}/\mathbb{Z}$ vanishes on $M \times M$.

$$\left(\begin{array}{c} \mathcal{K} \hookrightarrow S^{3} \\ \chi \colon \mathcal{H}_{1}(\Sigma(\mathcal{K})) \to \mathbb{Z}_{m} \end{array}\right) \to \left(\begin{array}{c} \widetilde{S_{0}^{3}(\mathcal{K})} \\ \downarrow \\ S_{0}^{3}(\mathcal{K}) \end{array}\right) = \partial \left(\begin{array}{c} \widetilde{W} \\ \downarrow \\ W \end{array}\right)$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi) := \widetilde{\sigma}(W) - \sigma(W)$ is an invariant of (K, χ) . Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi) = 0$.

(More precisely, there is a subgroup $M \le H_1(\Sigma(K))$ such that $|M|^2 = |H_1(\Sigma(K))|.$

$$\ 2 \ \ \lambda \colon H_1(\Sigma(K)) \times H_1(\Sigma(K)) \to \mathbb{Q}/\mathbb{Z} \text{ vanishes on } M \times M$$

3 If
$$\chi|_M = 0$$
, then $\sigma(K, \chi) = 0$.)

$H_1(\Sigma(P_J(K))) \cong H_1(\Sigma(P_U(U))) \cong \mathbb{Z}_3\langle a \rangle \oplus \mathbb{Z}_3\langle b \rangle,$

 $H_1(\Sigma(P_J(K))) \cong H_1(\Sigma(P_U(U))) \cong \mathbb{Z}_3\langle a \rangle \oplus \mathbb{Z}_3\langle b \rangle,$

and for any χ we have

$$\sigma(P_J(K),\chi) = \sigma(P_U(U),\chi) + 2\sigma_{-J}(e^{\frac{2\pi i}{3}\chi(a)}) + 2\sigma_K(e^{\frac{2\pi i}{3}\chi(b)}),$$

 $H_1(\Sigma(P_J(K))) \cong H_1(\Sigma(P_U(U))) \cong \mathbb{Z}_3\langle a \rangle \oplus \mathbb{Z}_3\langle b \rangle,$

and for any χ we have

$$\sigma(P_{J}(K),\chi) = \sigma(P_{U}(U),\chi) + 2\sigma_{-J}(e^{\frac{2\pi i}{3}\chi(a)}) + 2\sigma_{K}(e^{\frac{2\pi i}{3}\chi(b)}),$$

so $\sigma(P_{J}(\#^{n}J),\chi) = \sigma(P_{U}(U),\chi) - 2\sigma_{J}(e^{\frac{2\pi i}{3}\chi(a)}) + 2n\sigma_{J}(e^{\frac{2\pi i}{3}\chi(b)}).$

We can compute that

 $H_1(\Sigma(P_J(K))) \cong H_1(\Sigma(P_U(U))) \cong \mathbb{Z}_3\langle a \rangle \oplus \mathbb{Z}_3\langle b \rangle,$

and for any χ we have

$$\sigma(P_J(K),\chi) = \sigma(P_U(U),\chi) + 2\sigma_{-J}(e^{\frac{2\pi i}{3}\chi(a)}) + 2\sigma_K(e^{\frac{2\pi i}{3}\chi(b)}),$$

so $\sigma(P_J(\#^n J),\chi) = \sigma(P_U(U),\chi) - 2\sigma_J(e^{\frac{2\pi i}{3}\chi(a)}) + 2n\sigma_J(e^{\frac{2\pi i}{3}\chi(b)}).$

So we can choose n >> 0 so that $\sigma(P_J(\#^n J), \chi) = 0$ only if $\chi(b) = 0$. But such characters do not vanish on a metabolizer for the torsion linking form.

Nonzero winding number case

Theorem (M.–Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_n of winding number n such that $P_n(U) \sim U$ and P_n does not induce a homomorphism on C_{top} .

Nonzero winding number case

Theorem (M.–Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_n of winding number n such that $P_n(U) \sim U$ and P_n does not induce a homomorphism on C_{top} .

Nonzero winding number case

Theorem (M.–Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_n of winding number n such that $P_n(U) \sim U$ and P_n does not induce a homomorphism on C_{top} .

Proof.

For p|n, observe that H₁(Σ_p(P_n(U))) is generated by the lifts of η to Σ_p(P_n(U)).

Nonzero winding number case

Theorem (M.–Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_n of winding number n such that $P_n(U) \sim U$ and P_n does not induce a homomorphism on C_{top} .

Proof.

For p|n, observe that H₁(Σ_p(P_n(U))) is generated by the lifts of η to Σ_p(P_n(U)).

$$\sigma(P_n(K),\chi) = \sigma(P_n(U),\chi) + \sum_{i=1}^{P} \sigma_K(e^{\frac{2\pi i}{m_P}\chi(\widetilde{\eta}_i)}).$$

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_n of winding number n such that $P_n(U) \sim U$ and P_n does not induce a homomorphism on C_{top} .

Proof.

For p|n, observe that H₁(Σ_p(P_n(U))) is generated by the lifts of η to Σ_p(P_n(U)).

$$\sigma(P_n(K),\chi) = \sigma(P_n(U),\chi) + \sum_{i=1}^{\mu} \sigma_K(e^{\frac{2\pi i}{m_p}\chi(\tilde{\eta}_i)}).$$

Solution Analyse the linking form and show that P(K#K) ≁ P(K)#P(K) for some K.

The concordance set metric space

 $d([K], [J]) := \min\{g(\Sigma) : \Sigma \hookrightarrow S^3 \times I \text{ with } \partial \Sigma = -K \times \{0\} \sqcup J \times \{1\}\}.$

The concordance set metric space

$$d([K],[J]) := \min\{g(\Sigma) : \Sigma \hookrightarrow S^3 \times I \text{ with } \partial \Sigma = -K \times \{0\} \sqcup J \times \{1\}\}.$$

Question

When do P and Q induce roughly the same action on (C, d)? i.e. When does there exist C = C(P, Q) such that

 $d(P(K), Q(K)) \leq C$ for all $K \in C$.

When such a C exists, we say P and Q are 'bounded distance'.

Proposition (Cochran-Harvey, 2014) If w(P) = w(Q) then P and Q are bounded distance.

Proposition (Cochran-Harvey, 2014)

If w(P) = w(Q) then P and Q are bounded distance.

Proof idea: When w(P) = w(Q), the curves P and Q are homologous in $(S^1 \times D^2) \times I$ and so cobound some surface F. Take C = g(F).

Proposition (Cochran-Harvey, 2014)

If w(P) = w(Q) then P and Q are bounded distance.

Proof idea: When w(P) = w(Q), the curves P and Q are homologous in $(S^1 \times D^2) \times I$ and so cobound some surface F. Take C = g(F).

Proposition (Cochran-Harvey, 2014) If $|w(P)| \neq |w(Q)|$, then P and Q are not bounded distance.

Proposition (Cochran-Harvey, 2014)

If w(P) = w(Q) then P and Q are bounded distance.

Proof idea: When w(P) = w(Q), the curves P and Q are homologous in $(S^1 \times D^2) \times I$ and so cobound some surface F. Take C = g(F).

Proposition (Cochran-Harvey, 2014) If $|w(P)| \neq |w(Q)|$, then P and Q are not bounded distance.

Proof idea: Show that $d(P(\#^n T_{2,3}), Q(\#^n T_{2,3})) \to \infty$ via Tristram-Levine signatures.

Question

If *P* has winding number m > 0 and *Q* has winding number -m, are *P* and *Q* bounded distance?

Question

If *P* has winding number m > 0 and *Q* has winding number -m, are *P* and *Q* bounded distance?

Enough: Consider $P = C_{m,1}$ and $Q = C_{m,1}^{rev}$.

Question

If P has winding number m > 0 and Q has winding number -m, are P and Q bounded distance?

Enough: Consider
$$P = C_{m,1}$$
 and $Q = C_{m,1}^{rev}$.

Theorem (M. 2018)

Let m > 0. Then for any $M \ge 0$ there exists a knot K such that

$$d(C_{m,1}(K), C_{m,1}^{rev}(K)) = g_4(C_{m,1}(K) \# - C_{m,1}^{rev}(K)) > M.$$

Question

If P has winding number m > 0 and Q has winding number -m, are P and Q bounded distance?

Enough: Consider
$$P = C_{m,1}$$
 and $Q = C_{m,1}^{rev}$.

Theorem (M. 2018)

Let m > 0. Then for any $M \ge 0$ there exists a knot K such that

$$d(C_{m,1}(K), C_{m,1}^{rev}(K)) = g_4(C_{m,1}(K) \# - C_{m,1}^{rev}(K)) > M_4$$

Proof.

Idea: Casson-Gordon signatures again!