Satellites and Concordance

Allison N. Miller
Rice University

December 8, 2018

Concordance of knots

Definition

Knots $K_{0}, K_{1} \hookrightarrow S^{3}$ are concordant if

Concordance of knots

Definition

Knots $K_{0}, K_{1} \hookrightarrow S^{3}$ are concordant if there is an annulus $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ with $\partial A=-K_{0} \times\{0\} \sqcup K_{1} \times\{1\}$.

Concordance of knots

Definition

Knots $K_{0}, K_{1} \hookrightarrow S^{3}$ are concordant if there is an annulus $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ with $\partial A=-K_{0} \times\{0\} \sqcup K_{1} \times\{1\}$.

Warning! Whether we require a smooth or just topological(ly flat) embedding of \mathcal{A} matters!

A concordance from $T_{2,3} \#-T_{2,3}$ to...

A concordance from $T_{2,3} \#-T_{2,3}$ to the unknot!

The concordance set

Definition

$$
\mathcal{C}_{*}:=\left\{\text { knots in } S^{3}\right\} / \sim_{*}, \text { where } *=\text { sm, top }
$$

The concordance set monoid

Definition

$$
\mathcal{C}_{*}:=\left\{\text { knots in } S^{3}\right\} / \sim_{*} \text {, where } *=\text { sm, top }
$$

The concordance set monoid

Definition

$$
\mathcal{C}_{*}:=\left\{\text { knots in } S^{3}\right\} / \sim_{*} \text {, where } *=\text { sm, top }
$$

Theorem (Fox-Milnor)
The map $[K]+[J]:=[K \# J]$ is well-defined on \mathcal{C}_{*}.

The concordance set monoid group!

Definition

$$
\mathcal{C}_{*}:=\left\{\text { knots in } S^{3}\right\} / \sim_{*}, \text { where } *=\text { sm, top }
$$

Theorem (Fox-Milnor)
The map $[K]+[J]:=[K \# J]$ is well-defined on \mathcal{C}_{*}. Moreover, it induces the structure of an abelian group!

Known: \mathcal{C}^{*} contains a $\mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}^{\infty}$-summand.

The concordance set monoid group!

Definition

$$
\mathcal{C}_{*}:=\left\{\text { knots in } S^{3}\right\} / \sim_{*}, \text { where } *=\text { sm, top }
$$

Theorem (Fox-Milnor)
The map $[K]+[J]:=[K \# J]$ is well-defined on \mathcal{C}_{*}. Moreover, it induces the structure of an abelian group!

Known: \mathcal{C}^{*} contains a $\mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}^{\infty}$-summand.
Unknown: $\mathbb{Q} \hookrightarrow \mathcal{C}_{*}$? $\mathbb{Z}_{n} \hookrightarrow \mathcal{C}_{*}, n>2$?

The satellite construction

Any $P: S^{1} \hookrightarrow D^{2} \times S^{1}$ defines a map on the set of knots in S^{3} :

The satellite construction

Any $P: S^{1} \hookrightarrow D^{2} \times S^{1}$ defines a map on the set of knots in S^{3} :

$K \mapsto P(K)$

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Proof.

Let $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ be a concordance from K_{0} to K_{1}.

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Proof.

Let $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ be a concordance from K_{0} to K_{1}. Consider

$$
S^{1} \times I \xrightarrow{P \times l d}\left(D^{2} \times S^{1}\right) \times I
$$

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Proof.

Let $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ be a concordance from K_{0} to K_{1}. Consider

$$
S^{1} \times I \xrightarrow{P \times \operatorname{ld}}\left(D^{2} \times S^{1}\right) \times I=D^{2} \times\left(S^{1} \times I\right)
$$

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Proof.

Let $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ be a concordance from K_{0} to K_{1}. Consider

$$
S^{1} \times I \xrightarrow{P \times \text { ld }}\left(D^{2} \times S^{1}\right) \times I=D^{2} \times\left(S^{1} \times I\right) \cong \nu(\mathcal{A}) \subset S^{3} \times I,
$$

Satellites induce maps on concordance

Proposition

Let P be any pattern and K_{0} and K_{1} be concordant knots. Then $P\left(K_{0}\right)$ and $P\left(K_{1}\right)$ are concordant.

Proof.

Let $\mathcal{A}: S^{1} \times I \hookrightarrow S^{3} \times I$ be a concordance from K_{0} to K_{1}. Consider

$$
S^{1} \times I \xrightarrow{P \times \text { ld }}\left(D^{2} \times S^{1}\right) \times I=D^{2} \times\left(S^{1} \times I\right) \cong \nu(\mathcal{A}) \subset S^{3} \times I,
$$

and observe that this is a concordance from $P\left(K_{0}\right)$ to $P\left(K_{1}\right)$!

Satellites and concordance

Motivating question: What can we say about $P: \mathcal{C} \rightarrow \mathcal{C}$?

Satellites and concordance

Motivating question: What can we say about $P: \mathcal{C} \rightarrow \mathcal{C}$?
(1) When does P induce a surjection? injection? bijection?

Satellites and concordance

Motivating question: What can we say about $P: \mathcal{C} \rightarrow \mathcal{C}$?
(1) When does P induce a surjection? injection? bijection?
(2) When does P induce a group homomorphism?

Winding number

Definition

Given a pattern P, we have $[P]=k\left[\{p t\} \times S^{1}\right] \in H_{1}\left(D^{2} \times S^{1}\right)$ for some $k \in \mathbb{Z}$. We call $k=: w(P)$ the winding number of P.

Winding number

Definition

Given a pattern P, we have $[P]=k\left[\{p t\} \times S^{1}\right] \in H_{1}\left(D^{2} \times S^{1}\right)$ for some $k \in \mathbb{Z}$. We call $k=: w(P)$ the winding number of P.

Winding number

Definition

Given a pattern P, we have $[P]=k\left[\{p t\} \times S^{1}\right] \in H_{1}\left(D^{2} \times S^{1}\right)$ for some $k \in \mathbb{Z}$. We call $k=: w(P)$ the winding number of P.

Satellite maps and surjectivity

Proposition (Folklore)

If P has $w(P) \neq \pm 1$, then P does not induce a surjection.

Proof.

"Easy": Uses classical invariants, e.g. Tristram-Levine signatures.

Satellite maps and surjectivity

Proposition (Folklore)
 If P has $w(P) \neq \pm 1$, then P does not induce a surjection.

Proof.

"Easy": Uses classical invariants, e.g. Tristram-Levine signatures.
Theorem (Levine, 2014)
The Mazur pattern does not induce a surjection on $\mathcal{C}_{\text {sm }}$.

Proof.
 Difficult: Uses (bordered) Heegaard Floer theory!

Satellite maps and injectivity

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on \mathcal{C} but for which there are at least n distinct concordance classes K_{1}, \ldots, K_{n} such that $P\left(K_{i}\right)$ is slice for all i.

Satellite maps and injectivity

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on \mathcal{C} but for which there are at least n distinct concordance classes K_{1}, \ldots, K_{n} such that $P\left(K_{i}\right)$ is slice for all i.

	$w(P)= \pm 1$	$\|w(P)\|>1$	$w(P)=0$		
Surjective?	Not always (sm). Sometimes.	Never	Never		
Injective?	Sometimes. \quad Always?	?????	????		Not always.
:---:					
Ever?					

Satellite maps and injectivity

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on \mathcal{C} but for which there are at least n distinct concordance classes K_{1}, \ldots, K_{n} such that $P\left(K_{i}\right)$ is slice for all i.

	$w(P)= \pm 1$	$\|w(P)\|>1$	$w(P)=0$		
Surjective?	Not always (sm). Sometimes.	Never	Never		
Injective?	Sometimes. \quad Always?	?????	????		Not always.
:---:					
Ever?					

Bijective patterns?

Satellite maps and injectivity

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on \mathcal{C} but for which there are at least n distinct concordance classes K_{1}, \ldots, K_{n} such that $P\left(K_{i}\right)$ is slice for all i.

	$w(P)= \pm 1$	$\|w(P)\|>1$	$w(P)=0$		
Surjective?	Not always (sm). Sometimes.	Never	Never		
Injective?	Sometimes. \quad Always?	?????	????		Not always.
:---:					
Ever?					

Bijective patterns? Yes!

Satellite maps and injectivity

Proposition (M., 2018)

For each $n \in \mathbb{N}$, there exist winding number 0 patterns P which induce nonzero maps on \mathcal{C} but for which there are at least n distinct concordance classes K_{1}, \ldots, K_{n} such that $P\left(K_{i}\right)$ is slice for all i.

	$w(P)= \pm 1$	$\|w(P)\|>1$	$w(P)=0$		
Surjective?	Not always (sm). Sometimes.	Never	Never		
Injective?	Sometimes. \quad Always?	?????	????		Not always.
:---:					
Ever?					

Bijective patterns? Yes!

But boring: $K \mapsto K \# J$.

Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on $\mathcal{C}_{s m}$ and do not act by connected sum.

Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on $\mathcal{C}_{s m}$ and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95].

Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on $\mathcal{C}_{s m}$ and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95].
Step 2: Compute some HF d-invariants of the dbcs of $P\left(P^{-1}(U)\right)$ and $P^{-1}(U) \# P(U)$.

Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps on $\mathcal{C}_{s m}$ and do not act by connected sum.

Proof.

Step 1: Show that any "dualizable" P has an inverse. [See also Gompf-Miyazaki 95].
Step 2: Compute some HF d-invariants of the dbcs of $P\left(P^{-1}(U)\right)$ and $P^{-1}(U) \# P(U)$.

Hard problem:

Do any winding number 1 patterns not act by connected sum on $\mathcal{C}_{\text {top }}$?

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?
Answer: Yes!

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?
Answer: Yes!

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?
Answer: Yes!

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?
Answer: Yes!

$K \mapsto U$

$K \mapsto K$

$K \mapsto K^{r e v}$

Satellite maps and group structure on \mathcal{C}

Question: Can a pattern induce a homomorphism on \mathcal{C} ?
Answer: Yes!

$K \mapsto U$

$K \mapsto K$

$K \mapsto K^{\text {rev }}$

Conjecture (Hedden)

If P induces a homomorphism on \mathcal{C}, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{\text {rev }}$.

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on \mathcal{C}, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{r e v}$.

First obstruction:

If $P(U) \nsim U$, then P does not induce a homomorphism.

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on \mathcal{C}, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{r e v}$.

First obstruction:

If $P(U) \nsim U$, then P does not induce a homomorphism.

Proposition
If $P(U) \sim U$, then P induces a homomorphism on $\mathcal{C}_{\text {alg }}$.

Initial observations

Conjecture (Hedden)

If P induces a homomorphism on \mathcal{C}, then the induced map must be $K \mapsto K, K \mapsto U$, or $K \mapsto K^{r e v}$.

First obstruction:

If $P(U) \nsim U$, then P does not induce a homomorphism.

Proposition

If $P(U) \sim U$, then P induces a homomorphism on $\mathcal{C}_{\text {alg }}$.
(i.e., the easily computed invariants- $\Delta_{K}(t), \sigma_{K}(\omega)$ - can't help!)

Some results

Theorem (Gompf; Levine; Hedden)
None of the Whitehead pattern, the Mazur pattern, or the $(m, 1)$ cable $C_{m, 1}$ for $m>1$ induce homomorphisms on $\mathcal{C}_{\mathrm{sm}}$.

Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the $(m, 1)$ cable $C_{m, 1}$ for $m>1$ induce homomorphisms on $\mathcal{C}_{\mathrm{sm}}$.

Proof.

Show that $P\left(-T_{2,3}\right)$ is not smoothly concordant to $-P\left(T_{2,3}\right)$ via e.g. the τ-invariant of Heegaard Floer homology.

Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the ($m, 1$) cable $C_{m, 1}$ for $m>1$ induce homomorphisms on $\mathcal{C}_{s m}$.

Proof.

Show that $P\left(-T_{2,3}\right)$ is not smoothly concordant to $-P\left(T_{2,3}\right)$ via e.g. the τ-invariant of Heegaard Floer homology.

Problem

Given a pattern P with $P(U)$ slice, find an obstruction to P inducing a homomorphism on $\mathcal{C}_{\text {top }}$.

Winding number 0 case

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_{J} be the winding number 0 pattern shown. Then $P_{J}(U) \sim U$. Also, if $\sigma_{J}\left(e^{2 \pi i / 3}\right) \neq 0$, then P_{J} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Winding number 0 case

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_{J} be the winding number 0 pattern shown. Then $P_{J}(U) \sim U$. Also, if $\sigma_{J}\left(e^{2 \pi i / 3}\right) \neq 0$, then P_{J} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Proof.

(1) $P_{J}(U) \sim U$: blue curve.

The knot $P_{J}(K)$ with a genus 1 Seifert surface.

Winding number 0 case

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_{J} be the winding number 0 pattern shown. Then $P_{J}(U) \sim U$. Also, if $\sigma_{J}\left(e^{2 \pi i / 3}\right) \neq 0$, then P_{J} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

The knot $P_{J}(K)$ with a genus 1 Seifert surface.

Proof.

(1) $P_{J}(U) \sim U$: blue curve.
(c) $P_{J}(J) \sim U$: red curve.

Winding number 0 case

Proposition (M.-Pinzón-Caicedo)

For any knot J, let P_{J} be the winding number 0 pattern shown. Then $P_{J}(U) \sim U$. Also, if $\sigma_{J}\left(e^{2 \pi i / 3}\right) \neq 0$, then P_{J} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Proof.

- $P_{J}(U) \sim U$: blue curve.
- $P_{J}(J) \sim U$: red curve.
(3) $P_{J}\left(\#^{n} J\right) \nsim U$ for $n \gg 0$:

Casson-Gordon signatures.
The knot $P_{J}(K)$ with a genus 1 Seifert surface.

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}}
$$

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)
$$

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Theorem (Casson-Gordon)
The quantity $\sigma(K, \chi):=\widetilde{\sigma}(W)-\sigma(W)$ is an invariant of (K, χ).

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi):=\widetilde{\sigma}(W)-\sigma(W)$ is an invariant of (K, χ). Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi)=0$.

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi):=\widetilde{\sigma}(W)-\sigma(W)$ is an invariant of (K, χ). Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi)=0$.
(More precisely, there is a subgroup $M \leq H_{1}(\Sigma(K))$ such that
(1) $|M|^{2}=\left|H_{1}(\Sigma(K))\right|$.

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi):=\widetilde{\sigma}(W)-\sigma(W)$ is an invariant of (K, χ). Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi)=0$.
(More precisely, there is a subgroup $M \leq H_{1}(\Sigma(K))$ such that
(1) $|M|^{2}=\left|H_{1}(\Sigma(K))\right|$.
(2) $\lambda: H_{1}(\Sigma(K)) \times H_{1}(\Sigma(K)) \rightarrow \mathbb{Q} / \mathbb{Z}$ vanishes on $M \times M$.

Casson-Gordon signatures

$$
\binom{K \hookrightarrow S^{3}}{\chi: H_{1}(\Sigma(K)) \rightarrow \mathbb{Z}_{m}} \rightarrow\left(\begin{array}{c}
\widetilde{S_{0}^{3}(K)} \\
\downarrow \\
S_{0}^{3}(K)
\end{array}\right)=\partial\left(\begin{array}{c}
\widetilde{W} \\
\downarrow \\
W
\end{array}\right)
$$

Theorem (Casson-Gordon)

The quantity $\sigma(K, \chi):=\widetilde{\sigma}(W)-\sigma(W)$ is an invariant of (K, χ). Moreover, if K is slice then for 'many' χ we have $\sigma(K, \chi)=0$.
(More precisely, there is a subgroup $M \leq H_{1}(\Sigma(K))$ such that
(1) $|M|^{2}=\left|H_{1}(\Sigma(K))\right|$.
(2) $\lambda: H_{1}(\Sigma(K)) \times H_{1}(\Sigma(K)) \rightarrow \mathbb{Q} / \mathbb{Z}$ vanishes on $M \times M$.
(If $\chi \mid M=0$, then $\sigma(K, \chi)=0$.)

Proof of Step 3.

Proof of Step 3.

We can compute that

$$
H_{1}\left(\Sigma\left(P_{J}(K)\right)\right) \cong H_{1}\left(\Sigma\left(P_{U}(U)\right)\right) \cong \mathbb{Z}_{3}\langle a\rangle \oplus \mathbb{Z}_{3}\langle b\rangle
$$

Proof of Step 3.

We can compute that

$$
H_{1}\left(\Sigma\left(P_{J}(K)\right)\right) \cong H_{1}\left(\Sigma\left(P_{U}(U)\right)\right) \cong \mathbb{Z}_{3}\langle a\rangle \oplus \mathbb{Z}_{3}\langle b\rangle,
$$

and for any χ we have

$$
\sigma\left(P_{J}(K), \chi\right)=\sigma\left(P_{U}(U), \chi\right)+2 \sigma_{-J}\left(e^{\frac{2 \pi i}{3} \chi(a)}\right)+2 \sigma_{K}\left(e^{\frac{2 \pi i}{3} \chi(b)}\right),
$$

Proof of Step 3.

We can compute that

$$
H_{1}\left(\Sigma\left(P_{J}(K)\right)\right) \cong H_{1}\left(\Sigma\left(P_{U}(U)\right)\right) \cong \mathbb{Z}_{3}\langle a\rangle \oplus \mathbb{Z}_{3}\langle b\rangle,
$$

and for any χ we have

$$
\sigma\left(P_{J}(K), \chi\right)=\sigma\left(P_{U}(U), \chi\right)+2 \sigma_{-J}\left(e^{\frac{2 \pi i}{3} \chi(a)}\right)+2 \sigma_{K}\left(e^{\frac{2 \pi i}{3} \chi(b)}\right),
$$

$$
\text { so } \sigma\left(P_{J}\left(\#^{n} J\right), \chi\right)=\sigma\left(P_{U}(U), \chi\right)-2 \sigma_{J}\left(e^{\frac{2 \pi i}{3} \chi(a)}\right)+2 n \sigma_{J}\left(e^{\frac{2 \pi i}{3} \chi(b)}\right) .
$$

Proof of Step 3.

We can compute that

$$
H_{1}\left(\Sigma\left(P_{J}(K)\right)\right) \cong H_{1}\left(\Sigma\left(P_{U}(U)\right)\right) \cong \mathbb{Z}_{3}\langle a\rangle \oplus \mathbb{Z}_{3}\langle b\rangle,
$$

and for any χ we have

$$
\begin{gathered}
\sigma\left(P_{J}(K), \chi\right)=\sigma\left(P_{U}(U), \chi\right)+2 \sigma_{-J}\left(e^{\frac{2 \pi i}{3} \chi(a)}\right)+2 \sigma_{K}\left(e^{\frac{2 \pi i}{3} \chi(b)}\right), \\
\text { so } \sigma\left(P_{J}\left(\#^{n} J\right), \chi\right)=\sigma\left(P_{U}(U), \chi\right)-2 \sigma_{J}\left(e^{\frac{2 \pi i}{3} \chi(a)}\right)+2 n \sigma_{J}\left(e^{\frac{2 \pi i}{3} \chi(b)}\right) .
\end{gathered}
$$

So we can choose $n \gg 0$ so that $\sigma\left(P_{J}\left(\#^{n} J\right), \chi\right)=0$ only if $\chi(b)=0$. But such characters do not vanish on a metabolizer for the torsion linking form.

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)
For each $n \neq \pm 1$, there exist a pattern P_{n} of winding number n such that $P_{n}(U) \sim U$ and P_{n} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_{n} of winding number n such that $P_{n}(U) \sim U$ and P_{n} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_{n} of winding number n such that $P_{n}(U) \sim U$ and P_{n} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Proof.

(1) For $p \mid n$, observe that $H_{1}\left(\Sigma_{p}\left(P_{n}(U)\right)\right)$ is generated by the lifts of η to $\Sigma_{p}\left(P_{n}(U)\right)$.

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_{n} of winding number n such that $P_{n}(U) \sim U$ and P_{n} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Proof.

(1) For $p \mid n$, observe that $H_{1}\left(\Sigma_{p}\left(P_{n}(U)\right)\right)$ is generated by the lifts of η to $\Sigma_{p}\left(P_{n}(U)\right)$.
(2) $\sigma\left(P_{n}(K), \chi\right)=\sigma\left(P_{n}(U), \chi\right)+\sum_{i=1}^{p} \sigma_{K}\left(e^{\frac{2 \pi i}{m_{p}} \chi\left(\widetilde{\eta}_{i}\right)}\right)$.

Nonzero winding number case

Theorem (M.-Pinzón-Caicedo)

For each $n \neq \pm 1$, there exist a pattern P_{n} of winding number n such that $P_{n}(U) \sim U$ and P_{n} does not induce a homomorphism on $\mathcal{C}_{\text {top }}$.

Proof.

(1) For $p \mid n$, observe that $H_{1}\left(\Sigma_{p}\left(P_{n}(U)\right)\right)$ is generated by the lifts of η to $\Sigma_{p}\left(P_{n}(U)\right)$.
(2) $\sigma\left(P_{n}(K), \chi\right)=\sigma\left(P_{n}(U), \chi\right)+\sum_{i=1}^{p} \sigma_{K}\left(e^{\frac{2 \pi i}{m_{p}} \chi\left(\tilde{\eta}_{i}\right)}\right)$.
(3) Analyse the linking form and show that $P(K \# K) \nsim P(K) \# P(K)$ for some K.

The concordance set metric space

$d([K],[J]):=\min \left\{g(\Sigma): \Sigma \hookrightarrow S^{3} \times I\right.$ with $\left.\partial \Sigma=-K \times\{0\} \sqcup J \times\{1\}\right\}$.

The concordance set metric space

$d([K],[J]):=\min \left\{g(\Sigma): \Sigma \hookrightarrow S^{3} \times I\right.$ with $\left.\partial \Sigma=-K \times\{0\} \sqcup J \times\{1\}\right\}$.

Question

When do P and Q induce roughly the same action on (\mathcal{C}, d) ? i.e. When does there exist $C=C(P, Q)$ such that

$$
d(P(K), Q(K)) \leq C \text { for all } K \in \mathcal{C} .
$$

When such a C exists, we say P and Q are 'bounded distance'.

Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
If $w(P)=w(Q)$ then P and Q are bounded distance.

Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
 If $w(P)=w(Q)$ then P and Q are bounded distance.

Proof idea: When $w(P)=w(Q)$, the curves P and Q are homologous in $\left(S^{1} \times D^{2}\right) \times I$ and so cobound some surface F.
Take $C=g(F)$.

Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
 If $w(P)=w(Q)$ then P and Q are bounded distance.

Proof idea: When $w(P)=w(Q)$, the curves P and Q are homologous in $\left(S^{1} \times D^{2}\right) \times I$ and so cobound some surface F. Take $C=g(F)$.

Proposition (Cochran-Harvey, 2014) If $|w(P)| \neq|w(Q)|$, then P and Q are not bounded distance.

Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
 If $w(P)=w(Q)$ then P and Q are bounded distance.

Proof idea: When $w(P)=w(Q)$, the curves P and Q are homologous in $\left(S^{1} \times D^{2}\right) \times I$ and so cobound some surface F. Take $C=g(F)$.

Proposition (Cochran-Harvey, 2014)

 If $|w(P)| \neq|w(Q)|$, then P and Q are not bounded distance.Proof idea: Show that $d\left(P\left(\#^{n} T_{2,3}\right), Q\left(\#^{n} T_{2,3}\right)\right) \rightarrow \infty$ via Tristram-Levine signatures.

Remaining case

Question

If P has winding number $m>0$ and Q has winding number $-m$, are P and Q bounded distance?

Remaining case

Question
 If P has winding number $m>0$ and Q has winding number $-m$, are P and Q bounded distance?

Enough: Consider $P=C_{m, 1}$ and $Q=C_{m, 1}^{r e v}$.

Remaining case

Question

If P has winding number $m>0$ and Q has winding number $-m$, are P and Q bounded distance?

Enough: Consider $P=C_{m, 1}$ and $Q=C_{m, 1}^{r e v}$.
Theorem (M. 2018)
Let $m>0$. Then for any $M \geq 0$ there exists a knot K such that

$$
d\left(C_{m, 1}(K), C_{m, 1}^{r e v}(K)\right)=g_{4}\left(C_{m, 1}(K) \#-C_{m, 1}^{r e v}(K)\right)>M .
$$

Remaining case

Question

If P has winding number $m>0$ and Q has winding number $-m$, are P and Q bounded distance?

Enough: Consider $P=C_{m, 1}$ and $Q=C_{m, 1}^{r e v}$.

Theorem (M. 2018)

Let $m>0$. Then for any $M \geq 0$ there exists a knot K such that

$$
d\left(C_{m, 1}(K), C_{m, 1}^{r e v}(K)\right)=g_{4}\left(C_{m, 1}(K) \#-C_{m, 1}^{r e v}(K)\right)>M
$$

Proof.

Idea: Casson-Gordon signatures again!

