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Background Results

Concordance of knots in S3

Definition

Knots K0,K1 ⇢ S3 are smoothly concordant if they cobound a smooth
annulus in S3 ⇥ [0, 1].

Knots K0,K1 ⇢ S3 are topologically concordant if they cobound a locally
flat annulus in S3 ⇥ [0, 1].
Knots K0,K1 ⇢ S3 are PL concordant if they cobound a piecewise linear
annulus in S3 ⇥ [0, 1]. Equivalently, K0#J is smoothly concordant to K1

for some J ⇢ S3.
Knots K0,K1 ⇢ S3 are almost concordant if K0#J is topologically
concordant to K1 for some J ⇢ S3.
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Background Results

Natural maps

Csm

CPL Ctop

Cac

f1 f2

f3 f4
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Background Results

Natural maps

Csm

CPL = {[U ]} Ctop

Cac = {[U ]}

f1 f2

f3 f4

Theorem (Hom (2015), Ozsváth-Stipsicz-Szabó (2017))

ker f2 ⇠= Z1 �G0.

Theorem (Hedden-S. Kim-Livingston (2016))

ker f2 � Z1
2 .
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Background Results

Natural maps

Csm(Y )

CPL(Y ) Ctop(Y )

Cac(Y )

f1 f2

f3 f4

Theorem (Friedl-Nagel-Orson-Powell (2018))

For Y 6= S3, |Cac(Y )| = 1.

Theorem (Nagel-Orson-P.-Powell (2018))

For Y 6= S3, |f�1
i ([U ])| = 1, for i = 1, 2, 3, 4.
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Length spectra of   
q-differential metrics

Marissa Loving  
University of  Illinois at Urbana-Champaign



A few warm-up questions…



How many measurements to 
determine a square?



How many measurements to 
determine a square?



How about a rectangle?



How about a rectangle?



Or a parallelogram?



Or a parallelogram?



What if  we consider surfaces 
instead?



How many curves’ lengths 
do we need to know to 
determine a surface? 



For example, lets consider a 
flat torus.



Flat torus:



How many curves do we 
need to determine a flat 
metric on the torus?



How many curves are needed 
to determine a hyperbolic 
metric on a closed surface of  
genus g?



The 9g-9 Theorem



For g = 2, we need 9 curves.



How many curves are needed 
to determine a flat metric on 
a closed surface?





Thm. (Bankovic—Leininger) 

To determine an arbitrary flat 
metric on a closed surface you 
need the lengths of  ALL closed 
curves. 



Thm. (Duchin—Leininger—Rafi) 

To determine a flat metric 
coming from a quadratic 
differential you only need the 
lengths of  simple closed curves.





Thm. (Loving) 

To determine a flat metric 
coming from a q-differential you 
only need the lengths of   
q-simple curves.





Thank you!!!



An infinite rank summand of the homology
cobordism group

Linh Truong
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The homology cobordism group

Definition

Y1 and Y2 are homology cobordant, denoted Y1 ⇠ Y2, if they

cobound a smooth, compact, oriented cobordism W such that the

inclusions H⇤(Yi ;Z) ! H⇤(W ;Z) induce isomorphisms on

homology.

Definition

The homology cobordism group ⇥
3
Z is defined as

⇥
3
Z = {oriented integral homology three-spheres, #}/ ⇠



Background + Main Theorem

Theorem (Finteshel-Stern, ’85)

The group ⇥
3
Z is infinite.

Theorem (Furuta ’90, Finteshel-Stern ’90)

The group ⇥
3
Z contains a Z1

subgroup.

Theorem (Dai, Hom, Sto↵regen, T. ’18)

The group ⇥
3
Z contains a Z1

summand.



Ingredients in the proof

We build on the Involutive Heegaard Floer homology package

of Hendricks-Manolescu and Hendricks-Manolescu-Zemke. We

define an almost local equivalence group bI and consider a

homomorphism

bh : ⇥
3
Z ! bI

which factors through the Hendricks-Manolescu-Zemke

homomorphism h : ⇥
3
Z ! I.

Inspired by work of Hom on the knot concordance group, we prove:

Theorem (Dai, Hom, Sto↵regen, T.)

The almost local equivalence group bI is totally ordered.



Ingredients in the proof (continued)

We prove a classification theorem for bI, which leads to:

Theorem (Dai, Hom, Sto↵regen, T.)

For every n 2 N there are surjective homomorphisms �n : bI ! Z.

The Brieskorn spheres Yi = ⌃(2i + 1, 4i + 1, 4i + 3) satisfy

�j � bh(Yi ) = �ij . Hence,

{�n � bh}n2N : ⇥
3
Z ! Z1

is a surjective homomorphism.



Open questions

1. Does there exist any torsion in ⇥
3
Z?

2. Is ⇥
3
Z generated by Seifert fibered spaces?

3. Is every element in ⇥
3
Z represented by Dehn surgery on a knot?

Thanks for listening!
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Bézout’s Theorem

Theorem

Let k be an algebraically closed field. If f , g ⇢ P
2
k are generic algebraic

curves of degree c , d , respectively, then

X

p2f\g

ip(f , g) = cd .

What about R? Finite fields?

1
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Bézout’s Theorem

What about R? Finite fields?

k = R, f = y � x3, g = y2
+ x2 � 1.

2
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A
1-Enumerative Geometry

A
1
-homotopy theory blends algebraic topology and algebraic geometry.

• degA
1

: {functions} ! {quadratic forms}. (Eisenbud, Morel, et al.)

• Use degA
1

to enrich enumerative results in quadratic forms.

(Kass-Wickelgren, et al.)

• Enriched results carry extra information.
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Enriched Bézout’s Theorem

Theorem (McKean)

Let k be a perfect field and f , g be transverse of degrees c , d with c + d

odd.

Then X

p2f\g

degA
1

p (f , g) =
cd

2
·H.

degA
1

p (f , g) is determined by geometric information.
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Enriched Bézout’s Theorem

degA
1

p (f , g) is determined by geometric information:

k degA
1

p (f , g)
cd

2
·H

• Over C: counts intersection points.

• Over R: equal number of positive/negative crossings.

• Over Fq: counts crossing types mod 2.

5
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Example

k = R, f = y � x3, g = y2
+ x2 � 1.
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Example

k = R, f = y � x3, g = y2
+ x2 � 1.

+

-
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Quasipositive Surfaces and Convex Surface
Theory

@Ðã�ã 8ÐÜÜ�É�ß�ā�ß
ͮͯϢ Ϣʹͮ͵

eÉ°ú�ßã°êā Ð§ @°�È°



Quasipositive Surfaces

Uï�ã°ÜÐã°ê°ú� ãïß§���ã û�ß� Ðß°¨°É�ÂÂā ��đÉ�� �ā :�� Vï�ÐÂÜ­ êÐ ��
ê­� ãê�É��ß� Z�°§�ßê Zïß§��� Ð§ � ãêßÐÉ¨Âā Þï�ã°ÜÐã°ê°ú� �ß�°�Ϝ

ͮ



Motivating Question
+§ � ¿ÉÐê ­�ã � Þï�ã°ÜÐã°ê°ú� ãïß§���ϗ Èïãê �ú�ßā È°É°È�Â ¨�Éïã
ã�°§�ßê ãïß§��� �� Þï�ã°ÜÐã°ê°ú�ϝ

ͯ
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°ãÐêÐÜ°� êÐ ê­� ß°��ÐÉ Ð§ � :�¨�É�ß°�É ¨ß�Ü­Ϝ
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q­�ê �ß� ê­� ��ú�Éê�¨�ã Ð§ ê­°ã ú°�ûÜÐ°Éêϝ

ϕ ���°ê°ÐÉ�Â ãêßï�êïß� ß�Â�ê°É¨ êÐ ê­� �È�°�Éê È�É°§ÐÂ� �ÂÂÐûã ïã
êÐ ïã� êÐÐÂã §ßÐÈ �ÐÉê��ê êÐÜÐÂÐ¨āϜ

ϕ :�¨�É�ß°�É ß°��ÐÉÉ�ãã °ã � ÜßÐÜ�ßêā ê­�ê āÐï ��É �ÐÉã°��ß °É
�Éā �ÐÉê��ê È�É°§ÐÂ�Ϝ

ϕ +ê �ÂÂÐûã ïã êÐ Вß�đÉ�В ê­� ÉÐê°ÐÉ Ð§ Þï�ã°ÜÐã°ê°ú°êāϜ +Ϝ�Ϝ ê­�
�°§§�ß�É�� ��êû��É ��°É¨ êÐÜÐÂÐ¨°��ÂÂā °ãÐêÐÜ°� êÐ � :�¨�É�ß°�É
ß°��ÐÉ �É� ��°É¨ Üß�ã�Éê�� �ã � :�¨�É�ß°�É ß°��ÐÉϜ
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Theoremϭ+É ÜßÐ¨ß�ããϮ
`­�ß� �Ā°ãêã � êß�Éãú�ßã� Â°É¿ °É :(ͱ, ͮ) û°ê­ êûÐ °Éê�ß°Ðß
�°ã¼Ð°Éê Z�°§�ßê ãïß§���ãϗ V �É� Z ãï�­ ê­�êϖ

ͮϰ V °ã ê­� ß°��ÐÉ Ð§ � :�¨�É�ß°�É ¨ß�Ü­

ͯϰ Z °ã êÐÜÐÂÐ¨°��ÂÂā °ãÐêÐÜ°� êÐ ê­� ß°��ÐÉ Ð§ �
:�¨�É�ß°�É ¨ß�Ü­

Ͱϰ �Éā °ãÐêÐÜā Ð§ Z êÐ ê­� ß°��ÐÉ Ð§ � :�¨�É�ß°�É ¨ß�Ü­
�Ð�ãÉВê ß�ãêß°�ê êÐ � êß�Éãú�ßã� °ãÐêÐÜā Ð§ ê­� �ÐïÉ��ßāϜ

ͳ



Z���ãê°�É 
����ß �É� @�ã�­�ßï +ã­°¿�û�Ϝ
Legendrian graphs and quasipositive diagrams.
�ÉÉϞ "��Ϟ Z�°Ϟ `ÐïÂÐïã� @�ê­Ϟ ϱ͵ϲϗ ͮ͵ϯͯϰϖͯ͵ͲϿͰͭͲϗ ͯͭͭͶϜ
p°É��Éê �ÐÂ°ÉϜ
Chirurgies d’indice un et isotopies de sphères dans les variétés
de contact tendues.
�Ϟ VϞ ����Ϟ Z�°Ϟ S�ß°ã Z�ßϞ + @�ê­Ϟϗ ͰͯͱϯͳϰϖͳͲͶϿͳͳͰϗ ͮͶͶ Ϝʹ
8Ð (ÐÉ��Ϝ
On the classification of tight contact structures. I.
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:�� Vï�ÐÂÜ­Ϝ
Constructions of quasipositive knots and links. I.
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Splitting Surfaces of 2-Component Links with
Multivariable Alexander Polynomial 0

Christopher Anderson

University of Miami

canders@math.miami.edu

December 6, 2018



Notation and Definitions

I L = L1 [ L2 ⇢ S
3 a 2-component link

I X = S
3\N (L)

I ⇢ : eX ! X be the universal abelian covering map, i.e. the one
corresponding to the commutator subgroup.

I Its group of deck transformations is H1(X ,Z) ⇠= Z2



The Multivariable Alexander Polynomial and H2( eX ,Z)

I �(x ,y) = 0 if and only if H2( eX ,Z) is free on one generator
when regarded as a ZH1(X ,Z)-module.

I We define:

gsplit = min{genus(S) : S is a surface and [S] generates H2( eX ,Z)}

I What does gsplit tell us about L?



Universal Abelian Cover of the 2-Component Unlink
A fundamental domain of eX under the group action of H1(X ,Z)



Universal Abelian Cover of the 2-Component Unlink



The Genus gsplit = 0 case

I Theorem: gsplit = 0 if an only if L is a split link.



The Genus gsplit = 1 case

I Theorem [A., Baker, in progress]: If gsplit = 1, then L is a
toroidal boundary link.

I The primary tools we used in this proof were the Torus
theorem and the JSJ-decomposition



The Genus g � 2 case

I We can construct a surface S ⇢ eX representing a generator
using Fox calculus to get an upper bound for gsplit

I Tools that were useful in the genus gsplit = 1 case don’t have
good analogues

I In general we can expect ⇢(S) to be an immersed surface, but
not embedded unless L is a boundary link.



Thank You!


