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Background
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Concordance of knots in S?

Knots Kg, K1 C S? are smoothly concordant if they cobound a smooth
annulus in S3 x [0, 1].
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Background
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Concordance of knots in S?

Definition

Knots Kg, K1 C S? are smoothly concordant if they cobound a smooth
annulus in S3 x [0, 1].

Knots Kg, K1 C S? are topologically concordant if they cobound a locally
flat annulus in S3 x [0, 1].

Knots Kg, K1 C S? are PL concordant if they cobound a piecewise linear
annulus in S3 x [0, 1]. Equivalently, Kq#.J is smoothly concordant to K
for some J C S3.

Knots Kg, K1 C S are almost concordant if Ko#J is topologically
concordant to K for some J C S3.
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Background
ooe

Natural maps

Theorem (Hom (2015), Ozsvath-Stipsicz-Szabé (2017))
ker fo X Z° & G'.

Theorem (Hedden-S. Kim-Livingston (2016))

ker fo > 7Z5°.
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Results
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Natural maps

CSm(Y)

1 f2
CPL(Y) / \Ctop(y)

P

CaC(Y)

Theorem (Friedl-Nagel-Orson-Powell (2018))
ForY # 53, |Co(Y)| = oo.
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Results
°

Natural maps

Theorem (Friedl-Nagel-Orson-Powell (2018))
ForY # 53, |Co(Y)| = oo.

Theorem (Nagel-Orson-P.-Powell (2018))
ForY # 83, |f7H([U))| = oo, fori=1,2,3,4.
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A few warm-up questions...
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Or a parallelogram?



Or a parallelogram?

[/



What it we consider surtaces
instead?



How many curves’ lengths
do we need to know to
determine a surtace?



For example, lets consider a
flat torus.



Flat torus:



How many curves do we
need to determine a flat
metric on the torus?



How many curves are needed
to determine a hyperbolic
metric on a closed surface of
genus g7



T'he 9¢-9 T'heorem



For ¢ = 2, we need 9 curves.




How many curves are needed
to determine a flat metric on
a closed surtace?



=>

h

"’



T'hm. (Bankovic—Leininger)

lo determine an arbitrary flat
metric on a closed surface you

need the lengths of ALL closed

CUrvces.



Thm. (Duchin—Leiminger—Rah)

To determine a flat metric
coming from a quadratic
ditterential you only need the
lengths of simple closed curves.






T'hm. (Loving)

To determine a flat metric
coming from a g-ditferential you
only need the lengths of
q-simple curves.






Thank you!!
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The homology cobordism group

Y1 and Y5 are homology cobordant, denoted Y; ~ Y5, if they
cobound a smooth, compact, oriented cobordism W such that the
inclusions H.(Yi;Z) — H.(W;Z) induce isomorphisms on
homology.

The homology cobordism group ©3 is defined as

©3, = {oriented integral homology three-spheres, #}/ ~



Background + Main Theorem

Theorem (Finteshel-Stern, '85)

The group @% is infinite.

Theorem (Furuta '90, Finteshel-Stern '90)

The group @% contains a Z°° subgroup.

Theorem (Dai, Hom, Stoffregen, T. '18)

The group @% contains a Z*° summand.



Ingredients in the proof

We build on the Involutive Heegaard Floer homology package
of Hendricks-Manolescu and Hendricks-Manolescu-Zemke. We
define an almost local equivalence group J and consider a
homomorphism

/l;:@%—)/j

which factors through the Hendricks-Manolescu-Zemke
homomorphism h : 9% — 7.

Inspired by work of Hom on the knot concordance group, we prove:

Theorem (Dai, Hom, Stoffregen, T.)

The almost local equivalence group Jis totally ordered.



Ingredients in the proof (continued)

We prove a classification theorem for 3, which leads to:

Theorem (Dai, Hom, Stoffregen, T.)

For every n € N there are surjective homomorphisms ¢y, : A

The Brieskorn spheres Y; = ¥(2i + 1,4/ + 1,4/ + 3) satisfy
¢j o h(Y;) = 0j;. Hence,

{an O/H}neN : @% — 7>

is a surjective homomorphism.



Open questions

1. Does there exist any torsion in ©37?
2. Is @% generated by Seifert fibered spaces?

3. Is every element in @% represented by Dehn surgery on a knot?

Thanks for listening!
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Bézout's Theorem

Theorem
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A'-Enumerative Geometry

A'-homotopy theory blends algebraic topology and algebraic geometry.

° degAl : {functions} — {quadratic forms}. (Eisenbud, Morel, et al.)

1 . . .
e Use degA to enrich enumerative results in quadratic forms.
(Kass-Wickelgren, et al.)

e Enriched results carry extra information.
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Enriched Bézout’s Theorem

1
deg, (f,g) is determined by geometric information:

cd

Al
k degp (f7g) 7 -H
C Ip(f7g) cd
R crossing sign at p 0
F,  crossing sign at p (—1)%

e Over C: counts intersection points.
e Over R: equal number of positive/negative crossings.

e Over Fq: counts crossing types mod 2.
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k=R, f=y—x3 g=y>+x>—1.




Quasipositive Surfaces and Convex Surface
Theory

Moses Koppendrayer
12/7/18

University of Miami



Quasipositive Surfaces

Quasipositive surfaces were originally defined by Lee Rudolph to be
the standard Seifert Surface of a strongly quasipositive braid.

-

C I\




Motivating Question
If a knot has a quasipositive surface, must every minimal genus
seifert surface be quasipositive?



Baader and Ishikawa showed in S*, quasipositive surface <=
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What are the advantages of this viewpoint?

- Additional structure relating to the ambient manifold allows us
to use tools from contact topology.

- Legendrian ribbonness is a property that you can consider in
any contact manifold.

- It allows us to ‘refine’ the notion of quasipositivity. l.e. the
difference between being topologically isotopic to a Legendrian
ribbon and being presented as a Legendrian ribbon.



Theorem[In progress]

There exists a transverse link in L(4,1) with two interior
disjoint Seifert surfaces, R and S such that:

1) R is the ribbon of a Legendrian graph

2) S is topologically isotopic to the ribbon of a
Legendrian graph

3) Any isotopy of S to the ribbon of a Legendrian graph
doesn't restrict to a transverse isotopy of the boundary.



@ Sebastian Baader and Masaharu Ishikawa.
Legendrian graphs and quasipositive diagrams.
Ann. Fac. Sci. Toulouse Math. (6), 18(2):285-305, 20009.

[ Vincent Colin.
Chirurgies d'indice un et isotopies de sphéres dans les variétés
de contact tendues.
C. R. Acad. Sci. Paris Sér. | Math., 324(6):659-663, 1997.

@ Ko Honda.
On the classification of tight contact structures. I.
Geom. Topol., 4:309-368, 2000.

[d Lee Rudolph.
Constructions of quasipositive knots and links. I.
In Knots, braids and singularities (Plans-sur-Bex, 1982),
volume 31 of Monogr. Enseign. Math., pages 233-245.
Enseignement Math., Geneva, 1983.
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The Separating Curve Graph

Vertices: Separating curves on S

Edges: Disjointness

Goal: Study large scale geometry of Sep(.5)



Theorem (Vokes) Sep(.S) is hyperbolic if and
only if S has at least 3 boundary components.

All triangles in Sep(.S) are thin



Theorem (R.) When S has 2 or fewer boundary
components, Sep(S) is relatively hyperbolic.

Sep(.S) is hyperbolic outside of a collection of isolated regions
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W C § intersects l
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Geometry via Projections

Sep(S) — WHW C'(W)

v — (mw (7)) wew

W = {subsurfaces which intersect every separating curve}



Geometry via Projections

Sep(S)
Sep(S) — [] C(W) oL
Wew

Position of witnesses on S

determines how Sep(.5)
sits inside [ C(W)
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Vokes” Argument for Hyperbolicity

Behrstock
Hagen
Sisto

S has at least 3
boundary components

ﬁ Disjoint
W contains no witnesses
disjoint subsurfaces obstruct

ﬂ hyperbolicity

Sep(.S) hyperbolic



Theorem (R.) Sep(S) is relatively hyperbolic
when S is closed.
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U

v

Only configuration of disjoint witnesses for Sep(S)
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Theorem (R.) Sep(S) is relatively hyperbolic
when S is closed.

——  Portion of Sep(.S) outside
Sep(S5) = of product regions

/\

Sep(S) — IT_C(W) N
Wwew

N

W=W —{U,V :U and V are disjoint}




Theorem (R.) Sep(S) is relatively hyperbolic

when S 1s closed.
Sep(.S)

——  Portion of Sep(S) outside el [\
Sep(S) = o product regions |

/\

Sep ( S ) — H/\ C ( W) o
Wew

N

WEW BV U and Vare disjoint) S

A

W contain no disjoint subsurfaces = Sep(S) hyperbolic



Theorem (R.) Sep(S) is relatively hyperbolic
when S is closed.

Sep(.5)

[[ ¢(w)

Wew

No subsurfaces are disjoint

C(U) x C(V)
U and V disjoint



Splitting Surfaces of 2-Component Links with
Multivariable Alexander Polynomial 0
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Notation and Definitions

L=L; ULy, C S3?a2-component link

X = S3\N(L)

p: X — X be the universal abelian covering map, i.e. the one
corresponding to the commutator subgroup.

v

v

v

Ilts group of deck transformations is Hy(X,Z) = 72

v



The Multivariable Alexander Polynomial and Ha(X, Z)

» A(x,y) = 0if and only if H2(2,Z) is free on one generator
when regarded as a ZH;(X,Z)-module.

» We define:
gsplit = min{genus(S) : S is a surface and [S] generates Hy(X,Z)}

» What does gpi: tell us about L?



Universal Abelian Cover of the 2-Component Unlink
A fundamental domain of X under the group action of H;(X,Z)




Universal Abelian Cover of the 2-Component Unlink

|

7ol T|e[T|e[T




The Genus gy = 0 case

» Theorem: gy = 0 if an only if L is a split link.



The Genus gy = 1 case

» Theorem [A., Baker, in progress|: If gspir = 1, then Lis a
toroidal boundary link.

» The primary tools we used in this proof were the Torus
theorem and the JSJ-decomposition



The Genus g > 2 case

» We can construct a surface S C X representing a generator
using Fox calculus to get an upper bound for gt

» Tools that were useful in the genus ggpji: = 1 case don’t have
good analogues

» In general we can expect p(S) to be an immersed surface, but
not embedded unless L is a boundary link.



£ 9Dae



