LIGHTNING TALKS I TECH TOPOLOGY CONFERENCE December 7, 2018

Concordance of knots in 3-manifolds

JungHwan Park (joint with Matthias Nagel, Patrick Orson, and Mark Powell)

Georgia Institute of Technology

Tech Topology Conference

December 7, 2018

Definition

Knots $K_0, K_1 \subset S^3$ are *smoothly concordant* if they cobound a smooth annulus in $S^3 \times [0, 1]$.

Definition

Knots $K_0, K_1 \subset S^3$ are *smoothly concordant* if they cobound a smooth annulus in $S^3 \times [0, 1]$. Knots $K_0, K_1 \subset S^3$ are *topologically concordant* if they cobound a locally flat annulus in $S^3 \times [0, 1]$.

Definition

Knots $K_0, K_1 \subset S^3$ are smoothly concordant if they cobound a smooth annulus in $S^3 \times [0, 1]$. Knots $K_0, K_1 \subset S^3$ are topologically concordant if they cobound a locally flat annulus in $S^3 \times [0, 1]$. Knots $K_0, K_1 \subset S^3$ are *PL* concordant if they cobound a piecewise linear annulus in $S^3 \times [0, 1]$. Equivalently, $K_0 \# J$ is smoothly concordant to K_1 for some $J \subset S^3$.

Definition

Knots $K_0, K_1 \subset S^3$ are *smoothly concordant* if they cobound a smooth annulus in $S^3 \times [0, 1]$. Knots $K_0, K_1 \subset S^3$ are *topologically concordant* if they cobound a locally flat annulus in $S^3 \times [0, 1]$. Knots $K_0, K_1 \subset S^3$ are *PL concordant* if they cobound a piecewise linear annulus in $S^3 \times [0, 1]$. Equivalently, $K_0 \# J$ is smoothly concordant to K_1 for some $J \subset S^3$. Knots $K_0, K_1 \subset S^3$ are *almost concordant* if $K_0 \# J$ is topologically concordant to K_1 for some $J \subset S^3$.

Theorem (Hom (2015), Ozsváth-Stipsicz-Szabó (2017))

 $\ker f_2 \cong \mathbb{Z}^\infty \oplus G'.$

Theorem (Hedden-S. Kim-Livingston (2016))

 $\ker f_2 \ge \mathbb{Z}_2^\infty.$

Theorem (Friedl-Nagel-Orson-Powell (2018))

For $Y \neq S^3$, $|\mathcal{C}^{ac}(Y)| = \infty$.

Theorem (Friedl-Nagel-Orson-Powell (2018))

For $Y \neq S^3$, $|\mathcal{C}^{ac}(Y)| = \infty$.

Theorem (Nagel-Orson-P.-Powell (2018))

For $Y \neq S^3$, $|f_i^{-1}([U])| = \infty$, for i = 1, 2, 3, 4.

Length spectra of q-differential metrics

Marissa Loving University of Illinois at Urbana-Champaign

A few warm-up questions...

How many measurements to determine a square?

How many measurements to determine a square?

How about a rectangle?

How about a rectangle?

Or a parallelogram?

Or a parallelogram?

What if we consider surfaces instead?

How many curves' lengths do we need to know to determine a surface?

For example, lets consider a flat torus.

Flat torus:

How many curves do we need to determine a flat metric on the torus? How many curves are needed to determine a hyperbolic metric on a closed surface of genus g?

The 9g-9 Theorem

For g = 2, we need 9 curves.

How many curves are needed to determine a flat metric on a closed surface?

Thm. (Bankovic—Leininger)

To determine an arbitrary flat metric on a closed surface you need the lengths of **ALL** closed curves. Thm. (Duchin—Leininger—Rafi)

To determine a flat metric coming from a quadratic differential you only need the lengths of **simple** closed curves.

Thm. (Loving)

To determine a flat metric coming from a q-differential you only need the lengths of **q-simple** curves.

Thank you!!!
An infinite rank summand of the homology cobordism group

Linh Truong (joint work with I. Dai, J. Hom, and M. Stoffregen)

Columbia University

Tech Topology Conference, December 2018

The homology cobordism group

Definition

 Y_1 and Y_2 are **homology cobordant**, denoted $Y_1 \sim Y_2$, if they cobound a smooth, compact, oriented cobordism W such that the inclusions $H_*(Y_i; \mathbb{Z}) \to H_*(W; \mathbb{Z})$ induce isomorphisms on homology.

Definition

The homology cobordism group $\Theta^3_{\mathbb{Z}}$ is defined as

 $\Theta^3_{\mathbb{Z}} = \{ \text{oriented integral homology three-spheres, } \# \} / \sim$

Background + Main Theorem

Theorem (Finteshel-Stern, '85)

The group $\Theta^3_{\mathbb{Z}}$ is infinite.

Theorem (Furuta '90, Finteshel-Stern '90)

The group $\Theta^3_{\mathbb{Z}}$ contains a \mathbb{Z}^{∞} subgroup.

Theorem (Dai, Hom, Stoffregen, T. '18)

The group $\Theta^3_{\mathbb{Z}}$ contains a \mathbb{Z}^{∞} summand.

Ingredients in the proof

We build on the **Involutive Heegaard Floer homology** package of Hendricks-Manolescu and Hendricks-Manolescu-Zemke. We define an **almost local equivalence group** $\widehat{\mathcal{I}}$ and consider a homomorphism

 $\widehat{h}: \Theta^3_{\mathbb{Z}} \to \widehat{\mathfrak{I}}$

which factors through the Hendricks-Manolescu-Zemke homomorphism $h: \Theta^3_{\mathbb{Z}} \to \mathfrak{I}$.

Inspired by work of Hom on the knot concordance group, we prove:

Theorem (Dai, Hom, Stoffregen, T.)

The almost local equivalence group $\widehat{\mathfrak{I}}$ is totally ordered.

Ingredients in the proof (continued)

We prove a classification theorem for $\widehat{\mathfrak{I}},$ which leads to:

Theorem (Dai, Hom, Stoffregen, T.)

For every $n \in \mathbb{N}$ there are surjective homomorphisms $\phi_n : \widehat{\mathfrak{I}} \to \mathbb{Z}$.

The Brieskorn spheres $Y_i = \Sigma(2i + 1, 4i + 1, 4i + 3)$ satisfy $\phi_j \circ \widehat{h}(Y_i) = \delta_{ij}$. Hence,

$$\{\phi_n \circ \widehat{h}\}_{n \in \mathbb{N}} : \Theta^3_{\mathbb{Z}} \to \mathbb{Z}^\infty$$

is a surjective homomorphism.

Open questions

- 1. Does there exist any torsion in $\Theta_{\mathbb{Z}}^3$?
- 2. Is $\Theta^3_{\mathbb{Z}}$ generated by Seifert fibered spaces?
- 3. Is every element in $\Theta^3_{\mathbb{Z}}$ represented by Dehn surgery on a knot?

Thanks for listening!

Enriching Bézout's Theorem

Stephen McKean (Georgia Tech) December 7th, 2018

Tech Topology Conference 2018

Theorem

Let k be an algebraically closed field. If $f,g \subset \mathbb{P}^2_k$ are generic algebraic curves of degree c, d, respectively, then

$$\sum_{p\in f\cap g}i_p(f,g)=cd.$$

Theorem

Let k be an algebraically closed field. If $f,g \subset \mathbb{P}^2_k$ are generic algebraic curves of degree c, d, respectively, then

$$\sum_{p\in f\cap g}i_p(f,g)=cd.$$

Bézout's Theorem

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

Bézout's Theorem

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

• $\deg^{\mathbb{A}^1}$: {functions} \rightarrow {quadratic forms}. (Eisenbud, Morel, et al.)

- $\deg^{\mathbb{A}^1}: \{ \text{functions} \} \to \{ \text{quadratic forms} \}.$ (Eisenbud, Morel, et al.)
- Use deg^{A¹} to enrich enumerative results in quadratic forms. (Kass-Wickelgren, et al.)

- $\deg^{\mathbb{A}^1}: \{ \text{functions} \} \to \{ \text{quadratic forms} \}.$ (Eisenbud, Morel, et al.)
- Use $\deg^{\mathbb{A}^1}$ to enrich enumerative results in quadratic forms. (Kass-Wickelgren, et al.)
- Enriched results carry extra information.

Theorem (McKean)

Let k be a perfect field and f, g be transverse of degrees c, d with c + d odd.

Theorem (McKean)

Let k be a perfect field and f, g be transverse of degrees c, d with c + d odd. Then

$$\sum_{p \in f \cap g} \deg_p^{\mathbb{A}^1}(f,g) = \frac{cd}{2} \cdot \mathbb{H}.$$

Theorem (McKean)

Let k be a perfect field and f, g be transverse of degrees c, d with c + d odd. Then

$$\sum_{p \in f \cap g} \deg_p^{\mathbb{A}^1}(f,g) = \frac{cd}{2} \cdot \mathbb{H}.$$

$$k \quad \deg_p^{\mathbb{A}^1}(f,g) \qquad \frac{cd}{2} \cdot \mathbb{H}$$

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd

k	$\mathrm{deg}_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_{\rho}(f,g)$	cd
\mathbb{R}	crossing sign at p	0

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

 \bullet Over $\mathbb{C}:$ counts intersection points.

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

- \bullet Over $\mathbb{C}:$ counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.

k	$\deg_p^{\mathbb{A}^1}(f,g)$	$\frac{cd}{2} \cdot \mathbb{H}$
\mathbb{C}	$i_p(f,g)$	cd
\mathbb{R}	crossing sign at p	0
\mathbb{F}_q	crossing sign at <i>p</i>	$(-1)^{\frac{cd}{2}}$

- Over \mathbb{C} : counts intersection points.
- Over \mathbb{R} : equal number of positive/negative crossings.
- Over \mathbb{F}_q : counts crossing types mod 2.

Example

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$

Example

Example

Quasipositive Surfaces and Convex Surface Theory

Moses Koppendrayer 12/7/18

University of Miami

Quasipositive surfaces were originally defined by Lee Rudolph to be the standard Seifert Surface of a strongly quasipositive braid.

Motivating Question

If a knot has a quasipositive surface, must every minimal genus seifert surface be quasipositive?

Baader and Ishikawa showed in S^3 , quasipositive surface \iff isotopic to the ribbon of a Legendrian graph.

Baader and Ishikawa showed in S^3 , quasipositive surface \iff isotopic to the ribbon of a Legendrian graph.

Baader and Ishikawa showed in S^3 , quasipositive surface \iff isotopic to the ribbon of a Legendrian graph.

What are the advantages of this viewpoint?

• Additional structure relating to the ambient manifold allows us to use tools from contact topology.

What are the advantages of this viewpoint?

- Additional structure relating to the ambient manifold allows us to use tools from contact topology.
- Legendrian ribbonness is a property that you can consider in any contact manifold.

What are the advantages of this viewpoint?

- Additional structure relating to the ambient manifold allows us to use tools from contact topology.
- Legendrian ribbonness is a property that you can consider in any contact manifold.
- It allows us to 'refine' the notion of quasipositivity. I.e. the difference between being topologically isotopic to a Legendrian ribbon and being presented as a Legendrian ribbon.

Theorem[In progress]

There exists a transverse link in L(4, 1) with two interior disjoint Seifert surfaces, R and S such that:

1) R is the ribbon of a Legendrian graph

2) S is topologically isotopic to the ribbon of a Legendrian graph

3) Any isotopy of S to the ribbon of a Legendrian graph doesn't restrict to a transverse isotopy of the boundary.

Sebastian Baader and Masaharu Ishikawa. Legendrian graphs and quasipositive diagrams. Ann. Fac. Sci. Toulouse Math. (6), 18(2):285–305, 2009.

Vincent Colin.

Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues.

C. R. Acad. Sci. Paris Sér. I Math., 324(6):659–663, 1997.

Ko Honda.

On the classification of tight contact structures. I. *Geom. Topol.*, 4:309–368, 2000.

Lee Rudolph.

Constructions of quasipositive knots and links. I.

In Knots, braids and singularities (Plans-sur-Bex, 1982), volume 31 of Monogr. Enseign. Math., pages 233–245. Enseignement Math., Geneva, 1983.

The Geometry of the Separating Curve Graph

Jacob Russell

The Separating Curve Graph

Vertices: Separating curves on S

The Separating Curve Graph

Vertices: Separating curves on S

 $\operatorname{Sep}(S)$ \bullet

Edges: Disjointness

The Separating Curve Graph

Vertices: Separating curves on S

Edges: Disjointness

Goal: Study large scale geometry of Sep(S)

Theorem (Vokes) Sep(S) is hyperbolic if and only if S has at least 3 boundary components.

All triangles in Sep(S) are thin

Theorem (R.) When S has 2 or fewer boundary components, Sep(S) is relatively hyperbolic.

Sep(S) is hyperbolic outside of a collection of isolated regions

$W \subseteq S$ intersects every separating $\implies \pi_W \colon \operatorname{Sep}(S) \longrightarrow C(W)$ curve

Hyperbolic

$W \subseteq S$ intersects every separating $\implies \pi_W \colon \operatorname{Sep}(S) \longrightarrow C(W)$ curve encodes interaction between

encodes interaction between separating curves and W

Hyperbolic

$W \subseteq S$ intersects every separating $\implies \pi_W \colon \operatorname{Sep}(S) \longrightarrow C(W)$

encodes interaction between separating curves and W

Witness

$$\operatorname{Sep}(S) \longrightarrow \prod_{W \in \mathcal{W}} C(W)$$
$$\gamma \longrightarrow (\pi_W(\gamma))_{W \in \mathcal{W}}$$

 $\mathcal{W} = \{$ subsurfaces which intersect every separating curve $\}$

$$\operatorname{Sep}(S) \longrightarrow \prod_{W \in \mathcal{W}} C(W)$$

Position of witnesses on Sdetermines how Sep(S)sits inside $\prod C(W)$

S has at least 3 boundary components

S has at least 3 boundary components

 ${\mathcal W}$ contains no disjoint subsurfaces

S has at least 3 boundary components \mathcal{W} contains no disjoint subsurfaces Behrstock Hagen Sisto $\operatorname{Sep}(S)$ hyperbolic

 $\operatorname{Sep}(S)$ hyperbolic

Hagen

Sisto

Disjoint witnesses obstruct hyperbolicity

 $U,V\in \mathcal{W}$ with U disjoint from V

 $U, V \in \mathcal{W}$ with U disjoint from V

V

Only configuration of disjoint witnesses for Sep(S)

 $U,V\in \mathcal{W}$ with U disjoint from V

 $U, V \in \mathcal{W}$ with U disjoint from V \downarrow Product region in Sep(S)

 $U, V \in \mathcal{W}$ with U disjoint from V \downarrow Product region in Sep(S)

$$\widehat{\operatorname{Sep}(S)} = \begin{array}{l} \operatorname{Portion of } \operatorname{Sep}(S) \text{ outside} \\ \operatorname{of product regions} \end{array}$$

$$\widehat{\operatorname{Sep}(S)} = \begin{array}{c} \operatorname{Portion of } \operatorname{Sep}(S) \text{ outside} \\ \operatorname{of product regions} \end{array}$$

$$\widehat{\operatorname{Sep}(S)} \longrightarrow \prod_{W \in \widehat{\mathcal{W}}} C(W)$$

 $\widehat{\operatorname{Sep}(S)} = \begin{array}{l} \operatorname{Portion of } \operatorname{Sep}(S) \text{ outside} \\ \operatorname{of product regions} \end{array}$

$$\widehat{\operatorname{Sep}(S)} \longrightarrow \prod_{W \in \widehat{\mathcal{W}}} C(W)$$

$$\widehat{\mathcal{W}} = \mathcal{W} - \{U, V : U \text{ and } V \text{ are disjoint}\}\$$

C(U

C(V)

 $\widehat{\operatorname{Sep}(S)} = \begin{array}{l} \operatorname{Portion of } \operatorname{Sep}(S) \text{ outside} \\ \operatorname{of product regions} \end{array}$

$$\widehat{\operatorname{Sep}(S)} \longrightarrow \prod_{W \in \widehat{\mathcal{W}}} C(W)$$

 $\widehat{\mathcal{W}} = \mathcal{W} - \{U, V : U \text{ and } V \text{ are disjoint}\}\$

 $\widehat{\mathcal{W}}$ contain no disjoint subsurfaces $\implies \widehat{\operatorname{Sep}(S)}$ hyperbolic

Splitting Surfaces of 2-Component Links with Multivariable Alexander Polynomial 0

Christopher Anderson

University of Miami

canders@math.miami.edu

December 6, 2018

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Notation and Definitions

- ▶ $L = L_1 \cup L_2 \subset S^3$ a 2-component link
- $X = S^3 \setminus \mathcal{N}(L)$
- ▶ $\rho: \widetilde{X} \to X$ be the universal abelian covering map, i.e. the one corresponding to the commutator subgroup.

► Its group of deck transformations is $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^2$

The Multivariable Alexander Polynomial and $H_2(\widetilde{X},\mathbb{Z})$

- ► Δ_(x,y) = 0 if and only if H₂(X̃, ℤ) is free on one generator when regarded as a ℤH₁(X, ℤ)-module.
- ► We define:

 $g_{split} = min\{genus(S) : S \text{ is a surface and } [S] \text{ generates } H_2(\widetilde{X}, \mathbb{Z})\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

▶ What does g_{split} tell us about L?

Universal Abelian Cover of the 2-Component Unlink A fundamental domain of \widetilde{X} under the group action of $H_1(X,\mathbb{Z})$

◆臣 ◆臣 ◆臣 ◆ ◆ ◆ ●

Universal Abelian Cover of the 2-Component Unlink

The Genus $g_{split} = 0$ case

• Theorem: $g_{split} = 0$ if an only if L is a split link.
The Genus $g_{split} = 1$ case

- Theorem [A., Baker, in progress]: If g_{split} = 1, then L is a toroidal boundary link.
- ► The primary tools we used in this proof were the Torus theorem and the JSJ-decomposition

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

The Genus $g \ge 2$ case

- We can construct a surface S ⊂ X representing a generator using Fox calculus to get an upper bound for g_{split}
- ► Tools that were useful in the genus g_{split} = 1 case don't have good analogues
- In general we can expect ρ(S) to be an immersed surface, but not embedded unless L is a boundary link.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank You!

< Ξ > < Ξ > < Ξ > < Ξ >