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DEFORMATIONS 
ARE INTERESTING

Steve Trettel  -  UC Santa Barbara



SO ARE HYPERBOLIC 
MANIFOLDS



Q: Is there a Deformation theory 
of hyperbolic n-Manifolds ?
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A: NO
MOSTOW RIGIDITY 

☹
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A: YES
THERE’S TWO!

☻
Steve Trettel  -  UC Santa Barbara



!"#$(ℍn)

!"#$(ℍn
ℂ)

'()(ℝ+n)⊂⊂
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ARE THESE RELATED?

YES

NO The geometries have 
different dimensions.

Steve Trettel  -  UC Santa Barbara

The representation 
varieties have the 
same dimension.



?ℍn
ℂ ℝ+n



YES!
Real Projective Space is a ‘shadow’ of a 
higher dimensional geometry.

This geometry is a deformation of 
Complex Hyperbolic Space.

THEOREM (T-18)

Steve Trettel  -  UC Santa Barbara



ℂ

Λδ = ℝ[ δ]

ℝ ⊕ ℝ

ℂ

Steve Trettel  -  UC Santa Barbara

ℝ[ −1] ℝ[ 1]

DEFORM 



01(n,1; ℂ) 01(n,1; Λδ) 01(n,1; ℝ ⊕ ℝ)

Steve Trettel  -  UC Santa Barbara

!"#$(ℍn
ℂ)DEFORM 



ℍn
ℂ ℍn

Λδ
ℍn

ℝ⊕ℝ

Steve Trettel  -  UC Santa Barbara

DEFORM ℍn
ℂ



THEOREM (T-18)
ℍn

ℝ⊕ℝ             embeds nicely in                       ℝ+n × ℝ+n

and has automorphisms ≅ 04(n + 1; ℝ)

Steve Trettel  -  UC Santa Barbara

UNDERSTAND ℍn
ℝ⊕ℝ



 
Holonomy

1 parameter 
family of 

deformations
 

Holonomy

Steve Trettel  -  UC Santa Barbara

ℍn
ℂ ℝ+n



THANKS!



Symmetry and Localization

Melissa Zhang

Boston College

Tech Topology 2018



What is localization?

Scenario:

Topological space X

Zp action on X (p prime)

Fixed point set X fix

Theorem (Classical localization theorem)

H
⇤(X ;Zp) ◆ H

⇤(X fix;Zp).

Corollary (Classical Smith inequality)

Under certain conditions,

dimH
⇤(X ;Zp) � dimH

⇤(X fix;Zp).
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For the following, G = Z2.

Theorem (Seidel-Smith 2010)

Under certain conditions, LFH(M, L0, L1) ◆ LFH(Mfix, Lfix0 , Lfix1 ).

Application: Khsymp(L̃) ◆ Khsymp(L).

Conjecture (Seidel-Smith)

Kh ⇠= Khsymp?

dimKh(L̃) � dimKh(L)?
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For the following, G = Z2.

Theorem (Hendricks 2012, 2015)

Hendricks applied Seidel-Smith’s framework (for LFH) to relate various

HFK theories:

1 [HFK (⌃(K ),K ) and [HFK (S3,K )
[HFK (⌃(K ),K )⌦ H⇤(T n) ◆ [HFK (S3,K )⌦ H⇤(T n)

2 dHFL(S3, K̃ [ Ũ) and dHFL(S3,K [ U)

3 dHFL(S3, K̃ ) and dHFL(S3,K )
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For the following, G = Z2.

Question (Lidman):

Is it possible to recover

[HFK (⌃(K ),K )⌦ H⇤(T
n) ◆ [HFK (S3,K )⌦ H⇤(T

n)

from cut-and-paste arguments?

Answer (Lipshitz-Treumann)

Partial “yes.” Under certain conditions,

HH⇤(M ⌦L
A M) ◆ HH⇤(M).

Use bordered Floer homology.

Melissa Zhang (Boston College) Symmetry and Localization Tech Topology 2018 5 / 9
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For the following, G = Z2.

Theorem (Cornish 2016)

If � 2 Bn, then in annular grading k = n � 1,

AKh
n�1(c�2) ◆ AKh

n�1(b�).

Uses Lipshitz-Treumann.

Generalization:

Theorem (Z 2018)

For all quantum j and annular k gradings,

AKh
2j�k,k(L̃) ◆ AKh

j ,k(L).

Combinatorial proof

Khovanov analogue of Hendricks’s [HFK (S3, K̃ [ Ũ) vs.
[HFK (S3,K [ U) result
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Recall:

Conjecture (Seidel-Smith)

dimKh(L̃) � dimKh(L).

Conjecture (Z)

Kh(L̃) ◆ AKh(L).

Note: For any link K , AKh(K ) ◆ Kh(K ), so this would imply
Seidel-Smith’s conjecture.

... And what about G = Zp?

Melissa Zhang (Boston College) Symmetry and Localization Tech Topology 2018 7 / 9
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Now G = Zp. (!!!)

Theorem (Sto↵regen-Z 2018)

Indeed,

Kh(L̃) ◆ AKh(L),

hence dimAKh(L̃) � dimKh(L̃) � dimAKh(L) � dimKh(L).

Uses Lawson-Lipshitz-Sarkar’s Burnside functor construction of the
Lipshitz-Sarkar Khovanov stable homotopy type.

Also holds for odd versions of all theories involved.

Framework also generalizes AKh(L̃) ◆ AKh(L) to prime-periodicities.

Melissa Zhang (Boston College) Symmetry and Localization Tech Topology 2018 8 / 9
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Kh(L̃) ◆ AKh(L) is the Khovanov analogue of the following:

Theorem (Lidman-Manolescu 2016)

If Ỹ is a rational homology sphere and Ỹ ! Y is a p-sheeted regular

cover,

H̃⇤(SWF (Ỹ , s)) ◆ H̃⇤(SWF (Y ,⇡⇤s)).

Implies strong constraints on Zp-L-spaces arising as regular covers.

Also see work of

Politarczyk, Borodzik-Politarczyk

Borodzik-Politarczyk-Silvero

Boyle

Musyt.

Melissa Zhang (Boston College) Symmetry and Localization Tech Topology 2018 9 / 9
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If Ỹ is a rational homology sphere and Ỹ ! Y is a p-sheeted regular
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On the naturality of grid homology

Haofei Fan

Department of Mathematics
University of California, Los Angeles

December 2018

Joint work with M. Marengon (UCLA) and M. Wong (LSU)

Haofei Fan (UCLA) On the naturality of grid homology December 2018 1 / 5



Grid homology

Grid homology
A link in three-sphere can be represented by a grid diagram G. When defined for

grid diagrams, the link Floer homology HFL
�
is usually called grid homology

(GH
�
).

Haofei Fan (UCLA) On the naturality of grid homology December 2018 2 / 5



Main Theorem

Question
Does a link isotopy induce a well-defined map on grid homology?

Answer. Yes.

Theorem (H. Fan, M.Marengon and M. Wong (Work in progress))

Haofei Fan (UCLA) On the naturality of grid homology December 2018 3 / 5
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Applications Part I

(1) Link cobordism maps are computable via grid homology

(2) Distinguish slice disks

Haofei Fan (UCLA) On the naturality of grid homology December 2018 4 / 5
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Applications Part II

(3) Involutive knot/link/Heegaard Floer homology are computable

(4) Transverse/Legredrian invariants

A canonical computable isomorphism on grid homology � : GH
�
(G) ! GH

�
(G0

),

such that:

�(�±
(G)) = �±

(G0
);

�(✓(T )) = ✓(T 0
).

Haofei Fan (UCLA) On the naturality of grid homology December 2018 5 / 5
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Trisecting Ozsváth Szabó Four-Manifold

Invariants

William E. Olsen

December 9 2018

University of Georgia



Overview of trisections

• Suppose X is a connected, compact, oriented, smooth 4-manifold

with connected boundary Y = @X .

• A trisection of X is a decomposition of X into three simple pieces.

A trisection of X induces an open book on its boundary.

Figure 1: X ⇠= X1 [ X2 [ X3

1



Diagrams for trisections

A trisected 4-manifold X ⇠= X1 [ X2 [ X3 can be represented by a

(relative) trisection diagram D = (⌃,↵,�, �) [GK16, CGPC18].

2



Applications to Heegaard Floer Homology?

Question

Can we use (relative) trisection diagrams to compute the cobordism

maps of Ozsváth and Szabó?

FX\B4,t : HF (S
3
) ! HF (Y , tY )

3



Arced diagram

We decorate D with arcs  arrive at a new diagram

Darc = (⌃,↵,�, �, a, b, c).

Figure 2: An arced diagram Darc obtained from D.

4



Gluing on the page of an open book

We glue onto Darc a page of the open book, and arrive at our final

diagram D = (⌃,↵,�, �,w). This diagram describes a new four-manifold

X .

5



Topology of X

Proposition (Thanks to D. Gay and J. Pinzón-Caicedo)

The manifold X is di↵eomorphic to

X ⇠= X̊ � 1-handle,

where X̊ = X \ interior(X3), and the 1-handle that’s removed has one

foot on #
k3S1 ⇥ S

2 ⇢ @X̊ and the other foot on Y ⇢ @X̊ .

6



Theorem

Theorem

Suppose that D is constructed as above, and let t 2 Spin
c
(X ). Then t

determines t 2 Spin
c
(X ) for which the following diagram commutes

HF (⌃,↵,�,w , s↵,�) HF (⌃,↵, �,w , s↵,�)

HF (#
`
S
1 ⇥ S

2,w , s) HF (Y#(#
k3S1 ⇥ S

2
),w , sY#s)

HF (S
3
) HF (Y ,w , sY )

 1

�↵,�,�,t

 2

FX,t

p

FX,t

where FX ,t is the cobordism map defined by Ozsváth and Szabó.

7
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Monopole Floer Homology
• (Y, s): closed oriented 3-manifold Y + spin-c

structure s on Y

• Monopole Floer Homology produces a family of
abelian graded groups HM

•(Y, s)
• When (Y, ⇠, s⇠) is a contact manifold KMOS

defined the contact invariant

c(⇠) 2 dHM
•
(Y, s⇠)
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Naturality Problem

(W, sW ) : (Y, ⇠, s⇠) ! (Y 0
, ⇠

0
, s⇠0)

HM
•(W, sW ) : HM

•(Y 0
, s⇠0) ! HM

•(Y, s⇠)

Naturality Problem: For which (W, sW ) is it true
that

dHM
•
(W, sW )c(⇠0) = c(⇠)



Naturality for Strong Cobordisms
Theorem (E. 2018)
Let (W,!) : (Y, ⇠) ! (Y 0

, ⇠
0) be a strong sym-

plectic cobordism between two contact manifolds
(Y, ⇠) and (Y 0

, ⇠
0). Then

dHM
•
(W, sW )c(⇠0) = c(⇠)
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Naturality for Strong Cobordisms
• The proof requires extending a gluing argument

by Mrowka and Rollin from their paper
Legendrian Knots and Monopoles.

• Mrowka and Rollin also proved this result in an
earlier, unpublished paper.

• The naturality result is with Z/2Z coefficients
• The result is not known for Heegaard Floer in

such generality.
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Some Applications
• Corollary: (Ozsvath-Szabo) (E.) Let (X,!) be

a strong filling of (Y 0
, ⇠

0). Assume in addition
that Y 0 is an L-space. Then X must be
negative definite.

• Corollary: Suppose (Y, ⇠) is a planar contact
manifold:

1. (Ozsvath, Stipsciz and Szabo) (E.) The reduced
part of the contact invariant vanishes, i.e,
[c(⇠)]red = 0.

2. (Etnyre) (E.) Any strong filling of (Y, ⇠) must
be negative definite.
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Vanishing for Overtwisted Structures
• Corollary: (Ozsvath-Szabo) (E.) If (Y, ⇠) is

overtwisted then c(⇠) = 0.

1. Find (S3
, ⇠ot) such that c(⇠ot) = 0.

2. If (Y, ⇠) is overtwisted by Etnyre-Honda we can
find (WStein, s!) : (Y, ⇠, s⇠) ! (S3

, ⇠ot)
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Non-vanishing for Strong Fillings
• Corollary (Ghiggini) (E.) If (X,!) is a strong

filling of (Y, ⇠), c(⇠) 6= 0.

Remove a Darboux ball B4 from X to obtain a
strong symplectic cobordism
(W = X\B, s!) : (S3

, ⇠tight) ! (Y, ⇠)

Ghiggini gave examples of weak fillings where the
contact invariant vanishes, so the naturality
result cannot be naively extended.



Thank you!

[image taken from Patrick Massot’s website]
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actions on quasi-trees ?

By a quasi-tree, I mean a connected graph quasi-isometric to a

tree.
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I. Main Question

Question:

Given a positive integer matrix Q, does there exist a closed

orientable surface containing a pair of filling multicurves whose

intersection matrix is Q?

Answer:

Yes.
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Given a positive integer matrix Q, does there exist a closed

orientable surface containing a pair of filling multicurves whose

intersection matrix is Q?

Answer:

Yes.
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II. Application

• Thurston’s Construction.

• Stretch factors from this construction have restrictions.

Theorem[P. 2017]

If � is an algebraic unit satisfying all the known restrictions from

Thurston’s construction then some power of � is a stretch factor.
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Constructing Surfaces

Question:

What surface do we get?

Answer:

Genus 7.
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Do we have control over the genus?

Answer:

Yes.
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Question:

What surface do we get?

Answer:

Genus 7.

Question:

Do we have control over the genus?

Answer:

Yes.
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Bound on Genus

Theorem:

Given an n ⇥ n matrix Q whose entries are all larger than 2. Using

the configuration as in example 1, the genus of the constructed

surface is g = n2 � n + 1.

Observation:

Genus is not optimal.
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Bound on Genus

Theorem:

Given an n ⇥ n matrix Q whose entries are all larger than 2. Using

the configuration as in example 1, the genus of the constructed

surface is g = n2 � n + 1.

Observation:

Genus is not optimal.
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Example 2

Consider

2

64
3 2 2

2 3 2

2 2 2

3

75

9



Example 2

Consider

2

64
3 2 2

2 3 2

2 2 2

3

75 Genus 3 surface.
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Genus 3 Surface with Multicurves

Current research question: What is the minimal genus surface

obtainable?
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Genus 3 Surface with Multicurves

Current research question: What is the minimal genus surface

obtainable? 11



End

Thank you!
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