LIGHTNING TALKS III TECH TOPOLOGY CONFERENCE December 9, 2018

STEVE TRETTEL UC Santa Barbara

PROJECTIVE GEOMETRY, COMPLEX HYPERBOLIC SPACE &

GEOMETRIC TRANSITIONS

DEFORMATIONS ARE INTERESTING

SO ARE HYPERBOLIC Manifolds

Is there a Deformation theory of hyperbolic n-Manifolds ?

$Aut(\mathbb{R}P^n)$ $Isom(\mathbb{H}^n)$ $\operatorname{Isom}(\mathbb{H}^n)$

ARE THESE RELATED?

The representation varieties have the **same dimension**.

The geometries have different dimensions.

YES

THEOREM (T-18)

Real Projective Space is a 'shadow' of a higher dimensional geometry.

This geometry is a deformation of Complex Hyperbolic Space.

DEFORM (

DEFORM Isom($\mathbb{H}^n_{\mathbb{C}}$)

$SU(n,1;\mathbb{C})$ $SU(n,1;\Lambda_{\delta})$ $SU(n,1;\mathbb{R}\oplus\mathbb{R})$

DEFORM III n

UNDERSTAND $\mathbb{H}^n_{\mathbb{R} \oplus \mathbb{R}}$

THEOREM (T-18)

 $\mathbb{H}^n_{\mathbb{R}\oplus\mathbb{R}}$ embeds nicely in $\mathbb{R}P^n \times \mathbb{R}P^n$ and has automorphisms $\cong SL(n + 1; \mathbb{R})$

THANKS!

Symmetry and Localization

Melissa Zhang

Boston College

Tech Topology 2018

◆□> ◆舂> ◆注> ◆注> 注:

Melissa Zhang (Boston College)

æ

Scenario:

• Topological space X

Image: A matrix

Scenario:

- Topological space X
- \mathbb{Z}_p action on X (p prime)

< 円

Scenario:

- Topological space X
- \mathbb{Z}_p action on X (p prime)
- Fixed point set X^{fix}

Scenario:

- Topological space X
- \mathbb{Z}_p action on X (p prime)
- Fixed point set X^{fix}

Theorem (Classical localization theorem)

$$H^*(X;\mathbb{Z}_p) \rightrightarrows H^*(X^{\mathrm{fix}};\mathbb{Z}_p).$$

Scenario:

- Topological space X
- \mathbb{Z}_p action on X (p prime)
- Fixed point set X^{fix}

Theorem (Classical localization theorem)

$$H^*(X;\mathbb{Z}_p) \rightrightarrows H^*(X^{\mathrm{fix}};\mathbb{Z}_p).$$

Corollary (Classical Smith inequality)

Under certain conditions,

```
\dim H^*(X;\mathbb{Z}_p) \geq \dim H^*(X^{\mathrm{fix}};\mathbb{Z}_p).
```

Melissa Zhang (Boston College)

• • • • • • • •

э

Theorem (Seidel-Smith 2010)

- Under certain conditions, $LFH(M, L_0, L_1) \Rightarrow LFH(M^{\text{fix}}, L_0^{\text{fix}}, L_1^{\text{fix}})$.
- Application: $Kh_{symp}(\tilde{L}) \rightrightarrows Kh_{symp}(L)$.

Theorem (Seidel-Smith 2010)

- Under certain conditions, $LFH(M, L_0, L_1) \rightrightarrows LFH(M^{\text{fix}}, L_0^{\text{fix}}, L_1^{\text{fix}})$.
- Application: $Kh_{symp}(\tilde{L}) \rightrightarrows Kh_{symp}(L)$.

Conjecture (Seidel-Smith)

- $Kh \cong Kh_{symp}$?
- dim $Kh(\tilde{L}) \geq \dim Kh(L)$?

• • • • • • • •

æ

Theorem (Hendricks 2012, 2015)

Theorem (Hendricks 2012, 2015)

Hendricks applied Seidel-Smith's framework (for LFH) to relate various HFK theories:

• $\widehat{HFK}(\Sigma(K), K)$ and $\widehat{HFK}(S^3, K)$

Theorem (Hendricks 2012, 2015)

•
$$\widehat{HFK}(\Sigma(K), K)$$
 and $\widehat{HFK}(S^3, K)$
• $\widehat{HFK}(\Sigma(K), K) \otimes H_*(T^n) \rightrightarrows \widehat{HFK}(S^3, K) \otimes H_*(T^n)$

Theorem (Hendricks 2012, 2015)

Theorem (Hendricks 2012, 2015)

2

イロト イヨト イヨト イヨト

Question (Lidman):

Is it possible to recover

$$\widehat{HFK}(\Sigma(K),K)\otimes H_*(T^n) \rightrightarrows \widehat{HFK}(S^3,K)\otimes H_*(T^n)$$

from cut-and-paste arguments?
Question (Lidman):

Is it possible to recover

$$\widehat{HFK}(\Sigma(K),K)\otimes H_*(T^n) \rightrightarrows \widehat{HFK}(S^3,K)\otimes H_*(T^n)$$

from cut-and-paste arguments?

Answer (Lipshitz-Treumann)

Partial "yes." Under certain conditions,

$$HH_*(M \otimes^L_A M) \rightrightarrows HH_*(M).$$

Use bordered Floer homology.

Melissa Zhang (Boston College)

æ

イロト イヨト イヨト イヨト

Theorem (Cornish 2016)

If $\sigma \in B_n$, then in annular grading k = n - 1,

$$\mathsf{AKh}^{n-1}(\widehat{\sigma^2}) \rightrightarrows \mathsf{AKh}^{n-1}(\widehat{\sigma}).$$

• Uses Lipshitz-Treumann.

Theorem (Cornish 2016)

If $\sigma \in B_n$, then in annular grading k = n - 1,

$$\mathsf{AKh}^{n-1}(\widehat{\sigma^2}) \rightrightarrows \mathsf{AKh}^{n-1}(\widehat{\sigma}).$$

• Uses Lipshitz-Treumann.

Generalization:

Theorem (Z 2018)

For all quantum j and annular k gradings,

$$AKh^{2j-k,k}(\tilde{L}) \rightrightarrows AKh^{j,k}(L).$$

Theorem (Cornish 2016)

If $\sigma \in B_n$, then in annular grading k = n - 1,

$$\mathsf{AKh}^{n-1}(\widehat{\sigma^2}) \rightrightarrows \mathsf{AKh}^{n-1}(\widehat{\sigma}).$$

• Uses Lipshitz-Treumann.

Generalization:

Theorem (Z 2018)

For all quantum j and annular k gradings,

$$AKh^{2j-k,k}(\tilde{L}) \rightrightarrows AKh^{j,k}(L).$$

• Combinatorial proof

Theorem (Cornish 2016)

If $\sigma \in B_n$, then in annular grading k = n - 1,

$$\mathsf{AKh}^{n-1}(\widehat{\sigma^2}) \rightrightarrows \mathsf{AKh}^{n-1}(\widehat{\sigma}).$$

• Uses Lipshitz-Treumann.

Generalization:

Theorem (Z 2018)

For all quantum j and annular k gradings,

$$AKh^{2j-k,k}(\tilde{L}) \rightrightarrows AKh^{j,k}(L).$$

- Combinatorial proof
- Khovanov analogue of Hendricks's $\widehat{HFK}(S^3, \widetilde{K} \cup \widetilde{U})$ vs. $\widehat{HFK}(S^3, K \cup U)$ result

Conjecture (Seidel-Smith)

dim $Kh(\tilde{L}) \ge \dim Kh(L)$.

< 円

э

Conjecture (Seidel-Smith)

dim $Kh(\tilde{L}) \geq \dim Kh(L)$.

Conjecture (Z)

 $Kh(\tilde{L}) \rightrightarrows AKh(L).$

Melissa Zhang (Boston College)

< 1 k

э

Conjecture (Seidel-Smith)

dim $Kh(\tilde{L}) \ge \dim Kh(L)$.

Conjecture (Z)

 $Kh(\tilde{L}) \rightrightarrows AKh(L).$

 Note: For any link K, AKh(K) ⇒ Kh(K), so this would imply Seidel-Smith's conjecture.

Conjecture (Seidel-Smith)

dim $Kh(\tilde{L}) \ge \dim Kh(L)$.

Conjecture (Z)

 $Kh(\tilde{L}) \rightrightarrows AKh(L).$

 Note: For any link K, AKh(K) ⇒ Kh(K), so this would imply Seidel-Smith's conjecture.

... And what about $G = \mathbb{Z}_p$?

2

イロト イヨト イヨト イヨト

Theorem (Stoffregen-Z 2018)

Indeed,

$$Kh(\tilde{L}) \rightrightarrows AKh(L),$$

Theorem (Stoffregen-Z 2018)

Indeed,

 $Kh(\tilde{L}) \rightrightarrows AKh(L),$

hence dim $AKh(\tilde{L}) \ge \dim Kh(\tilde{L}) \ge \dim Kh(L) \ge \dim Kh(L)$.

Theorem (Stoffregen-Z 2018)

Indeed,

 $Kh(\tilde{L}) \rightrightarrows AKh(L),$

hence dim $AKh(\tilde{L}) \ge \dim Kh(\tilde{L}) \ge \dim Kh(L) \ge \dim Kh(L)$.

• Uses Lawson-Lipshitz-Sarkar's Burnside functor construction of the Lipshitz-Sarkar Khovanov stable homotopy type.

Theorem (Stoffregen-Z 2018)

Indeed,

 $Kh(\tilde{L}) \rightrightarrows AKh(L),$

hence dim $AKh(\tilde{L}) \ge \dim Kh(\tilde{L}) \ge \dim Kh(L) \ge \dim Kh(L)$.

- Uses Lawson-Lipshitz-Sarkar's Burnside functor construction of the Lipshitz-Sarkar Khovanov stable homotopy type.
- Also holds for odd versions of all theories involved.

Theorem (Stoffregen-Z 2018)

Indeed,

 $Kh(\tilde{L}) \rightrightarrows AKh(L),$

hence dim $AKh(\tilde{L}) \ge \dim Kh(\tilde{L}) \ge \dim Kh(L) \ge \dim Kh(L)$.

- Uses Lawson-Lipshitz-Sarkar's Burnside functor construction of the Lipshitz-Sarkar Khovanov stable homotopy type.
- Also holds for odd versions of all theories involved.
- Framework also generalizes $AKh(\tilde{L}) \rightrightarrows AKh(L)$ to prime-periodicities.

< 4 ► >

Theorem (Lidman-Manolescu 2016)

If \tilde{Y} is a rational homology sphere and $\tilde{Y} \to Y$ is a p-sheeted regular cover,

$$\widetilde{H}_*(SWF(\widetilde{Y},\mathfrak{s})) \rightrightarrows \widetilde{H}_*(SWF(Y,\pi^*\mathfrak{s})).$$

Theorem (Lidman-Manolescu 2016)

If \tilde{Y} is a rational homology sphere and $\tilde{Y} \to Y$ is a p-sheeted regular cover,

$$\widetilde{H}_*(SWF(\widetilde{Y},\mathfrak{s})) \rightrightarrows \widetilde{H}_*(SWF(Y,\pi^*\mathfrak{s})).$$

• Implies strong constraints on \mathbb{Z}_p -L-spaces arising as regular covers.

Theorem (Lidman-Manolescu 2016)

If \tilde{Y} is a rational homology sphere and $\tilde{Y} \to Y$ is a p-sheeted regular cover,

$$\widetilde{H}_*(SWF(\widetilde{Y},\mathfrak{s})) \rightrightarrows \widetilde{H}_*(SWF(Y,\pi^*\mathfrak{s})).$$

• Implies strong constraints on \mathbb{Z}_p -L-spaces arising as regular covers.

Also see work of

- Politarczyk, Borodzik-Politarczyk
- Borodzik-Politarczyk-Silvero
- Boyle
- Musyt.

On the naturality of grid homology

Haofei Fan

Department of Mathematics University of California, Los Angeles

December 2018

Joint work with M. Marengon (UCLA) and M. Wong (LSU)

・ロト ・回ト ・ヨト ・

Grid homology

A link in three-sphere can be represented by a grid diagram \mathbb{G} . When defined for grid diagrams, the link Floer homology HFL° is usually called *grid homology* (\mathcal{GH}°) .

イロト イヨト イヨト イ

Question

Does a link isotopy induce a well-defined map on grid homology?

・ロト ・回ト ・ヨト ・

Question

Does a link isotopy induce a well-defined map on grid homology?

Answer. Yes.

イロト イ団ト イヨト イヨト

Applications Part I

(1) Link cobordism maps are computable via grid homology

・ロト ・ 日 ・ ・ 日 ト

Applications Part I

(1) Link cobordism maps are computable via grid homology

(2) Distinguish slice disks

(3) Involutive knot/link/Heegaard Floer homology are computable

イロト イヨト イヨト

(3) Involutive knot/link/Heegaard Floer homology are computable

(4) Transverse/Legredrian invariants

A canonical computable isomorphism on grid homology $\phi : GH^{-}(\mathbb{G}) \to GH^{-}(\mathbb{G}')$, such that:

•
$$\phi(\lambda^{\pm}(\mathbb{G})) = \lambda^{\pm}(\mathbb{G}');$$

•
$$\phi(\theta(\mathcal{T})) = \theta(\mathcal{T}').$$

イロト イヨト イヨト イ

Trisecting Ozsváth Szabó Four-Manifold Invariants

William E. Olsen December 9 2018

University of Georgia

Overview of trisections

- Suppose X is a connected, compact, oriented, smooth 4-manifold with connected boundary $Y = \partial X$.
- A trisection of X is a decomposition of X into three simple pieces. A trisection of X induces an open book on its boundary.

Figure 1: $X \cong X_1 \cup X_2 \cup X_3$

A trisected 4-manifold $X \cong X_1 \cup X_2 \cup X_3$ can be represented by a (relative) trisection diagram $\mathfrak{D} = (\Sigma, \alpha, \beta, \gamma)$ [GK16, CGPC18].

Question

Can we use (relative) trisection diagrams to compute the cobordism maps of Ozsváth and Szabó?

$$F_{X \setminus B^4, \mathfrak{t}} : HF(S^3) \to HF(Y, \mathfrak{t}_Y)$$

Arced diagram

We decorate $\mathfrak D$ with arcs \rightsquigarrow arrive at a new diagram $\mathfrak D_{\mathit{arc}} = (\Sigma, \alpha, \beta, \gamma, \mathfrak a, \mathfrak b, \mathfrak c).$

Figure 2: An arced diagram \mathfrak{D}_{arc} obtained from \mathfrak{D} .

Gluing on the page of an open book

We glue onto \mathfrak{D}_{arc} a page of the open book, and arrive at our final diagram $\underline{\mathfrak{D}} = (\underline{\Sigma}, \underline{\alpha}, \underline{\beta}, \underline{\gamma}, w)$. This diagram describes a new four-manifold \underline{X} .

Proposition (Thanks to D. Gay and J. Pinzón-Caicedo) *The manifold* \underline{X} *is diffeomorphic to*

$$\underline{X} \cong \mathring{X} - 1$$
-handle,

where $\mathring{X} = X \setminus \text{interior}(X_3)$, and the 1-handle that's removed has one foot on $\#^{k_3}S^1 \times S^2 \subset \partial \mathring{X}$ and the other foot on $Y \subset \partial \mathring{X}$.

Theorem

Theorem

Suppose that \mathfrak{D} is constructed as above, and let $\mathfrak{t} \in \operatorname{Spin}^{c}(X)$. Then \mathfrak{t} determines $\mathfrak{t} \in \operatorname{Spin}^{c}(\underline{X})$ for which the following diagram commutes

$$\begin{array}{ccc} HF(\underline{\Sigma},\underline{\alpha},\underline{\beta},w,\mathfrak{s}_{\underline{\alpha},\underline{\beta}}) & \xrightarrow{\Delta_{\underline{\alpha},\underline{\beta},\underline{\delta},\underline{\mathfrak{t}}}} & HF(\underline{\Sigma},\underline{\alpha},\underline{\gamma},w,\mathfrak{s}_{\underline{\alpha},\underline{\delta}}) \\ & & \downarrow^{\psi_{1}} & \downarrow^{\psi_{2}} \\ HF(\#^{\ell}S^{1}\times S^{2},w,\mathfrak{s}) & \xrightarrow{F_{\underline{X},\underline{\mathfrak{t}}}} & HF(Y\#(\#^{k_{3}}S^{1}\times S^{2}),w,\mathfrak{s}_{Y}\#\mathfrak{s}) \\ & & \uparrow & \downarrow^{p} \\ & HF(S^{3}) & \xrightarrow{F_{X,\mathfrak{t}}} & HF(Y,w,\mathfrak{s}_{Y}) \end{array}$$

where $F_{X,t}$ is the cobordism map defined by Ozsváth and Szabó.

Nickolas Castro, David Gay, and Juanita Pinzón-Caicedo. Diagrams for relative trisections. Pacific Journal of Mathematics, 294(2):275–305, 2018. David Gay and Robion Kirby.

Trisecting 4-manifolds. Geometry & Topology, 20(6):3097-3132, 2016. Naturality of the Contact Invariant in Monopole Floer Homology under Strong Symplectic Cobordisms

Mariano Echeverria

Monopole Floer Homology

• (Y, \mathfrak{s}) : closed oriented 3-manifold Y + spin-c structure \mathfrak{s} on Y

Monopole Floer Homology

- (Y, \mathfrak{s}) : closed oriented 3-manifold Y + spin-c structure \mathfrak{s} on Y
- Monopole Floer Homology produces a family of abelian graded groups $HM^{\bullet}(Y, \mathfrak{s})$

Monopole Floer Homology

- (Y, \mathfrak{s}) : closed oriented 3-manifold Y + spin-c structure \mathfrak{s} on Y
- Monopole Floer Homology produces a family of abelian graded groups $HM^{\bullet}(Y, \mathfrak{s})$
- When $(Y, \xi, \mathfrak{s}_{\xi})$ is a contact manifold KMOS defined the contact invariant

$$\mathbf{c}(\xi) \in \widehat{HM}^{\bullet}(Y, \mathfrak{s}_{\xi})$$

Naturality Problem

$$(W, \mathfrak{s}_W) : (Y, \xi, \mathfrak{s}_{\xi}) \to (Y', \xi', \mathfrak{s}_{\xi'}) \\ HM^{\bullet}(W, \mathfrak{s}_W) : HM^{\bullet}(Y', \mathfrak{s}_{\xi'}) \to HM^{\bullet}(Y, \mathfrak{s}_{\xi})$$

Naturality Problem

$$(W, \mathfrak{s}_W) : (Y, \xi, \mathfrak{s}_{\xi}) \to (Y', \xi', \mathfrak{s}_{\xi'})$$
$$HM^{\bullet}(W, \mathfrak{s}_W) : HM^{\bullet}(Y', \mathfrak{s}_{\xi'}) \to HM^{\bullet}(Y, \mathfrak{s}_{\xi})$$

Naturality Problem: For which (W, \mathfrak{s}_W) is it true that $\widehat{HM}^{\bullet}(W, \mathfrak{s}_W)\mathbf{c}(\xi') = \mathbf{c}(\xi)$

Theorem (E. 2018) Let $(W, \omega) : (Y, \xi) \to (Y', \xi')$ be a strong symplectic cobordism between two contact manifolds (Y, ξ) and (Y', ξ') . Then

$$\widehat{HM}^{\bullet}(W,\mathfrak{s}_W)\mathbf{c}(\xi')=\mathbf{c}(\xi)$$

• The proof requires extending a gluing argument by Mrowka and Rollin from their paper *Legendrian Knots and Monopoles*.

- The proof requires extending a gluing argument by Mrowka and Rollin from their paper *Legendrian Knots and Monopoles*.
- Mrowka and Rollin also proved this result in an earlier, unpublished paper.

- The proof requires extending a gluing argument by Mrowka and Rollin from their paper *Legendrian Knots and Monopoles*.
- Mrowka and Rollin also proved this result in an earlier, unpublished paper.
- The naturality result is with $\mathbb{Z}/2\mathbb{Z}$ coefficients

- The proof requires extending a gluing argument by Mrowka and Rollin from their paper *Legendrian Knots and Monopoles*.
- Mrowka and Rollin also proved this result in an earlier, unpublished paper.
- The naturality result is with $\mathbb{Z}/2\mathbb{Z}$ coefficients
- The result is not known for Heegaard Floer in such generality.

Some Applications

 Corollary: (Ozsvath-Szabo) (E.) Let (X, ω) be a strong filling of (Y', ξ'). Assume in addition that Y' is an L-space. Then X must be negative definite.

Some Applications

- Corollary: (Ozsvath-Szabo) (E.) Let (X, ω) be a strong filling of (Y', ξ'). Assume in addition that Y' is an L-space. Then X must be negative definite.
- **Corollary:** Suppose (Y, ξ) is a planar contact manifold:
- 1. i) (Ozsvath, Stipsciz and Szabo) (E.) The reduced part of the contact invariant vanishes, i.e, $[\mathbf{c}(\xi)]_{red} = 0$.

Some Applications

- Corollary: (Ozsvath-Szabo) (E.) Let (X, ω) be a strong filling of (Y', ξ'). Assume in addition that Y' is an L-space. Then X must be negative definite.
- **Corollary:** Suppose (Y, ξ) is a planar contact manifold:
- 1. (Ozsvath, Stipsciz and Szabo) (E.) The reduced part of the contact invariant vanishes, i.e, $[\mathbf{c}(\xi)]_{red} = 0.$
- 2. (Etnyre) (E.) Any strong filling of (Y, ξ) must be negative definite.

Vanishing for Overtwisted Structures

• Corollary: (Ozsvath-Szabo) (E.) If (Y, ξ) is overtwisted then $\mathbf{c}(\xi) = 0$.

Vanishing for Overtwisted Structures

Corollary: (Ozsvath-Szabo) (E.) If (Y, ξ) is overtwisted then c(ξ) = 0.

1. Find (S^3, ξ_{ot}) such that $\mathbf{c}(\xi_{ot}) = 0$.

Vanishing for Overtwisted Structures

- Corollary: (Ozsvath-Szabo) (E.) If (Y, ξ) is overtwisted then c(ξ) = 0.
- Find (S³, ξ_{ot}) such that c(ξ_{ot}) = 0.
 If (Y, ξ) is overtwisted by Etnyre-Honda we can find (W_{Stein}, s_ω) : (Y, ξ, s_ξ) → (S³, ξ_{ot})

Non-vanishing for Strong Fillings

• Corollary (Ghiggini) (E.) If (X, ω) is a strong filling of (Y, ξ) , $\mathbf{c}(\xi) \neq 0$.

Non-vanishing for Strong Fillings

• Corollary (Ghiggini) (E.) If (X, ω) is a strong filling of (Y, ξ) , $\mathbf{c}(\xi) \neq 0$.

Remove a Darboux ball B^4 from X to obtain a strong symplectic cobordism

 $(W = X \setminus B, \mathfrak{s}_{\omega}) : (S^3, \xi_{tight}) \to (Y, \xi)$

Non-vanishing for Strong Fillings

• Corollary (Ghiggini) (E.) If (X, ω) is a strong filling of (Y, ξ) , $\mathbf{c}(\xi) \neq 0$.

Remove a Darboux ball B^4 from X to obtain a strong symplectic cobordism

$$(W = X \setminus B, \mathfrak{s}_{\omega}) : (S^3, \xi_{tight}) \to (Y, \xi)$$

 (S^{2},ξ_{opt}) $e(\xi_{opt}) \neq 0$ $(W, \mathbf{5}_{\omega})$ $e(\zeta)$ $e(\zeta)$

Ghiggini gave examples of weak fillings where the contact invariant vanishes, so **the naturality result cannot be naively extended**.

Thank you!

[image taken from Patrick Massot's website]

The Question Motivation Main result

Acylindrical actions on quasi-trees

Sahana H Balasubramanya

TechToplogy Conference December 2018

ヘロト ヘアト ヘビト ヘビト

3

Question

Which groups admit acylindrical, non-elementary, cobounded actions on quasi-trees ?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Question

Which groups admit acylindrical, non-elementary, cobounded actions on quasi-trees ?

By a quasi-tree, I mean a connected graph quasi-isometric to a tree.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

	Hyperbolic spaces	Unbounded quasi-trees	Unbounded locally finite quasi-trees	
Geometric action (Proper, Cobounded)	Hyperbolic groups	Virtually free groups	Virtually free groups	
Acylindrical, non- elementary cobounded action	Acylindrically hyper- bolic groups	?	Virtually free groups	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

	Hyperbolic spaces	Unbounded quasi-trees	Unbounded locally finite quasi-trees	
Geometric action (Proper, Cobounded)	Hyperbolic groups	Virtually free groups	Virtually free groups	
Acylindrical, non- elementary cobounded action	Acylindrically hyper- bolic groups	Acylindrically hyperbolic groups	Virtually free groups	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Constructing Surfaces From Integer Matrices

Joshua Pankau 12/09/2018

Visiting Assistant Professor The University of Iowa

Question:

Given a positive integer matrix Q, does there exist a closed orientable surface containing a pair of filling multicurves whose intersection matrix is Q?

Question:

Given a positive integer matrix Q, does there exist a closed orientable surface containing a pair of filling multicurves whose intersection matrix is Q?

Answer:

Yes.

• Thurston's Construction.

- Thurston's Construction.
- Stretch factors from this construction have restrictions.

- Thurston's Construction.
- Stretch factors from this construction have restrictions.

Theorem[P. 2017]

If λ is an algebraic unit satisfying all the known restrictions from Thurston's construction then some power of λ is a stretch factor.

Constructing Surfaces

Example 1: Consider $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 2 \end{bmatrix}$

Constructing Surfaces

Example 1: Consider
$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

Constructing Surfaces

Example 1: Consider
$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

Constructing Surfaces

Example 1: Consider $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 2 \end{bmatrix}$

Question: What surface do we get? **Question:** What surface do we get?

Answer: Genus 7. **Question:** What surface do we get?

Answer: Genus 7.

Question: Do we have control over the genus?

Question: What surface do we get?

Answer: Genus 7.

Question: Do we have control over the genus?

Answer:

Yes.

Theorem:

Given an $n \times n$ matrix Q whose entries are all larger than 2. Using the configuration as in example 1, the genus of the constructed surface is $g = n^2 - n + 1$.

Theorem:

Given an $n \times n$ matrix Q whose entries are all larger than 2. Using the configuration as in example 1, the genus of the constructed surface is $g = n^2 - n + 1$.

Observation: Genus is not optimal.

Example 2

Example 2

Genus 3 Surface with Multicurves

Genus 3 Surface with Multicurves

Current research question: What is the minimal genus surface obtainable?

Thank you!

Shadows from the pure mapping class group to the curve graph

Yvon Verberne with Kasra Rafi

University of Toronto

• $MCG(S) = \pi_0(Homeo^+(S, \partial S))$

- $MCG(S) = \pi_0(Homeo^+(S, \partial S))$
- $PMCG(S) \le MCG(S)$ fixes punctures individually

- $MCG(S) = \pi_0(Homeo^+(S, \partial S))$
- $PMCG(S) \le MCG(S)$ fixes punctures individually
- Dehn-Lickorish: finitely generated by Dehn twists, D_{α}

- $MCG(S) = \pi_0(Homeo^+(S, \partial S))$
- $PMCG(S) \le MCG(S)$ fixes punctures individually
- Dehn-Lickorish: finitely generated by Dehn twists, D_{α}

Curve Graph

- Vertices = simple closed curves
- Edges = two curves are disjoint

Theorem (Rafi - V.)

There is an $n \gg 1$, and a generating set S_n of $PMCG(S_{0,5})$ so that for every K, C > 0 there exists an S_n geodesic whose shadow to the curve graph $\mathscr{C}(S)$ is not a reparametrized (K, C)-quasi-geodesic.

Theorem (Masur - Minsky)

Every pair of elements in the mapping class group can be connected by a quasi-geodesic whose shadow to the curve graph can be reparametrized to a uniform quasi-geodesic.

Set-up

• Construct a generating set, \mathcal{S}_n

Set-up

- Construct a generating set, \mathcal{S}_n
- Generating set \rightsquigarrow geodesics

Theorem (Rafi - V.)

There is an $n \gg 1$, and a generating set S_n of $PMCG(S_{0,5})$ so that for every K, C > 0 there exists an S_n geodesic whose shadow to the curve graph $\mathscr{C}(S)$ is not a reparametrized (K, C)-quasi-geodesic.

Thank You