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I. Review of Set Theory
A. Sets

1. Basic definitions
i. We gave a naive definition of sets.
ii. Discussed elements of sets, subsets, the null-set, defining sets via properties and

Russel’s paradox.
2. Operations on sets

Discussed intersection and union of sets, the complement of a set and relations be-
tween these operations; in particular, DeMorgan’s Law.

3. Products
Defined the product of two sets.

B. Functions
1. Basic definitions

i. Gave an informal definition of functions involving a “rule” that takes an element
of one set and specifies an element in another set. Defined range and domain.

ii. Gave a formal definition of functions involving the graph of the function in the
product of the range and domain space.

2. Properties of functions
i. A function f : A→ B is injective if f(x) = f(y) implies x = y.

ii. a function f : A → B is surjective if for every z ∈ B there is an x ∈ A such that
f(x) = z.

iii. a functions is bijective or a one-to-one correspond if it is injective and surjective.
3. Composition and inverses

i. Defined the composition of two functions: f : A → B and g : B → C then
g ◦ f : A → C is the function that takes x ∈ A and sends it to g ◦ f(x) = g(f(x))
in C.

ii. A function f : A → B is invertible if there is a function g : B → A such that
g ◦ f(x) = x for all x ∈ A and f ◦ g(y) = y for all y ∈ B. The function g, if it exists,
is called the inverse of f and denoted f−1.

4. Direct and indirect images
i. Let f : A → B be a function and C ⊂ A. The direct image of C is the set
f(C) = {z ∈ B : such that z = f(x) for some x ∈ A}.

ii. We proved
• if C ⊂ D then f(C) ⊂ f(D),
• f(C ∪D) = f(C) ∪ f(D),
• f(C ∩D) ⊂ f(C) ∩ f(D), and
• f(C −D) ⊂ f(C).

iii. Let f : A → B be a function and C ⊂ B. The inverse image of C is the set
f−1(C) = {x ∈ A : f(x) ∈ C}. (Despite the bad, but standard, notation the inverse
image is always defined even if f is not invertible.)

iv. We proved
• if C ⊂ D then f−1(C) ⊂ f−1(D),
• f−1(C ∪D) = f−1(C) ∪ f−1(D),
• f−1(C ∩D) = f−1(C) ∩ f−1(D), and
• f−1(C −D) = f−1(C)− f−1(D).
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C. The natural numbers and cardinality
1. Cardinality: the size of sets

i. Two sets S and T have the same cardinality, denoted |S| = |T |, if there is a
bijection f : S → T.

ii. The relation “having the same cardinality” forms and equivalence relation on sets.
iii. We say the cardinality of S is less than or equal to the cardinality of T, denoted
|S| ≤ |T |, if there is an injection f : S → T.

iv. Schröder-Bernstein Theorem: If |S| ≤ |T | and |T | ≤ |S| then |S| = |T |.
v. Theorem: If there is a surjection S → T then |T | ≤ |S|. (This used the axiom of

choice.)
2. Finite and infinite sets

i. Let Sn = {1, 2, . . . , n} and S0 = ∅. We say a set S has finite cardinality if
|S| = |Sn| for some natural number n.

ii. A set S is countably infinite if there is a bijection between S and the set of natural
numbers N. That is if |S| = |N|. A set is countable if it is finite of countably infinite.

iii. A set S is uncountable if it is not countable.
iv. Discussed induction and used induction to show Theorem: |Sn| = |Sm| if and

only if n = m.
v. Theorem: The integers Z and the rational numbers Q are countably infinite.
vi. Theorem: The product of countable sets is countable and the countable union of

countable sets is countable.
vii. Theorem: The real numbers R are uncountable.
viii. Theorem: The power set P(S) of a set S always has strictly bigger cardinality

than S.
ix. Mentioned the Continuum Hypothesis.

II. The real numbers
A. we need the real numbers

1. The natural numbers N,
i. Discussed their algebraic properties: that is addition and multiplication and the

fact that they are commutative and associative operations and that multiplication
distributes over addition.

ii. Discussed their order properties: that is ≤, is a total order, and respects the
algebraic properties.

iii. Discussed the fact that they are well ordered (that is any non-empty subset of
them has a smallest element in the order ≤).

2. The integers Z.
i. Discussed extending N to the integers Z.

ii. Discussed that the algebraic properties extend to make Z a commutative ring,
iii. Discussed that the ordering extends and that Z is not well ordered, but satisfies the

maximum/minimum property (that is any non-empty set bounded above has a
greatest element and any non-empty set bounded below has a smallest element).

3. The rational numbers Q.
i. Discussed extending Z to the rational numbers Q.

ii. Discussed that the algebraic and order properties extend to make Q a totally ordered
field.

iii. The rational numbers Q do not satisfy the maximum or minimum property.
iv. We also discussed that there is no rational number x such that x2 = 2 and this is

related to the fact that there is no “least upper bound” on a set of rational numbers
that is bounded above.



B. The real numbers
1. The supremum property.

i. Said the real numbers R are an extension of the rational numbers satisfying the
same algebraic and order properties as Q (that is R is a totally ordered field) but
that R satisfies the supremum property.

ii. The supremum property says that a non-empty subset S of R that is bounded
above has a supremum (with is also called a least upper bound). That is there
is some r ∈ R such that s ≤ r for all s ∈ S (that is, r is an upper bound on S) and
if r′ is also an upper bound on S then r ≤ r′. Such a number r is called a supremum
on S.

2. Other properties of the real numbers
i. Used the supremum property to show that R has the Archimedean property.

That is, given any x ∈ R there is some integer n such that x < n.
ii. Used the Archimedean property to show

Theorem: (1) given any positive x ∈ R there is a positive integer n such that
1
n
< x, (2) given any x ∈ R there is an integer n such that n ≤ x < n + 1, and (3)

that given any x, y,∈ R with x < y there is a rational number r such that x < r < y.
iii. Used the supremum property and the Archimedean property to show that there is

a real number r such that r2 = 2.
iv. Used the supremum property to show that R satisfied the closed interval prop-

erty. That is, if In is a closed interval for each n ∈ N and In ⊃ In+1 then ∩∞i=0In is
non-empty.

C. How to construct the real numbers
Discussed how to construct R from Q in terms of subsets of Q.

D. Are the real numbers good enough
Discussed how R cannot be extended further if you want a totally ordered field with the
supremum property. You can extend to the complex numbers C, but you loose the ordering.

III. The topology of Rn

A. Norms and inner products on vector spaces
1. Review definition of vector space

i. Recalled the definition of vector spaces
ii. Gave several example of vector spaces including cartesian space Rn, the set of poly-

nomials of degree less than or equal to k for some fixed k, the set of all polynomials,
the set of all sequences in R, the set of all functions from a set to R.

2. Norms on vector spaces
i. A function ‖ · ‖ : V → R from a vector space to R is called a norm if
• ‖v‖ ≥ 0 for all v ∈ V,
• ‖v‖ = 0 if and only if v = 0,
• ‖av‖ = |a|‖v‖ for all a ∈ R and v ∈ V,
• ‖v + w‖ ≤ ‖v‖+ ‖w‖.

ii. Gave example of the p norm on Rn, for p ≥ 1 set

‖x‖p = (|x1|p + . . .+ |xn|p)1/p

where x = (x1, . . . , xn) ∈ Rn. We also define

‖x‖∞ = max{|x1|, . . . , |xn|}.

When the notation ‖x‖ is used for x ∈ R we mean ‖x‖2 unless otherwise specified.



iii. We defined the p norm on the set of sequences S by

‖s‖ =

(
∞∑
i=1

|si|p
)1/p

where s = (sn) ∈ S and

‖s‖∞ = max{|si|}.
These are not norms on S since they do not have to be finite on a given sequence.
So we define

lp = {s ∈ S : ‖s‖p <∞}.
These are vector spaces and ‖ · ‖p is a norm on lp.

3. Inner products on vector spaces
i. An inner product on a vector space V is a function 〈·, ·〉 : V × V → R such that
• 〈v, v〉 ≥ 0, for all v ∈ V,
• 〈v, v〉 = 0 if and only if v = 0,
• 〈v, w〉 = 〈w, v〉 for all v, w ∈ V, and
• 〈v, aw〉 = a〈v, w〉 and 〈v, u+ w〉 = 〈v, u〉+ 〈v, w〉 for all v, u, w ∈ V and a ∈ R.

ii. On Rn we have the standard “dot product” which gives an inner product

〈x, y〉 = x · y = x1y1 + · · ·+ xnyn.

iii. Theorem: Given an inner product 〈·, ·〉 on V we get a norm by defining

‖v‖ =
√
〈v, v〉.

Moreover, this norm satisfies the Cauchy-Schwartz inequality

|〈v, w〉| ≤ ‖v‖‖w‖,
with equality if and only if v and w are co-linear.

B. Open sets
1. We defined the open ball of radius r about x ∈ Rn to be

Br(x) = {y ∈ Rn : ‖x− y‖ < r},
and the closed ball to be

Br(x) = {y ∈ Rn : ‖x− y‖ ≤ r},
2. An open set in Rn is a set U such that for each point x ∈ U there is some r > 0 for

which Br(x) ⊂ U.
3. Theorem:

• ∅ and Rn are open sets in Rn.
• The intersection of two open sets if open.
• The union of any collection of open sets is open.

A collections of sets satisfying these properties is said to give a topology on Rn.
4. Given a point x ∈ Rn a neighborhood of x is an open set N containing x. (The book

says that a neighborhood is any set N containing an open set U that contains x. This is
needlessly complicated, but you are welcome to use this definition if you prefer.

5. A point x in a set A ⊂ Rn is called an interior point of A if there is a neighborhood of
x contained in A.

6. The set of all points interior to A is called the interior of A and is denoted

intA = {x ∈ A : x is an interior point of A}.
7. Theorem:



• intA is an open set.
• intA is the largest open set contained in A.
• intA is the union of all open sets contained in A.

8. Theorem: For a set B in Rn the following statements are equivalent
• B is open.
• intB = B.
• B is a neighborhood of each of its points.

C. Closed sets
1. A set C in Rn is closed if its complement, Rn − C, is open.
2. Theorem:

• ∅ and Rn are closed sets in Rn.
• The union of two closed sets if closed.
• The intersection of any collection of closed sets is closed.

3. A point x ∈ Rn is an accumulation point, also called a cluster point, of a set A ⊂ Rn

if every open set containing x also contains a point in A other than x. That is, if U is an
open set containing x then

(U − {x}) ∩ A 6= ∅.

4. Theorem: A set A ⊂ Rn is closed if and only if every cluster point of A is contained in
A.

5. The closure of a set A ⊂ Rn, denoted A, is the intersection of all closed sets containing
A. (Note the closure of a set is closed.)

6. Theorem: A is A together with all its cluster points.
7. The boundary of a set A ⊂ Rn is defined as

∂A = A ∩ Rn − A.

8. Theorem: A point x is in ∂A if and only if for every ε > 0 we have Bε(x) ∩ A 6= ∅ and
Bε(x) ∩ (Rn − A) 6= ∅.

D. Sequences
1. Basic definitions and examples

i. A sequence in a set A ⊂ Rn is a function s : N→ A from the natural numbers to
A. We usually denote the sequence by its image. That is let sk = s(k) for k ∈ N,
then denote s by {sk}.

ii. A sequence {sk} converges to a point x ∈ Rn (we also say x is a limit of the
sequence), if for every neighborhood U of x there is some number N such that sk ∈ U
for all k ≥ N. If such an x exists then we say the sequence {sk} is convergent and
write sk → x or lim sk = x. If no such x exists then we say the sequence {sk} is
divergent

iii. Theorem: A sequence {sk} converges to a point x if and only if for all ε > 0 there
is a number N such that ‖sk − x‖ < ε for all k ≥ N.

iv. Theorem: lim sk = x if and only if lim ‖sk − x‖ = 0.
v. Theorem: If {sk} is a convergent sequence then the set of point {s1, s2, . . .} that

make up the sequence is bounded. (That is there is some r such that ‖sk‖ < r for
all k.)

vi. Theorem: A sequence {sk} in Rn converges to a point y if and only if it converges
point-wise. (That is if sk = (xk,1, . . . , xk,n) and y = (y1, . . . yn) then sk → y if and
only if for each i, xi,k → yi.)

vii. Theorem: Let xk → x and yk → y in Rn and zk → z in R, then
• (xk + yk)→ x+ y this can be written lim(xk + yk) = lim(xk) + lim(yk).



• (xkyk)→ xy this can be written lim(xkyk) = lim(xk) lim(yk).
• (zkyk)→ zy this can be written lim(zkyk) = lim(zk) lim(yk).
• If zk 6= 0 and z 6= 0 then (yk/zk) → y/z this can be written lim(yk/zk) =

lim(yk)/ lim(zk).
viii. Given a sequence {sk}, a subsequence is {ski} where the ki are a choice of increas-

ing natural numbers 0 ≤ k1 < k2 < . . . < ki < ki+1 < . . . .
ix. Theorem: sk → x if and only if every subsequence {skl} of {sk} converges to x.
x. Thoerem (The monotone convergence theorem): Suppose {sk} is a sequence

that is monotonically increasing (that is xi ≤ xi+1 for all i). Then {sk} converges if
and only if it is bounded above, in which case lim sk = sup{xk}.

2. Properties of sequences and cluster points
i. Theorem: A sequence can converge to at most one point.
ii. Theorem: Suppose x 6∈ A. Then x is a cluster point of A if and only if there is a

sequence of points {sk} in A such that sk → x.
iii. Theorem: A set A is closed if and only if every sequence {sk} in A which converges

has its limit in A.
E. Compact sets

1. Let A be a subset of Rn. A collection of open sets {Uα}α∈J is called an open cover of A
if A ⊂ ∪α∈JUα. It is called a finite open cover if J is a finite set.

2. A set A is called compact if ever open cover of A has a finite subcover, that is if {Uα}α∈J
is an open cover of A then there is a finite subset J ′ of J such that {Uα}α∈J ′ is also an
open cover of A.

3. Theorem: for a set A in Rn the following are equivalent:
i. A is compact.

ii. A is closed and bounded.
iii. Any sequence in A has a subsequence that converges to a point in A.
iv. Any infinite set in A has a cluster point in A.

The equivalence i. ⇔ ii. is called the Heine-Borel Theorem. The equivalence ii. ⇔
iii. and ii.⇔ iv. are both called the Bolzano-Weierstrass Theorem.

4. Cauchy Sequences: a sequence {sk} in Rn is said to be a Cauchy sequence if for any
ε > 0 there is an N such that for any k, l ≥ N we have ‖sk − sl‖ < ε.

5. Theorem: A sequence in Rn is Cauchy if and only if it converges.
F. Connected Sets

1. A set D ⊂ Rn is disconnected if there exists open sets U, V in Rn such that
• D ⊂ U ∪ V,
• D ∩ U and D ∩ V are both non-empty and
• (U ∩D) ∩ (V ∩D) = ∅.

The sets U and V are called a disconnection of D. The set D is connected if it is not
disconnected.

2. Theorem: the set (0, 1) is a connected subset of R.
3. Theorem: If C is connected and x is a cluster point of C then C ∪ {x} is connected.
4. Theorem: A subset of R is connected if and only if it is an interval (that is equal to

(a, b), (a, b], [a, b) or [a, b] where for an open end point a could be −∞ and b could be∞).
5. Theorem: Rn is connected for all n ≥ 1.
6. Theorem: The only subsets of Rn that are both open and closed are ∅ and Rn.



IV. Continuous Functions
A. Definitions and Examples

1. A function f : D ⊂ Rp → Rq is continuous at a point a ∈ D if for every open set U in
Rq containing f(a) there is an open set V in Rp containing a such that V ∩D ⊂ f−1(U).

2. Theorem: For a function f : D ⊂ Rp → Rq and point a ∈ D the following are equivalent:
i. f is continuous at a.
ii. For all ε > 0 there is a δ > 0 such that for each x ∈ D with ‖x − a‖ < δ we have
‖f(x)− f(a)‖ < ε.

iii. For all sequences {xn} in D that converge to a we have f(xn)→ f(a).
3. We say examples of functions continuous at all point of their domain and at no points

of their domain. We also saw a function f ; [0, 1] → [0, 1] that were continuous at the
irrational numbers and discontinuous at the rational numbers.

B. Theorem: f : D ⊂ Rp → Rq, g : D′ ⊂ Rp → Rq and h : D′′ ⊂ Rp → R. Then
1. If f and g are continuous at a ∈ D∩D′ then the functions (f + g)(x) = f(x) + g(x), (f −

g)(x) = f(x)− g(x) and (f · g)(x) = f(x) · g(x) are all continuous at a.
2. If f and h are continuous at a ∈ D ∩ D′′ then the function (hf)(x) = h(x)f(x) is

continuous at a and if moreover h(a) 6= 1 then (f/h)(x) = f(x)/h(x) is continuous at a.
3. Theorem: If f is continuous at a and g is continuous at f(a) then g ◦ f is continuous at

a.
4. A function f : D ⊂ Rp → Rq is called Lipschitz if there is a constant K > 0 such that

for all x, y ∈ D we have ‖f(x)− f(y)‖ ≤ K‖x− y‖.
5. Theorem: Lipschitz functions are continuous at all points in their domain.
6. Theorem: Linear functions are Lipschitz and hence continuous at all points of their

domain.
C. Global Continuity

1. A function f : D ⊂ Rp → Rq is continuous if it is continuous at all points of its domain
D.

2. Given a set D ⊂ Rp then a subset A ⊂ D is called relatively open (or open relative
to D) if there is some open set V in Rp such that A = D ∩ V. Similarly a set A ⊂ D is
called relatively closed (or closed relative to D) if there is some closed set C such that
A = C ∩D.

3. Theorem: For a function f : D ⊂ Rp → Rq the following are equivalent:
i. f is continuous.

ii. For every open set U in Rq, the set f−1(U) is relatively open in D.
iii. For every closed set C in Rq, the set f−1(C) is relatively closed in D.
iv. If {xn} is any sequence in D that converges to a point a ∈ D, then f(xn)→ f(a).
v. For each x ∈ D and ε > 0 there is a δ > 0 such that for all y ∈ D with ‖x− y‖ < δ

we have ‖f(x)− f(y)‖ < ε.
D. Properties of Continuous Functions

1. Theorem: Let f : D ⊂ Rp → Rq. If H ⊂ D is a connected set and f is continuous on H
then f(H) is connected.

2. Theorem (The Intermediate Value Theorem): Let f : D ⊂ Rp → R be continuous.
If H ⊂ D is connected and x, y ∈ H, then for all c ∈ R with f(x) ≤ c ≤ f(y) we have
some z ∈ C such that f(z) = c.

3. Theorem: Let f : D ⊂ Rp → Rq. If H ⊂ D is a compact set and f is continuous on H
then f(H) is compact.

4. Theorem (Maximum/Minimum Value Theorem): Let f : D ⊂ Rp → R. If K ⊂ D
is a compact set and f is continuous onK then there are points xm and xM such that for all
z ∈ K we have f(xm) ≤ f(z) ≤ f(xM). That is f(xm) = inf f(K) and f(xM) = sup f(K).



E. Uniform Continuity
1. A function f : D ⊂ Rp → Rq is uniformly continuous on a set A ⊂ D if for all ε > 0

there is a δ > 0 such that for every x, y ∈ A with ‖x− y‖ < δ we have ‖f(x)− f(y)‖ < ε.
2. Theorem: If f : D ⊂ Rp → Rq is a function and f is continuous on a compact set

K ⊂ D, then f is uniformly continuous on K.

V. Sequences of Functions
A. Spaces of functions

1. If D ⊂ Rp the we denote by F(D,Rq) the set of all functions from D to Rq.
2. If {fn} is a sequence in F(D,Rq) then we say it converges point-wise to f on D0 ⊂ D

if for each point x ∈ D0 the sequence of points {fn(x)} in Rq converges to f(x). We
denote this by fn −→

pw
f on D0.

3. We say that a sequence {fn} in F(D,Rq) converges uniformly to f on D0 ⊂ D
if for every ε > 0 there is some N such that for all n ≥ N and x ∈ D0 we have
‖f(x)− fn(x)‖ < ε. We denote this by fn −→

u
f on D0.

4. Theorem: If a sequence of continuous functions {fn} converges uniformly to f on D0

then f is continuous on D0.
5. Uniform convergence implies point-wise convergence, but point-wise convergence does not

imply uniform convergence.
B. Norms on function spaces

1. We denote by B(D,Rq) the set of bounded function on D ⊂ Rp.
2. For f ∈ B(D,Rq) we define the uniform norm (also known as the sup norm) of f to

be

‖f‖u = sup{‖f(x)‖ : x ∈ D}.
3. Lemma: The set B(D,Rq) is a vector space (under point wise addition and scalar

multiplication) and ‖ · ‖u is a norm on this vector space.
4. We say a sequence {fn} in B(D,Rq) converges to f in the uniform norm if

‖f − fn‖u → 0.

5. Theorem: A sequece {fn} in B(D,Rq) converges to f uniformly on D if and only if {fn}
converges to f in the uniform norm.

6. Theorem: Let {fn} be a Cauchy sequence in B(D,Rq) (that is for all ε > 0 there is
some N such that ‖fn− fm‖ < ε for all n,m ≥ N), then there is some f ∈ B(D,Rq) such
that ‖fn − f‖ → 0.

7. We call a normed vector space (V, ‖·‖) complete if every Cauchy sequence in V converges
in norm to some point in V. (That is if {vn} is a sequence such for all ε > 0 there is some
N such that ‖vn − vm‖ < ε for all n,m ≥ N, then there is some v ∈ V such that
‖vn − v‖ → 0). A complete normed vector space is called a Banach space.

8. Theorem: The vector spaces B(D,Rq) and

Cb(D,Rq) = {f ∈ B(D,Rq) : f is continuous}

are Banach spaces in the uniform norm.
9. Theorem: There is a continuous surjection f : [0, 1]→ [0, 1]× [0, 1]. Such an f is called

a space filling curve or a Peano curve.
C. Approximations of functions

1. Theorem (Weirstrass-Bernstein Approximation): If f : [0, 1]→ R is a continuous
function and ε > 0 then there is a polynomial p(x) such that ‖f − p‖u < ε.



2. In the above theorem can use the Bernstein polynomial of f :

pn(x) =
n∑
k=0

(
n

k

)
f(
k

n
)xk(1− x)n−k.

3. Theorem (Stone-Weierstrass Approximation): Let A ⊂ Rp be compact and B ⊂
C(A,R) (here C(A,R) is the set of continuous functions with domain A and range R)
satisfy

i. B is an algebra (that is, f, g ∈ B and a ∈ R, implies fg ∈ B and af ∈ B)
ii. the constant function 1 : A→ R : x→ 1 is in B and
iii. B separates points (that is, for each x, y ∈ A with x 6= y we have some f ∈ B such

that f(x) 6= f(y))
Then given any f ∈ C(A,R) and ε there is some g ∈ B such that ‖f − g‖u < ε.

D. Interlude: series of numbers
1. If {xn} is a sequence in Rp then the (infinite) series generated by {xn} is the sequence

{sk} where sk =
∑k

n=1 xn is the kth partial sum of the terms in the sequence {xn}. We
say the series converges or is summable if the sequence of partial sums converge, and
denote the limit by

∞∑
n=1

xn

We abuse notation and also use the symbol to denote the series even if it does not
converge.

2. Lemma: If the series
∑∞

n=1 xn in Rp converges then limxn = 0.
3. Theorem: The series

∑∞
n=1 xn in Rp converges if and only if for all ε > 0 there is some

M > 0 such that for all m ≥ n ≥M we have

‖xn+1 + . . .+ xm‖ < ε.

4. We say
∑∞

n=1 xn in Rp is absolutely convergent (or converges absolutely) if the
series

∑∞
n=1 ‖xn‖ converges.

5. Theorem: If a series converges absolutely then it converges.
6. Theorem: We have the following convergence “tests” or “results”

i. (Geometric series) If |r| < 1 is a real number then
∑∞

n=0 r
n = 1

1−r . If |r| ≥ 1 then∑∞
n=0 r

n diverges.
ii. (p-series) The series

∑∞
n=1 n

−p converges if p > 1 and diverges (to infinity) if p ≤ 1.
iii. (comparison test) If the series

∑∞
n=1 an converges and 0 ≤ bn ≤ an then the series∑∞

n=1 bn converges. If the series
∑∞

n=1 cn diverges and 0 ≤ cn ≤ dn then the series∑∞
n=1 dn diverges.

iv. (ratio test) Let {an} be a sequence in R and let r = lim |an+1|
|an| the the series

∑∞
n=1 an

converges if r < 1, diverges if r > 1 and if r = 1 then the test is inconclusive.
v. (root test) Let {an} be a sequence in R and let r = lim |an|

1
n the the series

∑∞
n=1 an

converges if r < 1, diverges if r > 1 and if r = 1 then the test is inconclusive.
7. Theorem: If

∑∞
n=1 an = S and

∑∞
n=1 bn = T then

∑∞
n=1(an + bn) = S + T and∑∞

n=1 cxn = cS for any c ∈ R.
8. Theorem: Suppose {an} is a decreasing sequence and an → 0. Then the series

∞∑
n=1

(−1)nan

converges. Also if sk =
∑k

n=1(−1)nan and S =
∑∞

n=1(−1)nan then
i. s2k > S > s2k+1 for all k.



ii. |S − sk| < ak+1 for all k.
9. A rearrangement of the series

∑∞
n=1 xn is

∑∞
n=1 xσ(n) where σ : N→ N is a bijection.

10. Theorem: If
∑∞

n=1 xn is absolutely convergent the so is any rearrangement and both
series converge to the same thing.

11. Theorem (Riemann rearrangement): If
∑∞

n=1 xn is convergent but not absolutely
convergent and s is any real number then there is a rearrangement of

∑∞
n=1 xn that

converges to s.
E. Series of functions

1. Let {gk} be a sequence of functions in C(D,Rq) for some domain D ⊂ Rp. We say the
series

∑∞
k=1 gk converges point-wise to g : D → Rq if for every x ∈ D the series∑∞

k=1 gk(x) in Rq converges to g(x). We denote this

∞∑
k=1

gk = g (point-wise).

We say the series converges absolutely to g if the series
∑∞

k=1 ‖gk(x)‖ in R converges
to ‖g(x)‖ for all x ∈ D. Finally, the series converges uniformly to g if the sequence of
partial sums sn =

∑n
k=1 gk converges uniformly to g. We denote this

∞∑
k=1

gk = g (uniformly).

2. Theorem: If {gk} is a sequence of continuous functions and
∑∞

k=1 gk = g (uniformly),
then g is continuous.

3. Theorem (Weierstrass M-test): Suppose
a) {gk : D ⊂ Rp → Rq} is a sequence of functions and
b) for each k there are constants Mk satisfying ‖gk(x)‖ ≤Mk for all x ∈ D.

If
∑∞

k=1Mk converges then,
∑∞

k=1 gk converges uniformly (and absolutely) on D.
4. Theorem (Abel test:): Let φn : D ⊂ Rp → R be a sequence of functions satisfying

a) (the φn are point-wise decreasing) φn+1(x) ≤ φn(x) for all x ∈ D and n, and
b) (the φn are bounded) there is some M such that |φn(x)| ≤M for all x ∈ D and n.

If
∑∞

n=1 gn is a uniformly convergent series on D then so is
∑∞

n=1 φngn.
5. Theorem (Dirchlet test): Suppose

a) {fk : D ⊂ Rp → Rq} is a sequence of functions with uniformly bounded partial
sums, that is, for which there is a constant M such that

‖sn(x)‖ ≤M for all x ∈ D and n,

where sn(x) =
∑n

k=1 fk(x); and
b) {gk : D → R} is a sequence of decreasing positive functions (that is gn(x) ≥

gn+1(x) ≥ 0) that converges uniformly to 0.
Then

∑∞
k=1 gkfk converges uniformly on D.

F. Power series
1. Let c ∈ R. A series of function

∑∞
n=0 fn is called a power series about x = c if each of

the fn is of the form

fn(x) = an(x− c)n,

for some constant an; that is a series of the form
∑∞

n=0 an(x− c)n.
2. Given a sequence {bn} of non-negative numbers that is bounded above we define the

limit superior of {bn} to be

lim sup bn = inf{v : v is larger than all but finitely many bn}



If {bn} is not bounded then we set lim sup b− n =∞.
3. Properties of the limit superior: (1) It’s is always well-defined. (2) If v > lim sup bn

then there is some N such that for n ≥ N we have bn ≤ v. (3) If v < lim sup bn then for
any N there are n > N such that bn > v. (4) If lim bn exists then lim sup bn = lim bn. (5)
If c ≥ 0 then lim sup cbn = c lim sup bn. (6) lim sup(an + bn) ≤ lim sup an + lim sup bn.

4. Given a power series
∑∞

n=0 an(x − c)n let ρ = lim sup |an|1/n. Then the radius of con-
vergence of the power series is

R =


∞ if ρ = 0
1
ρ

if 0 < ρ <∞
0 if ρ =∞.

The interval of convergence is (c−R, c+R).
5. Theorem: If R is the radius of convergence for the power series

∑∞
n=0 an(x− c)n, then

the series converges absolutely for |x− c| < R and diverges for |x− c| > R.
6. Theorem: Given a power series

∑∞
n=0 an(x− c)n, the radius of convergence is given by

lim |an|
|an+1| if the limit exists.

7. Theorem: If R is the radius of convergence for the power series
∑∞

n=0 an(x− c)n, then
the series converges uniformly on any compact subset of (c−R, c+R). In particular, the
series defines a continuous function on (c−R, c+R).

8. We can define the following functions using power series:

ex =
∞∑
n=0

1

n!
xn, cosx =

∞∑
n=0

(−1)n

(2n)!
x2n and sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Their radius of convergence is infinite for all these functions and so they all are continuous
functions on R. Once can use the power series to prove that ex+y = exey and eiz =
cos z + i sin z. These two formulas can be used to derive the angle sum formulas for sin
and cos as well as all the other trigonometric formulas.

G. Fourier Series
1. The L2 inner product

i. Theorem: Let I ⊂ R be an interval and f, g : I → R be functions. Set

〈f, g〉 =

∫
I

f(x)g(x) dx.

Let L2
c(I) = {f : I → R continuous with 〈f, f〉 <∞}. Then L2

c(I) is a vector space
and 〈·, ·〉 is an inner product on it.

ii. We call the above inner product the L2 inner product on L2
c(I).

iii. Like all inner products this one induces a norm ‖ · ‖2 on L2
c(I) called the L2 norm.

iv. We say a sequence {fn} in L2
c(I) converges in L2 to f if such that ‖fn − f‖2 → 0

as n→∞. We say the sequence is Cauchy in L2 if for all ε > 0 there is an N such
that ‖fn − fm‖2 < ε for all n,m ≥ N.

v. L2
c(I) with the L2 norm is not complete (that is a Cauchy sequence does not have

to converge).
2. Orthonormal sets

i. A set {vα}α∈A in an inner product space (V, 〈·, ·〉) is called orthonormal if
• 〈vα, vβ〉 = 0 for all α 6= β and
• 〈vα, vα〉 = 1 for all α.

ii. Theorem: Let (V, 〈·, ·〉) be an inner product space. (1) if {vα}α∈A is an orthonormal
set of vectors then they are also linearly independent. (2) If {vi}ni=1 (where n could



be ∞) is a linearly independent set of vectors then there is an orthonormal set
{wi}ni=1 such that

span(v1, . . . , vk) = span(w1, . . . , wk)

for all k = 1, . . . , n. (The algorithm in the proof to construct the wi is called the
Gram-Schmidt process.)

iii. Theorem: Suppose that {vi}∞i=1 is an orthonormal set in the inner product space
(V, 〈·, ·〉). If

∑∞
i=1 aivi converges in norm to v then ai = 〈v, vi〉.

iv. Theorem (Bessel’s inequality): Suppose that {vi}∞i=1 is an orthonormal set in
the inner product space (V, 〈·, ·〉). For any v ∈ V the series

∞∑
i=1

|〈v, vi〉|2

converges and
∞∑
i=1

|〈v, vi〉|2 ≤ ‖v‖2,

where ‖ · ‖ is the norm associated to the inner product.
v. We say an orthonormal set {vi}∞i=1 in an inner product space (V, 〈·, ·〉) is complete

if for every v ∈ V there are constants ai such that v =
∑∞

i=1 aivi. (Note from above
each ai must equal 〈v, vi〉.) The series

∑∞
i=1〈v, vi〉vi is called the Fourier series

of v with respect to {vi}∞i=1 and the constants 〈v, vi〉vi are called the Fourier
coefficients of v.

vi. Theorem: Suppose that {vi}∞i=1 is an orthonormal set in the inner product space
(V, 〈·, ·〉). The set {vi}∞i=1 is complete if and only if

‖v‖2 =
∞∑
i=1

|〈v, vi〉|2,

for all v ∈ V. (The equality is called Parseval’s equality.)
3. The Fourier series

i. Lemma: The set { 1√
2π
, 1√

π
cosnx, 1√

π
sinnx}∞n=1 is an orthonormal set in L2

c([−π, π]).

ii. Given a function f ∈ L2
c([−π, π]) (or more generally a piece-wise continuous function

. . .) then the Fourier coefficients of f are

an =
1

π

∫ π

−π
f(x) cosnx dx, n = 0, 1, . . .

bn =
1

π

∫ π

−π
f(x) sinnx dx, n = 1, 2, . . .

and the Fourier series of f is

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

here you should read “∼” as “has the Fourier series” (there is no guarantee that the
term on the left and right are equal).

iii. Corollary (Bessel Inequality): For f as above

a20
2

+
∞∑
i=1

(a2n + b2n) ≤ 1

π
‖f‖22,



where an and bn are the Fourier coefficients.
4. Convergence of Fourier series

i. Theorem: The set { 1√
2π
, 1√

π
cosnx, 1√

π
sinnx}∞n=1 is “complete” in L2

c([−π, π]). In

particular, the Fourier series of f approaches f in the L2 norm.
N.B. The set is not really complete, largely because L2

c is not complete as a normed
vector space, so the series might converge, but not to something actually in L2

c . This
issue will not be a problem for the following corollary though and we will see exactly
how it fails below.

ii. Corollary (Parseval’s equality): For f as above

a20
2

+
∞∑
i=1

(a2n + b2n) =
1

π
‖f‖22,

where an and bn are the Fourier coefficients.
iii. A function is called piece-wise Lipschitz if it is piece-wise continuous and there

is some constant L such that L is a Lipschitz constant for the function on each
interval of convergence. (Here when discussing piece-wise continuous we mean that
the domain can be broken into intervals such that the function is continuous on
the interiors of each interval and the function has a limit as you approach each end
point of an interval of continuity.)

iv. Theorem (Dirichlet-Jordan): Suppose that f is a piecewise Lipschitz function
on [−π, π] (that is extended to be 2π periodic). Then if f is continuous at x the
Fourier series converges to f(x). If f has a jump discontinuity at x then the Fourier
series converges to

f(x+)− f(x−)

2
,

where f(x+) is the limit of f(xn) where xn is a sequence approaching x from above
and f(x−) is the limit of f(xn) where xn is a sequence approaching x from below.


