- Outline Math 4317

I. Review of Set Theory

A. SETS

1. Basic definitions
i. We gave a naive definition of sets.
ii. Discussed elements of sets, subsets, the null-set, defining sets via properties and Russel's paradox.
2. Operations on sets

Discussed intersection and union of sets, the complement of a set and relations between these operations; in particular, DeMorgan's Law.
3. Products

Defined the product of two sets.

B. Functions

1. Basic definitions
i. Gave an informal definition of functions involving a "rule" that takes an element of one set and specifies an element in another set. Defined range and domain.
ii. Gave a formal definition of functions involving the graph of the function in the product of the range and domain space.
2. Properties of functions
i. A function $f: A \rightarrow B$ is injective if $f(x)=f(y)$ implies $x=y$.
ii. a function $f: A \rightarrow B$ is surjective if for every $z \in B$ there is an $x \in A$ such that $f(x)=z$.
iii. a functions is bijective or a one-to-one correspond if it is injective and surjective.
3. Composition and inverses
i. Defined the composition of two functions: $f: A \rightarrow B$ and $g: B \rightarrow C$ then $g \circ f: A \rightarrow C$ is the function that takes $x \in A$ and sends it to $g \circ f(x)=g(f(x))$ in C.
ii. A function $f: A \rightarrow B$ is invertible if there is a function $g: B \rightarrow A$ such that $g \circ f(x)=x$ for all $x \in A$ and $f \circ g(y)=y$ for all $y \in B$. The function g, if it exists, is called the inverse of f and denoted f^{-1}.
4. Direct and indirect images
i. Let $f: A \rightarrow B$ be a function and $C \subset A$. The direct image of C is the set $f(C)=\{z \in B$: such that $z=f(x)$ for some $x \in A\}$.
ii. We proved

- if $C \subset D$ then $f(C) \subset f(D)$,
- $f(C \cup D)=f(C) \cup f(D)$,
- $f(C \cap D) \subset f(C) \cap f(D)$, and
- $f(C-D) \subset f(C)$.
iii. Let $f: A \rightarrow B$ be a function and $C \subset B$. The inverse image of C is the set $f^{-1}(C)=\{x \in A: f(x) \in C\}$. (Despite the bad, but standard, notation the inverse image is always defined even if f is not invertible.)
iv. We proved
- if $C \subset D$ then $f^{-1}(C) \subset f^{-1}(D)$,
- $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$,
- $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$, and
- $f^{-1}(C-D)=f^{-1}(C)-f^{-1}(D)$.

C. The natural numbers and cardinality

1. Cardinality: the size of sets
i. Two sets S and T have the same cardinality, denoted $|S|=|T|$, if there is a bijection $f: S \rightarrow T$.
ii. The relation "having the same cardinality" forms and equivalence relation on sets.
iii. We say the cardinality of S is less than or equal to the cardinality of T, denoted $|S| \leq|T|$, if there is an injection $f: S \rightarrow T$.
iv. Schröder-Bernstein Theorem: If $|S| \leq|T|$ and $|T| \leq|S|$ then $|S|=|T|$.
v. Theorem: If there is a surjection $S \rightarrow T$ then $|T| \leq|S|$. (This used the axiom of choice.)
2. Finite and infinite sets
i. Let $S_{n}=\{1,2, \ldots, n\}$ and $S_{0}=\emptyset$. We say a set S has finite cardinality if $|S|=\left|S_{n}\right|$ for some natural number n.
ii. A set S is countably infinite if there is a bijection between S and the set of natural numbers \mathbb{N}. That is if $|S|=|\mathbb{N}|$. A set is countable if it is finite of countably infinite.
iii. A set S is uncountable if it is not countable.
iv. Discussed induction and used induction to show Theorem: $\left|S_{n}\right|=\left|S_{m}\right|$ if and only if $n=m$.
v. Theorem: The integers \mathbb{Z} and the rational numbers \mathbb{Q} are countably infinite.
vi. Theorem: The product of countable sets is countable and the countable union of countable sets is countable.
vii. Theorem: The real numbers \mathbb{R} are uncountable.
viii. Theorem: The power set $\mathcal{P}(S)$ of a set S always has strictly bigger cardinality than S.
ix. Mentioned the Continuum Hypothesis.

II. The real numbers

A. WE NEED THE REAL NUMBERS

1. The natural numbers \mathbb{N},
i. Discussed their algebraic properties: that is addition and multiplication and the fact that they are commutative and associative operations and that multiplication distributes over addition.
ii. Discussed their order properties: that is \leq, is a total order, and respects the algebraic properties.
iii. Discussed the fact that they are well ordered (that is any non-empty subset of them has a smallest element in the order \leq).
2. The integers \mathbb{Z}.
i. Discussed extending \mathbb{N} to the integers \mathbb{Z}.
ii. Discussed that the algebraic properties extend to make \mathbb{Z} a commutative ring,
iii. Discussed that the ordering extends and that \mathbb{Z} is not well ordered, but satisfies the maximum/minimum property (that is any non-empty set bounded above has a greatest element and any non-empty set bounded below has a smallest element).
3. The rational numbers \mathbb{Q}.
i. Discussed extending \mathbb{Z} to the rational numbers \mathbb{Q}.
ii. Discussed that the algebraic and order properties extend to make \mathbb{Q} a totally ordered field.
iii. The rational numbers \mathbb{Q} do not satisfy the maximum or minimum property.
iv. We also discussed that there is no rational number x such that $x^{2}=2$ and this is related to the fact that there is no "least upper bound" on a set of rational numbers that is bounded above.

B. The real numbers

1. The supremum property.
i. Said the real numbers \mathbb{R} are an extension of the rational numbers satisfying the same algebraic and order properties as \mathbb{Q} (that is \mathbb{R} is a totally ordered field) but that \mathbb{R} satisfies the supremum property.
ii. The supremum property says that a non-empty subset S of \mathbb{R} that is bounded above has a supremum (with is also called a least upper bound). That is there is some $r \in \mathbb{R}$ such that $s \leq r$ for all $s \in S$ (that is, r is an upper bound on S) and if r^{\prime} is also an upper bound on S then $r \leq r^{\prime}$. Such a number r is called a supremum on S.
2. Other properties of the real numbers
i. Used the supremum property to show that \mathbb{R} has the Archimedean property. That is, given any $x \in \mathbb{R}$ there is some integer n such that $x<n$.
ii. Used the Archimedean property to show

Theorem: (1) given any positive $x \in \mathbb{R}$ there is a positive integer n such that $\frac{1}{n}<x$, (2) given any $x \in \mathbb{R}$ there is an integer n such that $n \leq x<n+1$, and (3) that given any $x, y, \in \mathbb{R}$ with $x<y$ there is a rational number r such that $x<r<y$.
iii. Used the supremum property and the Archimedean property to show that there is a real number r such that $r^{2}=2$.
iv. Used the supremum property to show that \mathbb{R} satisfied the closed interval property. That is, if I_{n} is a closed interval for each $n \in \mathbb{N}$ and $I_{n} \supset I_{n+1}$ then $\cap_{i=0}^{\infty} I_{n}$ is non-empty.
C. How to construct the Real numbers

Discussed how to construct \mathbb{R} from \mathbb{Q} in terms of subsets of \mathbb{Q}.
D. Are the real numbers good enough

Discussed how \mathbb{R} cannot be extended further if you want a totally ordered field with the supremum property. You can extend to the complex numbers \mathbb{C}, but you loose the ordering.

III. The topology of \mathbb{R}^{n}

A. Norms and inner products on vector spaces

1. Review definition of vector space
i. Recalled the definition of vector spaces
ii. Gave several example of vector spaces including cartesian space \mathbb{R}^{n}, the set of polynomials of degree less than or equal to k for some fixed k, the set of all polynomials, the set of all sequences in \mathbb{R}, the set of all functions from a set to \mathbb{R}.
2. Norms on vector spaces
i. A function $\|\cdot\|: V \rightarrow \mathbb{R}$ from a vector space to \mathbb{R} is called a norm if

- $\|v\| \geq 0$ for all $v \in V$,
- $\|v\|=0$ if and only if $v=0$,
- $\|a v\|=|a|\|v\|$ for all $a \in \mathbb{R}$ and $v \in V$,
- $\|v+w\| \leq\|v\|+\|w\|$.
ii. Gave example of the p norm on \mathbb{R}^{n}, for $p \geq 1$ set

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. We also define

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} .
$$

When the notation $\|x\|$ is used for $x \in \mathbb{R}$ we mean $\|x\|_{2}$ unless otherwise specified.
iii. We defined the p norm on the set of sequences \mathcal{S} by

$$
\|s\|=\left(\sum_{i=1}^{\infty}\left|s_{i}\right|^{p}\right)^{1 / p}
$$

where $s=\left(s_{n}\right) \in \mathcal{S}$ and

$$
\|s\|_{\infty}=\max \left\{\left|s_{i}\right|\right\}
$$

These are not norms on \mathcal{S} since they do not have to be finite on a given sequence. So we define

$$
l^{p}=\left\{s \in \mathcal{S}:\|s\|_{p}<\infty\right\} .
$$

These are vector spaces and $\|\cdot\|_{p}$ is a norm on l^{p}.
3. Inner products on vector spaces
i. An inner product on a vector space V is a function $\langle\cdot, \cdot \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that

- $\langle v, v\rangle \geq 0$, for all $v \in V$,
- $\langle v, v\rangle=0$ if and only if $v=0$,
- $\langle v, w\rangle=\langle w, v\rangle$ for all $v, w \in V$, and
- $\langle v, a w\rangle=a\langle v, w\rangle$ and $\langle v, u+w\rangle=\langle v, u\rangle+\langle v, w\rangle$ for all $v, u, w \in V$ and $a \in \mathbb{R}$.
ii. On \mathbb{R}^{n} we have the standard "dot product" which gives an inner product

$$
\langle x, y\rangle=x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

iii. Theorem: Given an inner product $\langle\cdot, \cdot\rangle$ on V we get a norm by defining

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

Moreover, this norm satisfies the Cauchy-Schwartz inequality

$$
|\langle v, w\rangle| \leq\|v\|\|w\|
$$

with equality if and only if v and w are co-linear.

B. Open sets

1. We defined the open ball of radius r about $x \in \mathbb{R}^{n}$ to be

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{n}:\|x-y\|<r\right\},
$$

and the closed ball to be

$$
\bar{B}_{r}(x)=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leq r\right\},
$$

2. An open set in \mathbb{R}^{n} is a set U such that for each point $x \in U$ there is some $r>0$ for which $B_{r}(x) \subset U$.
3. Theorem:

- \emptyset and \mathbb{R}^{n} are open sets in \mathbb{R}^{n}.
- The intersection of two open sets if open.
- The union of any collection of open sets is open.

A collections of sets satisfying these properties is said to give a topology on \mathbb{R}^{n}.
4. Given a point $x \in \mathbb{R}^{n}$ a neighborhood of x is an open set N containing x. (The book says that a neighborhood is any set N containing an open set U that contains x. This is needlessly complicated, but you are welcome to use this definition if you prefer.
5. A point x in a set $A \subset \mathbb{R}^{n}$ is called an interior point of A if there is a neighborhood of x contained in A.
6. The set of all points interior to A is called the interior of A and is denoted

$$
\operatorname{int} A=\{x \in A: x \text { is an interior point of } A\}
$$

7. Theorem:

- $\operatorname{int} A$ is an open set.
- $\operatorname{int} A$ is the largest open set contained in A.
$-\operatorname{int} A$ is the union of all open sets contained in A.

8. Theorem: For a set B in \mathbb{R}^{n} the following statements are equivalent

- B is open.
- $\operatorname{int} B=B$.
- B is a neighborhood of each of its points.
C. Closed SETS

1. A set C in \mathbb{R}^{n} is closed if its complement, $\mathbb{R}^{n}-C$, is open.
2. Theorem:

- \emptyset and \mathbb{R}^{n} are closed sets in \mathbb{R}^{n}.
- The union of two closed sets if closed.
- The intersection of any collection of closed sets is closed.

3. A point $x \in \mathbb{R}^{n}$ is an accumulation point, also called a cluster point, of a set $A \subset \mathbb{R}^{n}$ if every open set containing x also contains a point in A other than x. That is, if U is an open set containing x then

$$
(U-\{x\}) \cap A \neq \emptyset .
$$

4. Theorem: A set $A \subset \mathbb{R}^{n}$ is closed if and only if every cluster point of A is contained in A.
5. The closure of a set $A \subset \mathbb{R}^{n}$, denoted \bar{A}, is the intersection of all closed sets containing A. (Note the closure of a set is closed.)
6. Theorem: \bar{A} is A together with all its cluster points.
7. The boundary of a set $A \subset \mathbb{R}^{n}$ is defined as

$$
\partial A=\bar{A} \cap \overline{\mathbb{R}^{n}-A} .
$$

8. Theorem: A point x is in ∂A if and only if for every $\epsilon>0$ we have $B_{\epsilon}(x) \cap A \neq \emptyset$ and $B_{\epsilon}(x) \cap\left(\mathbb{R}^{n}-A\right) \neq \emptyset$.

D. Sequences

1. Basic definitions and examples
i. A sequence in a set $A \subset \mathbb{R}^{n}$ is a function $s: \mathbb{N} \rightarrow A$ from the natural numbers to A. We usually denote the sequence by its image. That is let $s_{k}=s(k)$ for $k \in \mathbb{N}$, then denote s by $\left\{s_{k}\right\}$.
ii. A sequence $\left\{s_{k}\right\}$ converges to a point $x \in \mathbb{R}^{n}$ (we also say x is a limit of the sequence), if for every neighborhood U of x there is some number N such that $s_{k} \in U$ for all $k \geq N$. If such an x exists then we say the sequence $\left\{s_{k}\right\}$ is convergent and write $s_{k} \rightarrow x$ or $\lim s_{k}=x$. If no such x exists then we say the sequence $\left\{s_{k}\right\}$ is divergent
iii. Theorem: A sequence $\left\{s_{k}\right\}$ converges to a point x if and only if for all $\epsilon>0$ there is a number N such that $\left\|s_{k}-x\right\|<\epsilon$ for all $k \geq N$.
iv. Theorem: $\lim s_{k}=x$ if and only if $\lim \left\|s_{k}-x\right\|=0$.
v. Theorem: If $\left\{s_{k}\right\}$ is a convergent sequence then the set of point $\left\{s_{1}, s_{2}, \ldots\right\}$ that make up the sequence is bounded. (That is there is some r such that $\left\|s_{k}\right\|<r$ for all k.)
vi. Theorem: A sequence $\left\{s_{k}\right\}$ in \mathbb{R}^{n} converges to a point y if and only if it converges point-wise. (That is if $s_{k}=\left(x_{k, 1}, \ldots, x_{k, n}\right)$ and $y=\left(y_{1}, \ldots y_{n}\right)$ then $s_{k} \rightarrow y$ if and only if for each $i, x_{i, k} \rightarrow y_{i}$.)
vii. Theorem: Let $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$ in \mathbb{R}^{n} and $z_{k} \rightarrow z$ in \mathbb{R}, then - $\left(x_{k}+y_{k}\right) \rightarrow x+y \quad$ this can be written $\lim \left(x_{k}+y_{k}\right)=\lim \left(x_{k}\right)+\lim \left(y_{k}\right)$.

- $\left(x_{k} y_{k}\right) \rightarrow x y \quad$ this can be written $\lim \left(x_{k} y_{k}\right)=\lim \left(x_{k}\right) \lim \left(y_{k}\right)$.
- $\left(z_{k} y_{k}\right) \rightarrow z y \quad$ this can be written $\lim \left(z_{k} y_{k}\right)=\lim \left(z_{k}\right) \lim \left(y_{k}\right)$.
- If $z_{k} \neq 0$ and $z \neq 0$ then $\left(y_{k} / z_{k}\right) \rightarrow y / z \quad$ this can be written $\lim \left(y_{k} / z_{k}\right)=$ $\lim \left(y_{k}\right) / \lim \left(z_{k}\right)$.
viii. Given a sequence $\left\{s_{k}\right\}$, a subsequence is $\left\{s_{k_{i}}\right\}$ where the k_{i} are a choice of increasing natural numbers $0 \leq k_{1}<k_{2}<\ldots<k_{i}<k_{i+1}<\ldots$.
ix. Theorem: $s_{k} \rightarrow x$ if and only if every subsequence $\left\{s_{k_{l}}\right\}$ of $\left\{s_{k}\right\}$ converges to x.
x. Thoerem (The monotone convergence theorem): Suppose $\left\{s_{k}\right\}$ is a sequence that is monotonically increasing (that is $x_{i} \leq x_{i+1}$ for all i). Then $\left\{s_{k}\right\}$ converges if and only if it is bounded above, in which case $\lim s_{k}=\sup \left\{x_{k}\right\}$.

2. Properties of sequences and cluster points
i. Theorem: A sequence can converge to at most one point.
ii. Theorem: Suppose $x \notin A$. Then x is a cluster point of A if and only if there is a sequence of points $\left\{s_{k}\right\}$ in A such that $s_{k} \rightarrow x$.
iii. Theorem: A set A is closed if and only if every sequence $\left\{s_{k}\right\}$ in A which converges has its limit in A.

E. Compact sets

1. Let A be a subset of \mathbb{R}^{n}. A collection of open sets $\left\{U_{\alpha}\right\}_{\alpha \in J}$ is called an open cover of A if $A \subset \cup_{\alpha \in J} U_{\alpha}$. It is called a finite open cover if J is a finite set.
2. A set A is called compact if ever open cover of A has a finite subcover, that is if $\left\{U_{\alpha}\right\}_{\alpha \in J}$ is an open cover of A then there is a finite subset J^{\prime} of J such that $\left\{U_{\alpha}\right\}_{\alpha \in J^{\prime}}$ is also an open cover of A.
3. Theorem: for a set A in \mathbb{R}^{n} the following are equivalent:
i. A is compact.
ii. A is closed and bounded.
iii. Any sequence in A has a subsequence that converges to a point in A.
iv. Any infinite set in A has a cluster point in A.

The equivalence i. \Leftrightarrow ii. is called the Heine-Borel Theorem. The equivalence ii. \Leftrightarrow iii. and ii. \Leftrightarrow iv. are both called the Bolzano-Weierstrass Theorem.
4. Cauchy Sequences: a sequence $\left\{s_{k}\right\}$ in \mathbb{R}^{n} is said to be a Cauchy sequence if for any $\epsilon>0$ there is an N such that for any $k, l \geq N$ we have $\left\|s_{k}-s_{l}\right\|<\epsilon$.
5. Theorem: A sequence in \mathbb{R}^{n} is Cauchy if and only if it converges.
F. Connected SETS

1. A set $D \subset \mathbb{R}^{n}$ is disconnected if there exists open sets U, V in \mathbb{R}^{n} such that

- $D \subset U \cup V$,
- $D \cap U$ and $D \cap V$ are both non-empty and
- $(U \cap D) \cap(V \cap D)=\emptyset$.

The sets U and V are called a disconnection of D. The set D is connected if it is not disconnected.
2. Theorem: the set $(0,1)$ is a connected subset of \mathbb{R}.
3. Theorem: If C is connected and x is a cluster point of C then $C \cup\{x\}$ is connected.
4. Theorem: A subset of \mathbb{R} is connected if and only if it is an interval (that is equal to $(a, b),(a, b],[a, b)$ or $[a, b]$ where for an open end point a could be $-\infty$ and b could be $\infty)$.
5. Theorem: \mathbb{R}^{n} is connected for all $n \geq 1$.
6. Theorem: The only subsets of \mathbb{R}^{n} that are both open and closed are \emptyset and \mathbb{R}^{n}.

IV. Continuous Functions

A. Definitions and Examples

1. A function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is continuous at a point $a \in D$ if for every open set U in \mathbb{R}^{q} containing $f(a)$ there is an open set V in \mathbb{R}^{p} containing a such that $V \cap D \subset f^{-1}(U)$.
2. Theorem: For a function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ and point $a \in D$ the following are equivalent:
i. f is continuous at a.
ii. For all $\epsilon>0$ there is a $\delta>0$ such that for each $x \in D$ with $\|x-a\|<\delta$ we have $\|f(x)-f(a)\|<\epsilon$.
iii. For all sequences $\left\{x_{n}\right\}$ in D that converge to a we have $f\left(x_{n}\right) \rightarrow f(a)$.
3. We say examples of functions continuous at all point of their domain and at no points of their domain. We also saw a function $f ;[0,1] \rightarrow[0,1]$ that were continuous at the irrational numbers and discontinuous at the rational numbers.
B. Theorem: $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}, g: D^{\prime} \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ and $h: D^{\prime \prime} \subset \mathbb{R}^{p} \rightarrow \mathbb{R}$. Then
4. If f and g are continuous at $a \in D \cap D^{\prime}$ then the functions $(f+g)(x)=f(x)+g(x),(f-$ $g)(x)=f(x)-g(x)$ and $(f \cdot g)(x)=f(x) \cdot g(x)$ are all continuous at a.
5. If f and h are continuous at $a \in D \cap D^{\prime \prime}$ then the function $(h f)(x)=h(x) f(x)$ is continuous at a and if moreover $h(a) \neq 1$ then $(f / h)(x)=f(x) / h(x)$ is continuous at a.
6. Theorem: If f is continuous at a and g is continuous at $f(a)$ then $g \circ f$ is continuous at a.
7. A function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is called Lipschitz if there is a constant $K>0$ such that for all $x, y \in D$ we have $\|f(x)-f(y)\| \leq K\|x-y\|$.
8. Theorem: Lipschitz functions are continuous at all points in their domain.
9. Theorem: Linear functions are Lipschitz and hence continuous at all points of their domain.
C. Global Continuity
10. A function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is continuous if it is continuous at all points of its domain D.
11. Given a set $D \subset \mathbb{R}^{p}$ then a subset $A \subset D$ is called relatively open (or open relative to D) if there is some open set V in \mathbb{R}^{p} such that $A=D \cap V$. Similarly a set $A \subset D$ is called relatively closed (or closed relative to D) if there is some closed set C such that $A=C \cap D$.
12. Theorem: For a function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ the following are equivalent:
i. f is continuous.
ii. For every open set U in \mathbb{R}^{q}, the set $f^{-1}(U)$ is relatively open in D.
iii. For every closed set C in \mathbb{R}^{q}, the set $f^{-1}(C)$ is relatively closed in D.
iv. If $\left\{x_{n}\right\}$ is any sequence in D that converges to a point $a \in D$, then $f\left(x_{n}\right) \rightarrow f(a)$.
v. For each $x \in D$ and $\epsilon>0$ there is a $\delta>0$ such that for all $y \in D$ with $\|x-y\|<\delta$ we have $\|f(x)-f(y)\|<\epsilon$.

D. Properties of Continuous Functions

1. Theorem: Let $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. If $H \subset D$ is a connected set and f is continuous on H then $f(H)$ is connected.
2. Theorem (The Intermediate Value Theorem): Let $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}$ be continuous. If $H \subset D$ is connected and $x, y \in H$, then for all $c \in \mathbb{R}$ with $f(x) \leq c \leq f(y)$ we have some $z \in C$ such that $f(z)=c$.
3. Theorem: Let $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$. If $H \subset D$ is a compact set and f is continuous on H then $f(H)$ is compact.
4. Theorem (Maximum/Minimum Value Theorem): Let $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}$. If $K \subset D$ is a compact set and f is continuous on K then there are points x_{m} and x_{M} such that for all $z \in K$ we have $f\left(x_{m}\right) \leq f(z) \leq f\left(x_{M}\right)$. That is $f\left(x_{m}\right)=\inf f(K)$ and $f\left(x_{M}\right)=\sup f(K)$.

E. Uniform Continuity

1. A function $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is uniformly continuous on a set $A \subset D$ if for all $\epsilon>0$ there is a $\delta>0$ such that for every $x, y \in A$ with $\|x-y\|<\delta$ we have $\|f(x)-f(y)\|<\epsilon$.
2. Theorem: If $f: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is a function and f is continuous on a compact set $K \subset D$, then f is uniformly continuous on K.

V. Sequences of Functions

A. Spaces of functions

1. If $D \subset \mathbb{R}^{p}$ the we denote by $\mathcal{F}\left(D, \mathbb{R}^{q}\right)$ the set of all functions from D to \mathbb{R}^{q}.
2. If $\left\{f_{n}\right\}$ is a sequence in $\mathcal{F}\left(D, \mathbb{R}^{q}\right)$ then we say it converges point-wise to f on $D_{0} \subset D$ if for each point $x \in D_{0}$ the sequence of points $\left\{f_{n}(x)\right\}$ in \mathbb{R}^{q} converges to $f(x)$. We denote this by $f_{n} \underset{p w}{\longrightarrow} f$ on D_{0}.
3. We say that a sequence $\left\{f_{n}\right\}$ in $\mathcal{F}\left(D, \mathbb{R}^{q}\right)$ converges uniformly to f on $D_{0} \subset D$ if for every $\epsilon>0$ there is some N such that for all $n \geq N$ and $x \in D_{0}$ we have $\left\|f(x)-f_{n}(x)\right\|<\epsilon$. We denote this by $f_{n} \underset{u}{\longrightarrow} f$ on D_{0}.
4. Theorem: If a sequence of continuous functions $\left\{f_{n}\right\}$ converges uniformly to f on D_{0} then f is continuous on D_{0}.
5. Uniform convergence implies point-wise convergence, but point-wise convergence does not imply uniform convergence.
B. Norms on function spaces
6. We denote by $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ the set of bounded function on $D \subset \mathbb{R}^{p}$.
7. For $f \in \mathcal{B}\left(D, \mathbb{R}^{q}\right)$ we define the uniform norm (also known as the sup norm) of f to be

$$
\|f\|_{u}=\sup \{\|f(x)\|: x \in D\}
$$

3. Lemma: The set $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ is a vector space (under point wise addition and scalar multiplication) and $\|\cdot\|_{u}$ is a norm on this vector space.
4. We say a sequence $\left\{f_{n}\right\}$ in $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ converges to f in the uniform norm if

$$
\left\|f-f_{n}\right\|_{u} \rightarrow 0
$$

5. Theorem: A sequece $\left\{f_{n}\right\}$ in $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ converges to f uniformly on D if and only if $\left\{f_{n}\right\}$ converges to f in the uniform norm.
6. Theorem: Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ (that is for all $\epsilon>0$ there is some N such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ for all $\left.n, m \geq N\right)$, then there is some $f \in \mathcal{B}\left(D, \mathbb{R}^{q}\right)$ such that $\left\|f_{n}-f\right\| \rightarrow 0$.
7. We call a normed vector space $(V,\|\cdot\|)$ complete if every Cauchy sequence in V converges in norm to some point in V. (That is if $\left\{v_{n}\right\}$ is a sequence such for all $\epsilon>0$ there is some N such that $\left\|v_{n}-v_{m}\right\|<\epsilon$ for all $n, m \geq N$, then there is some $v \in V$ such that $\left.\left\|v_{n}-v\right\| \rightarrow 0\right)$. A complete normed vector space is called a Banach space.
8. Theorem: The vector spaces $\mathcal{B}\left(D, \mathbb{R}^{q}\right)$ and

$$
\mathcal{C}_{b}\left(D, \mathbb{R}^{q}\right)=\left\{f \in \mathcal{B}\left(D, \mathbb{R}^{q}\right): f \text { is continuous }\right\}
$$

are Banach spaces in the uniform norm.
9. Theorem: There is a continuous surjection $f:[0,1] \rightarrow[0,1] \times[0,1]$. Such an f is called a space filling curve or a Peano curve.
C. Approximations of functions

1. Theorem (Weirstrass-Bernstein Approximation): If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function and $\epsilon>0$ then there is a polynomial $p(x)$ such that $\|f-p\|_{u}<\epsilon$.
2. In the above theorem can use the Bernstein polynomial of f :

$$
p_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k} .
$$

3. Theorem (Stone-Weierstrass Approximation): Let $A \subset \mathbb{R}^{p}$ be compact and $\mathcal{B} \subset$ $\mathcal{C}(A, \mathbb{R})$ (here $\mathcal{C}(A, \mathbb{R})$ is the set of continuous functions with domain A and range \mathbb{R}) satisfy
i. \mathcal{B} is an algebra (that is, $f, g \in \mathcal{B}$ and $a \in \mathbb{R}$, implies $f g \in \mathcal{B}$ and $a f \in \mathcal{B}$)
ii. the constant function $1: A \rightarrow \mathbb{R}: x \rightarrow 1$ is in \mathcal{B} and
iii. \mathcal{B} separates points (that is, for each $x, y \in A$ with $x \neq y$ we have some $f \in \mathcal{B}$ such that $f(x) \neq f(y))$
Then given any $f \in \mathcal{C}(A, \mathbb{R})$ and ϵ there is some $g \in \mathcal{B}$ such that $\|f-g\|_{u}<\epsilon$.

D. Interlude: SERIES OF NUMBERS

1. If $\left\{x_{n}\right\}$ is a sequence in \mathbb{R}^{p} then the (infinite) series generated by $\left\{x_{n}\right\}$ is the sequence $\left\{s_{k}\right\}$ where $s_{k}=\sum_{n=1}^{k} x_{n}$ is the $k^{\text {th }}$ partial sum of the terms in the sequence $\left\{x_{n}\right\}$. We say the series converges or is summable if the sequence of partial sums converge, and denote the limit by

$$
\sum_{n=1}^{\infty} x_{n}
$$

We abuse notation and also use the symbol to denote the series even if it does not converge.
2. Lemma: If the series $\sum_{n=1}^{\infty} x_{n}$ in \mathbb{R}^{p} converges then $\lim x_{n}=0$.
3. Theorem: The series $\sum_{n=1}^{\infty} x_{n}$ in \mathbb{R}^{p} converges if and only if for all $\epsilon>0$ there is some $M>0$ such that for all $m \geq n \geq M$ we have

$$
\left\|x_{n+1}+\ldots+x_{m}\right\|<\epsilon
$$

4. We say $\sum_{n=1}^{\infty} x_{n}$ in \mathbb{R}^{p} is absolutely convergent (or converges absolutely) if the series $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges.
5. Theorem: If a series converges absolutely then it converges.
6. Theorem: We have the following convergence "tests" or "results"
i. (Geometric series) If $|r|<1$ is a real number then $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$. If $|r| \geq 1$ then $\sum_{n=0}^{\infty} r^{n}$ diverges.
ii. (p-series) The series $\sum_{n=1}^{\infty} n^{-p}$ converges if $p>1$ and diverges (to infinity) if $p \leq 1$.
iii. (comparison test) If the series $\sum_{n=1}^{\infty} a_{n}$ converges and $0 \leq b_{n} \leq a_{n}$ then the series $\sum_{n=1}^{\infty} b_{n}$ converges. If the series $\sum_{n=1}^{\infty} c_{n}$ diverges and $0 \leq c_{n} \leq d_{n}$ then the series $\sum_{n=1}^{\infty} d_{n}$ diverges.
iv. (ratio test) Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R} and let $r=\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ the the series $\sum_{n=1}^{\infty} a_{n}$ converges if $r<1$, diverges if $r>1$ and if $r=1$ then the test is inconclusive.
v. (root test) Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R} and let $r=\lim \left|a_{n}\right|^{\frac{1}{n}}$ the the series $\sum_{n=1}^{\infty} a_{n}$ converges if $r<1$, diverges if $r>1$ and if $r=1$ then the test is inconclusive.
7. Theorem: If $\sum_{n=1}^{\infty} a_{n}=S$ and $\sum_{n=1}^{\infty} b_{n}=T$ then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=S+T$ and $\sum_{n=1}^{\infty} c x_{n}=c S$ for any $c \in \mathbb{R}$.
8. Theorem: Suppose $\left\{a_{n}\right\}$ is a decreasing sequence and $a_{n} \rightarrow 0$. Then the series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges. Also if $s_{k}=\sum_{n=1}^{k}(-1)^{n} a_{n}$ and $S=\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ then
i. $s_{2 k}>S>s_{2 k+1}$ for all k.
ii. $\left|S-s_{k}\right|<a_{k+1}$ for all k.
9. A rearrangement of the series $\sum_{n=1}^{\infty} x_{n}$ is $\sum_{n=1}^{\infty} x_{\sigma(n)}$ where $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ is a bijection.
10. Theorem: If $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent the so is any rearrangement and both series converge to the same thing.
11. Theorem (Riemann rearrangement): If $\sum_{n=1}^{\infty} x_{n}$ is convergent but not absolutely convergent and s is any real number then there is a rearrangement of $\sum_{n=1}^{\infty} x_{n}$ that converges to s.

E. SERIES OF FUNCTIONS

1. Let $\left\{g_{k}\right\}$ be a sequence of functions in $\mathcal{C}\left(D, \mathbb{R}^{q}\right)$ for some domain $D \subset R^{p}$. We say the series $\sum_{k=1}^{\infty} g_{k}$ converges point-wise to $g: D \rightarrow \mathbb{R}^{q}$ if for every $x \in D$ the series $\sum_{k=1}^{\infty} g_{k}(x)$ in \mathbb{R}^{q} converges to $g(x)$. We denote this

$$
\sum_{k=1}^{\infty} g_{k}=g \quad \text { (point-wise) }
$$

We say the series converges absolutely to g if the series $\sum_{k=1}^{\infty}\left\|g_{k}(x)\right\|$ in \mathbb{R} converges to $\|g(x)\|$ for all $x \in D$. Finally, the series converges uniformly to g if the sequence of partial sums $s_{n}=\sum_{k=1}^{n} g_{k}$ converges uniformly to g. We denote this

$$
\sum_{k=1}^{\infty} g_{k}=g \quad \text { (uniformly). }
$$

2. Theorem: If $\left\{g_{k}\right\}$ is a sequence of continuous functions and $\sum_{k=1}^{\infty} g_{k}=g$ (uniformly), then g is continuous.
3. Theorem (Weierstrass M-test): Suppose
a) $\left\{g_{k}: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}\right\}$ is a sequence of functions and
b) for each k there are constants M_{k} satisfying $\left\|g_{k}(x)\right\| \leq M_{k}$ for all $x \in D$.

If $\sum_{k=1}^{\infty} M_{k}$ converges then, $\sum_{k=1}^{\infty} g_{k}$ converges uniformly (and absolutely) on D.
4. Theorem (Abel test:): Let $\phi_{n}: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a sequence of functions satisfying
a) (the ϕ_{n} are point-wise decreasing) $\phi_{n+1}(x) \leq \phi_{n}(x)$ for all $x \in D$ and n, and
b) (the ϕ_{n} are bounded) there is some M such that $\left|\phi_{n}(x)\right| \leq M$ for all $x \in D$ and n. If $\sum_{n=1}^{\infty} g_{n}$ is a uniformly convergent series on D then so is $\sum_{n=1}^{\infty} \phi_{n} g_{n}$.
5. Theorem (Dirchlet test): Suppose
a) $\left\{f_{k}: D \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}\right\}$ is a sequence of functions with uniformly bounded partial sums, that is, for which there is a constant M such that

$$
\left\|s_{n}(x)\right\| \leq M \quad \text { for all } x \in D \text { and } n
$$

where $s_{n}(x)=\sum_{k=1}^{n} f_{k}(x)$; and
b) $\left\{g_{k}: D \rightarrow \mathbb{R}\right\}$ is a sequence of decreasing positive functions (that is $g_{n}(x) \geq$ $\left.g_{n+1}(x) \geq 0\right)$ that converges uniformly to 0 .
Then $\sum_{k=1}^{\infty} g_{k} f_{k}$ converges uniformly on D.

F. Power SERIES

1. Let $c \in \mathbb{R}$. A series of function $\sum_{n=0}^{\infty} f_{n}$ is called a power series about $x=c$ if each of the f_{n} is of the form

$$
f_{n}(x)=a_{n}(x-c)^{n}
$$

for some constant a_{n}; that is a series of the form $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$.
2. Given a sequence $\left\{b_{n}\right\}$ of non-negative numbers that is bounded above we define the limit superior of $\left\{b_{n}\right\}$ to be
$\limsup b_{n}=\inf \left\{v: v\right.$ is larger than all but finitely many $\left.b_{n}\right\}$

If $\left\{b_{n}\right\}$ is not bounded then we set $\lim \sup b-n=\infty$.
3. Properties of the limit superior: (1) It's is always well-defined. (2) If $v>\limsup b_{n}$ then there is some N such that for $n \geq N$ we have $b_{n} \leq v$. (3) If $v<\limsup b_{n}$ then for any N there are $n>N$ such that $b_{n}>v$. (4) If $\lim b_{n}$ exists then $\limsup b_{n}=\lim b_{n}$. (5) If $c \geq 0$ then $\limsup c b_{n}=c \limsup b_{n}$. (6) $\limsup \left(a_{n}+b_{n}\right) \leq \lim \sup a_{n}+\limsup b_{n}$.
4. Given a power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ let $\rho=\limsup \left|a_{n}\right|^{1 / n}$. Then the radius of convergence of the power series is

$$
R= \begin{cases}\infty & \text { if } \rho=0 \\ \frac{1}{\rho} & \text { if } 0<\rho<\infty \\ 0 & \text { if } \rho=\infty\end{cases}
$$

The interval of convergence is $(c-R, c+R)$.
5. Theorem: If R is the radius of convergence for the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, then the series converges absolutely for $|x-c|<R$ and diverges for $|x-c|>R$.
6. Theorem: Given a power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, the radius of convergence is given by $\lim \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$ if the limit exists.
7. Theorem: If R is the radius of convergence for the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, then the series converges uniformly on any compact subset of $(c-R, c+R)$. In particular, the series defines a continuous function on $(c-R, c+R)$.
8. We can define the following functions using power series:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}, \quad \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \text { and } \quad \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

Their radius of convergence is infinite for all these functions and so they all are continuous functions on \mathbb{R}. Once can use the power series to prove that $e^{x+y}=e^{x} e^{y}$ and $e^{i z}=$ $\cos z+i \sin z$. These two formulas can be used to derive the angle sum formulas for sin and cos as well as all the other trigonometric formulas.

G. Fourier Series

1. The L^{2} inner product
i. Theorem: Let $I \subset \mathbb{R}$ be an interval and $f, g: I \rightarrow \mathbb{R}$ be functions. Set

$$
\langle f, g\rangle=\int_{I} f(x) g(x) d x
$$

Let $\mathcal{L}_{c}^{2}(I)=\{f: I \rightarrow \mathbb{R}$ continuous with $\langle f, f\rangle<\infty\}$. Then $\mathcal{L}_{c}^{2}(I)$ is a vector space and $\langle\cdot, \cdot\rangle$ is an inner product on it.
ii. We call the above inner product the L^{2} inner product on $\mathcal{L}_{c}^{2}(I)$.
iii. Like all inner products this one induces a norm $\|\cdot\|_{2}$ on $\mathcal{L}_{c}^{2}(I)$ called the L^{2} norm.
iv. We say a sequence $\left\{f_{n}\right\}$ in $\mathcal{L}_{c}^{2}(I)$ converges in L^{2} to f if such that $\left\|f_{n}-f\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. We say the sequence is Cauchy in L^{2} if for all $\epsilon>0$ there is an N such that $\left\|f_{n}-f_{m}\right\|_{2}<\epsilon$ for all $n, m \geq N$.
v. $\mathcal{L}_{c}^{2}(I)$ with the L^{2} norm is not complete (that is a Cauchy sequence does not have to converge).
2. Orthonormal sets
i. A set $\left\{v_{\alpha}\right\}_{\alpha \in A}$ in an inner product space $(V,\langle\cdot, \cdot\rangle)$ is called orthonormal if

- $\left\langle v_{\alpha}, v_{\beta}\right\rangle=0$ for all $\alpha \neq \beta$ and
- $\left\langle v_{\alpha}, v_{\alpha}\right\rangle=1$ for all α.
ii. Theorem: Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. (1) if $\left\{v_{\alpha}\right\}_{\alpha \in A}$ is an orthonormal set of vectors then they are also linearly independent. (2) If $\left\{v_{i}\right\}_{i=1}^{n}$ (where n could
be ∞) is a linearly independent set of vectors then there is an orthonormal set $\left\{w_{i}\right\}_{i=1}^{n}$ such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)
$$

for all $k=1, \ldots, n$. (The algorithm in the proof to construct the w_{i} is called the Gram-Schmidt process.)
iii. Theorem: Suppose that $\left\{v_{i}\right\}_{i=1}^{\infty}$ is an orthonormal set in the inner product space $(V,\langle\cdot, \cdot\rangle)$. If $\sum_{i=1}^{\infty} a_{i} v_{i}$ converges in norm to v then $a_{i}=\left\langle v, v_{i}\right\rangle$.
iv. Theorem (Bessel's inequality): Suppose that $\left\{v_{i}\right\}_{i=1}^{\infty}$ is an orthonormal set in the inner product space $(V,\langle\cdot, \cdot\rangle)$. For any $v \in V$ the series

$$
\sum_{i=1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2}
$$

converges and

$$
\sum_{i=1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2} \leq\|v\|^{2}
$$

where $\|\cdot\|$ is the norm associated to the inner product.
v. We say an orthonormal set $\left\{v_{i}\right\}_{i=1}^{\infty}$ in an inner product space $(V,\langle\cdot, \cdot\rangle)$ is complete if for every $v \in V$ there are constants a_{i} such that $v=\sum_{i=1}^{\infty} a_{i} v_{i}$. (Note from above each a_{i} must equal $\left\langle v, v_{i}\right\rangle$.) The series $\sum_{i=1}^{\infty}\left\langle v, v_{i}\right\rangle v_{i}$ is called the Fourier series of v with respect to $\left\{v_{i}\right\}_{i=1}^{\infty}$ and the constants $\left\langle v, v_{i}\right\rangle v_{i}$ are called the Fourier coefficients of v.
vi. Theorem: Suppose that $\left\{v_{i}\right\}_{i=1}^{\infty}$ is an orthonormal set in the inner product space $(V,\langle\cdot, \cdot\rangle)$. The set $\left\{v_{i}\right\}_{i=1}^{\infty}$ is complete if and only if

$$
\|v\|^{2}=\sum_{i=1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2},
$$

for all $v \in V$. (The equality is called Parseval's equality.)
3. The Fourier series
i. Lemma: The set $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos n x, \frac{1}{\sqrt{\pi}} \sin n x\right\}_{n=1}^{\infty}$ is an orthonormal set in $\mathcal{L}_{c}^{2}([-\pi, \pi])$.
ii. Given a function $f \in \mathcal{L}_{c}^{2}([-\pi, \pi])$ (or more generally a piece-wise continuous function ...) then the Fourier coefficients of f are

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=0,1, \ldots \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots
\end{aligned}
$$

and the Fourier series of f is

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

here you should read " \sim " as "has the Fourier series" (there is no guarantee that the term on the left and right are equal).
iii. Corollary (Bessel Inequality): For f as above

$$
\frac{a_{0}^{2}}{2}+\sum_{i=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{1}{\pi}\|f\|_{2}^{2}
$$

where a_{n} and b_{n} are the Fourier coefficients.
4. Convergence of Fourier series
i. Theorem: The set $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos n x, \frac{1}{\sqrt{\pi}} \sin n x\right\}_{n=1}^{\infty}$ is "complete" in $\mathcal{L}_{c}^{2}([-\pi, \pi])$. In particular, the Fourier series of f approaches f in the L^{2} norm.
N.B. The set is not really complete, largely because \mathcal{L}_{c}^{2} is not complete as a normed vector space, so the series might converge, but not to something actually in \mathcal{L}_{c}^{2}. This issue will not be a problem for the following corollary though and we will see exactly how it fails below.
ii. Corollary (Parseval's equality): For f as above

$$
\frac{a_{0}^{2}}{2}+\sum_{i=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi}\|f\|_{2}^{2}
$$

where a_{n} and b_{n} are the Fourier coefficients.
iii. A function is called piece-wise Lipschitz if it is piece-wise continuous and there is some constant L such that L is a Lipschitz constant for the function on each interval of convergence. (Here when discussing piece-wise continuous we mean that the domain can be broken into intervals such that the function is continuous on the interiors of each interval and the function has a limit as you approach each end point of an interval of continuity.)
iv. Theorem (Dirichlet-Jordan): Suppose that f is a piecewise Lipschitz function on $[-\pi, \pi]$ (that is extended to be 2π periodic). Then if f is continuous at x the Fourier series converges to $f(x)$. If f has a jump discontinuity at x then the Fourier series converges to

$$
\frac{f\left(x^{+}\right)-f\left(x^{-}\right)}{2},
$$

where $f\left(x^{+}\right)$is the limit of $f\left(x_{n}\right)$ where x_{n} is a sequence approaching x from above and $f\left(x^{-}\right)$is the limit of $f\left(x_{n}\right)$ where x_{n} is a sequence approaching x from below.

