Math 4318 - Spring 2011 Homework 1 - Solutions

3. Let

$$
f(x)= \begin{cases}x^{2} & x \text { rational } \\ 0 & x \text { irrational }\end{cases}
$$

Show that f is differentiable at 0 and compute $f^{\prime}(0)$.
Solution: Notice that if the derivative of x^{2} at $x=0$ is 0 and the derivative of the zero function at 0 is 0 . So it would be reasonable to try to prove that $f^{\prime}(0)=0$. To this end let $\epsilon>0$ we need to find some $\delta>0$ such that if $0<|h|<\delta$ then

$$
\left|\frac{f(0+h)-f(0)}{h}-0\right|<\epsilon
$$

Rewriting this and recalling that $f(0)=0$ we are trying to find $\delta>0$ such that $0<|h|<\delta$ implies $|f(h) / h|<\epsilon$. If we simply take $\delta=\epsilon$ then notice that if $0<|h|<\delta$ we either have h rational, in which case

$$
|f(h) / x|=\left|h^{2} / h\right|=|h|<\delta=\epsilon,
$$

or we have h irrational, in which case

$$
|f(h) / h|=|0 / h|=0<\epsilon .
$$

In all cases we have the desired $|f(h) / h|<\epsilon$. Thus we have shown that

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=0 .
$$

5. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a and that $f(a)=0$. If $g(x)=|f(x)|$ show that g is differentiable at a if and only if $f^{\prime}(a)=0$.
Solution: We begin by assuming that $f^{\prime}(a) \neq 0$. With out loss of generality we assume that $f^{\prime}(a)>0$. Thus we have that

$$
\lim _{h \rightarrow 0} \frac{f(a+h)}{h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)>0 .
$$

So if $\left\{h_{n}\right\}$ is a sequence of positive numbers such that $h_{n} \rightarrow 0$ then we have that $f\left(a+h_{n}\right) / h \rightarrow f^{\prime}(a)$. Thus there is some N such that $\left|f\left(a+h_{n}\right) / h_{n}-f^{\prime}(a)\right|<f^{\prime}(a) / 2$ for all $n \geq N$. In particular $f\left(a+h_{n}\right) / h_{n}$ is positive and hence $f\left(a+h_{n}\right)$ is positive for all $n \geq N$. Now for $n \geq N$ we have

$$
\frac{g\left(a+h_{n}\right)-g(a)}{h_{n}}=\frac{\left|f\left(a+h_{n}\right)\right|}{h_{n}}=\frac{f\left(a+h_{n}\right)}{h_{n}} \rightarrow f^{\prime}(a) .
$$

So if $\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h}$ exists then it must equal $f^{\prime}(a)$.
Now consider a sequence $\left\{k_{n}\right\}$ of negative numbers that converge to 0 . As above we see that there is some N^{\prime} such that $n \geq N^{\prime}$ implies that $f\left(a+k_{n}\right) / k_{n}$ is positive and hence $f\left(a+k_{n}\right)$ is negative. So for $n \geq N^{\prime}$ we see that

$$
\frac{g\left(a+k_{n}\right)-g(a)}{k_{n}}=\frac{\left|f\left(a+k_{n}\right)\right|}{k_{n}}=\frac{-f\left(a+k_{n}\right)}{k_{n}} \rightarrow-f^{\prime}(a) .
$$

Thus if $\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h}$ exists then it must equal $-f^{\prime}(a)$. But since $f^{\prime}(a) \neq-f^{\prime}(a)$ we see that $\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h}$ does not exist. That is g is not differentiable at a. So g differentiable at a implies that $f^{\prime}(a)=0$.
We now assume that $f^{\prime}(a)=0$. Notice that

$$
\left|\frac{g(a+h)-g(a)}{h}\right|=\left|\frac{|f(a+h)|-|f(a)|}{h}\right| \leq\left|\frac{f(a+h)-f(a)}{h}\right|
$$

(The inequality follows from $\| a|-|b|| \leq|a-b|$.) Since $\frac{f(a+h)-f(a)}{h} \rightarrow 0$ as $h \rightarrow 0$ we see that $\left|g^{\prime}(a)\right|=0$. So $g^{\prime}(a)=0$ and g is differentiable.
6. Recall that a function f is even if $f(-x)=f(x)$ for all x and odd if $f(-x)=-f(x)$ for all x. If f is an even function then show that f^{\prime} is an odd function.
Solution: If f is an even function the we compute

$$
\begin{aligned}
f^{\prime}(-x)= & \lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h} \\
= & \lim _{k \rightarrow 0} \frac{f(-x-k)-f(-x)}{-k} \\
& \quad(\text { substitute } h=-k) \\
= & -\lim _{k \rightarrow 0} \frac{f(x+k)-f(x)}{k}=-f^{\prime}(x) .
\end{aligned}
$$

Thus we see that $f^{\prime}(x)$ is an odd function.
11. Suppose that f is defined and twice differentiable in some interval containing c. Show that

$$
f^{\prime \prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}} .
$$

Given and example that shows the limit on the right hand side might exist even if the second derivative of f at c does not exits. Hint: L'Hopital and the previous problem (which you should do but don't have to write up).
Solution: Since the limit of the numerator and the limit of the denominator is zero, L'Hopital's rule give

$$
\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}=\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c-h)}{2 h} .
$$

But now Problem 10 says that the limit on the right is computes the derivative of f^{\prime} at c, that is $f^{\prime \prime}(c)$.
One of the standard examples of a function whose second derivative does not exist is $f(x)=x|x|$ at $x=0$. Indeed you can easily check that $f^{\prime}(x)=2|x|$ and that

$$
f^{\prime \prime}(x)= \begin{cases}2 & x>0 \\ -2 & x<0\end{cases}
$$

and is not defined at $x=0$. But we see that for $c=0$ we have

$$
\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}=\lim _{h \rightarrow 0} \frac{h|h|-h|h|}{h^{2}}=0 .
$$

So this limit can exist even when the second derivative does not.
12. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ and that $f^{\prime \prime}$ exists everywhere. Then show that $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b)$ if and only if f is convex by which we mean

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in(a, b)$ and $t \in[0,1]$. Hint: Problem 11.
Solution: Assuming f is convex notice that we can take $x=a+h$ and $y=a-h$ and $t=\frac{1}{2}$ to see that

$$
f\left(\frac{1}{2}(a+h)+\frac{1}{2}(a-h)\right) \leq \frac{1}{2} f(a+h)+\frac{1}{2} f(a-h) .
$$

So we have

$$
f(a+h)+f(a-h)-2 f(a) \geq 0
$$

If $h \neq 0$ then $h^{2}>0$ so for all $h \neq 0$ we have

$$
\frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}} \geq 0 .
$$

Thus as we take the limit as $h \rightarrow 0$ we see that $f^{\prime \prime}(a) \geq 0$ for all a.
We now assume that $f^{\prime \prime}(x) \geq 0$ for all x. For a fixed x and y with $x<y$ and $t \in[0,1]$ let $z=t x+(1-t) y$. Now consider the order one Taylor polynomial for f at z. If we evaluate this polynomial at x then there is some $c \in[x, z]$ such that

$$
f(x)=f(z)+f^{\prime}(z)(x-z)+\frac{f^{\prime \prime}(c)}{2}(x-z)^{2}
$$

and if we evaluate at y then there is some $d \in[z, y]$ such that

$$
f(y)=f(z)+f^{\prime}(z)(y-z)+\frac{f^{\prime \prime}(d)}{2}(y-z)^{2}
$$

Since $f^{\prime \prime}(c) / 2(x-z)^{2}$ and $f^{\prime \prime}(d) / 2(y-z)$ are both non-negative so is

$$
t \frac{f^{\prime \prime}(c)}{2}(x-z)^{2}+(1-t) \frac{f^{\prime \prime}(d)}{2}(y-z)
$$

Thus

$$
\begin{aligned}
t f(x)+(1-t) f(y)= & {[t f(z)+(1-t) f(z)]+\left[t f^{\prime}(z)(x-z)+(1-t) f^{\prime}(z)(y-z)\right] } \\
& +t f^{\prime \prime}(c) / 2(x-z)^{2}+(1-t)^{\prime}(d) / 2(y-z) \\
= & f(z)+f^{\prime}(z)(t x+(1-t) y-z)+t \frac{f^{\prime \prime}(c)}{2}(x-z)^{2}+(1-t) \frac{f^{\prime \prime}(d)}{2}(y-z) \\
\geq & f(z)=f(t x+(1-t) y)
\end{aligned}
$$

So f is convex.
16. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function. If there is a constant $C \in(0,1)$ such that $\left|f^{\prime}(x)\right|<C$ for all x then show that f does have a fixed point. Show that it is not sufficient to assume that $\left|f^{\prime}(x)\right|<1$ to guarantee a fixed point by considering the function

$$
f(x)=x+\frac{1}{1+e^{x}}
$$

Hint: When C exists let x_{1} be any point and set $x_{n}=f\left(x_{n-1}\right)$. What can you say about $\lim x_{n}$? Does it exits?
Solution: We know form a lemma in class that

$$
|f(x)-f(y)| \leq C|x-y|
$$

So if we let x_{0} be any point in \mathbb{R} and set $x_{n}=f\left(x_{n-1}\right)$ then notice that

$$
\left|x_{n}-x_{n+1}\right| \leq C\left|x_{n-1}-x_{n}\right| \leq \ldots \leq C^{n}\left|x_{0}-x_{1}\right|
$$

Set $d=\left|x_{0}-x_{1}\right|$ and notice that for $n>m$ we have

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{n}-x_{x-1}\right|+\left|x_{n-1}-x_{n_{2}}\right|+\ldots\left|x_{m+1}+x_{m}\right| \\
& \leq C^{n-1}\left|x_{0}-x_{1}\right|+C^{n-2}\left|x_{0}-x_{1}\right|+\ldots+C^{m}\left|x_{0}-x_{1}\right| \\
& \leq d C^{m}\left(C^{n-m-1}+C^{n-m-2}+\ldots+C+1\right) \\
& =d C^{m} \frac{1-C^{n-m}}{1-C} \leq d \frac{C^{m}}{1-C} .
\end{aligned}
$$

(For the last equality we used the formula $1+r+\ldots+r^{k}=\frac{1-r^{k+1}}{1-r}$.) Since $d \frac{C^{m}}{1-C}$ goes to 0 as $m \rightarrow \infty$ we see that $\left\{x_{n}\right\}$ is a Cauchy sequence. Indeed, if $\epsilon>0$ is given there is some N such that $d \frac{C^{n}}{1-C}<\epsilon$ for $n \geq N$. Thus if $n \geq m \geq N$ we that $\left|x_{n}-x_{m}\right| \leq \epsilon$. Since Cauchy sequences converge we know there is some x such that $x_{n} \rightarrow x$. Notice that since f is continuous we have that

$$
f(x)=f\left(\lim x_{n}\right)=\lim f\left(x_{n}\right)=\lim x_{n+1}=x .
$$

Now consider the function $f(x)=x+\frac{1}{1+e^{x}}$. Suppose x is a fixed point, then we have

$$
x=x+\frac{1}{1+e^{x}} .
$$

That is $\frac{1}{1+e^{x}}=0$. But since $1+e^{x} \neq 0$ we see that implies $1=0$. This contradiction implies that f does not have a fixed point. But now notice that $f^{\prime}(x)=1-\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$. The second term is always positive so $f^{\prime}(x)<1$ for all x but as $x \rightarrow-\infty$ the second term goes to 0 so $f^{\prime}(x)$ is not bounded above by any $C<1$.
19. Let f be a twice differentiable function on the interval (a, ∞). Show that

$$
\left(\sup _{x \in(a, \infty)}\left\{\left|f^{\prime}(x)\right|\right\}\right)^{2} \leq 4\left(\sup _{x \in(a, \infty)}\{|f(x)|\}\right)\left(\sup _{x \in(a, \infty)}\left\{\left|f^{\prime \prime}(x)\right|\right\}\right)
$$

Notice that this says we can bound the first derivative of f in terms of f and the second derivative. Hint: Consider Taylor polynomial expanded about x evaluated at $x+h$ to get a quadratic equation in h.
Solution: Taylor's theorem gives

$$
f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{f^{\prime \prime}(c)}{2}(y-x)^{2}
$$

for some c between x and y. So plugging in $y=x+h$ we see

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(c)}{2} h^{2} .
$$

Rearranging we have

$$
-f^{\prime}(x) h=f(x) h-f(x+h)+\frac{f^{\prime \prime}(c)}{2} h^{2} .
$$

Taking absolute values we get

$$
\left|f^{\prime}(x) h\right| \leq|f(x)|+|f(x+h)|+\left|\frac{f^{\prime \prime}(c)}{2} h^{2}\right| .
$$

If we let

$$
M_{k}=\sup \left\{\left|f^{(k)}(x)\right|: x \in(a, \infty)\right\}
$$

then we see that

$$
\left|f^{\prime}(x) h\right| \leq 2 M_{0}+\frac{M_{2}}{2}|h|^{2}
$$

or

$$
0 \leq 4 M_{0}-2\left|f^{\prime}(x)\right||h|+M_{2}|h|^{2} .
$$

The right hand side is a quadratic expression in $|h|$. Recall the roots of a quadratic $a x^{2}+b x+c$ occur at $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Thus if $b<0$ for the quadratic to be non-negative for all positive x there is either a double root at $\frac{-b}{2 a}$ or the roots are complex. So we see that we must have $b^{2}-4 a c \leq 0$. Thus we see that

$$
4\left|f^{\prime}(x)\right|^{2}-16 M_{0} M_{2} \leq 0
$$

That is, we have

$$
\left|f^{\prime}(x)\right|^{2} \leq 4 M_{0} M_{2}
$$

Since this is true for any $x \in(a, \infty)$ we can take the supremum over x on the left and get

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

which is equivalent to the formula we were trying to establish.
20. Suppose f is n times continuously differentiable on some interval (a, b) that contains c. If $f^{\prime}(c)=f^{\prime \prime}(c)=\ldots=f^{(n-1)}(c)=0$ and $f^{(n)}(c) \neq 0$, then show that
(a) If n is even and $f^{(n)}(c)>0$, then f has a relative minimum at c.
(b) If n is even and $f^{(n)}(c)<0$, then f has a relative maximum at c.
(c) If n is odd, then f has neither a relative minimum or a relative maximum at c.

This, of course, is a large generalizations of the "second derivative test" you learned in calculus for determining if a critical point is a max or a min.
Solution: Let's suppose that $f^{(n)}(c)>0$. Since $f^{(n)}$ is continuous we know there is some interval (a, b) that contains c on which $f^{(n)}$ is positive. Now using the $(n-1)$-order Taylor polynomial about c we have for $x \in(a, b)$ that

$$
f(x)=f(c)+\frac{f^{(n)}(d)}{n!}(x-c)^{n},
$$

for some d between c and x. (Notice that the other terms in the Taylor polynomial are zero since $f^{(k)}(c)=0$ for $k=1, \ldots, n-1$.) Now since n is even and $f^{(n)}(c)>0$ we see that the last term is positive. Therefor

$$
f(x) \geq f(c)
$$

That is c is a relative minimum of f.
We have a similar argument for $f^{(n)}(c)<0$. If n is odd then we see that the second term on the right in the equation above can be both positive and negative for x near c (it will be positive for x on one side of c and negative on the other side of c), thus c will be neither a relative minimum or maximum.

