
Math 4318 - Spring 2011
Homework 1 — Solutions

3. Let

f(x) =

{

x2 x rational

0 x irrational.

Show that f is differentiable at 0 and compute f ′(0).
Solution: Notice that if the derivative of x2 at x = 0 is 0 and the derivative of the zero
function at 0 is 0. So it would be reasonable to try to prove that f ′(0) = 0. To this end
let ǫ > 0 we need to find some δ > 0 such that if 0 < |h| < δ then

∣

∣

∣

∣

f(0 + h) − f(0)

h
− 0

∣

∣

∣

∣

< ǫ.

Rewriting this and recalling that f(0) = 0 we are trying to find δ > 0 such that
0 < |h| < δ implies |f(h)/h| < ǫ. If we simply take δ = ǫ then notice that if 0 < |h| < δ
we either have h rational, in which case

|f(h)/x| = |h2/h| = |h| < δ = ǫ,

or we have h irrational, in which case

|f(h)/h| = |0/h| = 0 < ǫ.

In all cases we have the desired |f(h)/h| < ǫ. Thus we have shown that

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= 0.

5. Suppose that f : R → R is differentiable at a and that f(a) = 0. If g(x) = |f(x)| show
that g is differentiable at a if and only if f ′(a) = 0.
Solution: We begin by assuming that f ′(a) 6= 0. With out loss of generality we assume
that f ′(a) > 0. Thus we have that

lim
h→0

f(a + h)

h
= lim

h→0

f(a + h) − f(a)

h
= f ′(a) > 0.

So if {hn} is a sequence of positive numbers such that hn → 0 then we have that
f(a + hn)/h → f ′(a). Thus there is some N such that |f(a + hn)/hn − f ′(a)| < f ′(a)/2
for all n ≥ N. In particular f(a + hn)/hn is positive and hence f(a + hn) is positive for
all n ≥ N. Now for n ≥ N we have

g(a + hn) − g(a)

hn

=
|f(a + hn)|

hn

=
f(a + hn)

hn

→ f ′(a).

So if limh→0
g(a+h)−g(a)

h
exists then it must equal f ′(a).

Now consider a sequence {kn} of negative numbers that converge to 0. As above we see
that there is some N ′ such that n ≥ N ′ implies that f(a + kn)/kn is positive and hence
f(a + kn) is negative. So for n ≥ N ′ we see that

g(a + kn) − g(a)

kn

=
|f(a + kn)|

kn

=
−f(a + kn)

kn

→ −f ′(a).
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Thus if limh→0
g(a+h)−g(a)

h
exists then it must equal −f ′(a). But since f ′(a) 6= −f ′(a)

we see that limh→0
g(a+h)−g(a)

h
does not exist. That is g is not differentiable at a. So g

differentiable at a implies that f ′(a) = 0.
We now assume that f ′(a) = 0. Notice that

∣

∣

∣

∣

g(a + h) − g(a)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

|f(a + h)| − |f(a)|

h

∣

∣

∣

∣

≤

∣

∣

∣

∣

f(a + h) − f(a)

h

∣

∣

∣

∣

.

(The inequality follows from ||a| − |b|| ≤ |a− b|.) Since f(a+h)−f(a)
h

→ 0 as h → 0 we see
that |g′(a)| = 0. So g′(a) = 0 and g is differentiable.

6. Recall that a function f is even if f(−x) = f(x) for all x and odd if f(−x) = −f(x)
for all x. If f is an even function then show that f ′ is an odd function.
Solution: If f is an even function the we compute

f ′(−x) = lim
h→0

f(−x + h) − f(−x)

h

= lim
k→0

f(−x − k) − f(−x)

−k
(substitute h = −k)

= − lim
k→0

f(x + k) − f(x)

k
= −f ′(x).

Thus we see that f ′(x) is an odd function.
11. Suppose that f is defined and twice differentiable in some interval containing c. Show

that

f ′′(c) = lim
h→0

f(c + h) + f(c − h) − 2f(c)

h2
.

Given and example that shows the limit on the right hand side might exist even if the
second derivative of f at c does not exits. Hint: L’Hopital and the previous problem
(which you should do but don’t have to write up).
Solution: Since the limit of the numerator and the limit of the denominator is zero,
L’Hopital’s rule give

lim
h→0

f(c + h) + f(c − h) − 2f(c)

h2
= lim

h→0

f ′(c + h) − f ′(c − h)

2h
.

But now Problem 10 says that the limit on the right is computes the derivative of f ′ at
c, that is f ′′(c).
One of the standard examples of a function whose second derivative does not exist is
f(x) = x|x| at x = 0. Indeed you can easily check that f ′(x) = 2|x| and that

f ′′(x) =

{

2 x > 0

−2 x < 0

and is not defined at x = 0. But we see that for c = 0 we have

lim
h→0

f(c + h) + f(c − h) − 2f(c)

h2
= lim

h→0

h|h| − h|h|

h2
= 0.

So this limit can exist even when the second derivative does not.
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12. Suppose that f : (a, b) → R and that f ′′ exists everywhere. Then show that f ′′(x) ≥ 0
for all x ∈ (a, b) if and only if f is convex by which we mean

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

for all x, y ∈ (a, b) and t ∈ [0, 1]. Hint: Problem 11.
Solution: Assuming f is convex notice that we can take x = a + h and y = a − h and
t = 1

2
to see that

f(
1

2
(a + h) +

1

2
(a − h)) ≤

1

2
f(a + h) +

1

2
f(a − h).

So we have
f(a + h) + f(a − h) − 2f(a) ≥ 0.

If h 6= 0 then h2 > 0 so for all h 6= 0 we have

f(a + h) + f(a − h) − 2f(a)

h2
≥ 0.

Thus as we take the limit as h → 0 we see that f ′′(a) ≥ 0 for all a.
We now assume that f ′′(x) ≥ 0 for all x. For a fixed x and y with x < y and t ∈ [0, 1]
let z = tx + (1 − t)y. Now consider the order one Taylor polynomial for f at z. If we
evaluate this polynomial at x then there is some c ∈ [x, z] such that

f(x) = f(z) + f ′(z)(x − z) +
f ′′(c)

2
(x − z)2

and if we evaluate at y then there is some d ∈ [z, y] such that

f(y) = f(z) + f ′(z)(y − z) +
f ′′(d)

2
(y − z)2.

Since f ′′(c)/2(x − z)2 and f ′′(d)/2(y − z) are both non-negative so is

t
f ′′(c)

2
(x − z)2 + (1 − t)

f ′′(d)

2
(y − z).

Thus

tf(x) + (1 − t)f(y) = [tf(z) + (1 − t)f(z)] + [tf ′(z)(x − z) + (1 − t)f ′(z)(y − z)]

+ tf ′′(c)/2(x − z)2 + (1 − t)′(d)/2(y − z)

= f(z) + f ′(z)(tx + (1 − t)y − z) + t
f ′′(c)

2
(x − z)2 + (1 − t)

f ′′(d)

2
(y − z)

≥ f(z) = f(tx + (1 − t)y).

So f is convex.
16. Suppose that f : R → R is a differentiable function. If there is a constant C ∈ (0, 1)

such that |f ′(x)| < C for all x then show that f does have a fixed point. Show that
it is not sufficient to assume that |f ′(x)| < 1 to guarantee a fixed point by considering
the function

f(x) = x +
1

1 + ex
.
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Hint: When C exists let x1 be any point and set xn = f(xn−1). What can you say
about lim xn? Does it exits?
Solution: We know form a lemma in class that

|f(x) − f(y)| ≤ C|x − y|.

So if we let x0 be any point in R and set xn = f(xn−1) then notice that

|xn − xn+1| ≤ C|xn−1 − xn| ≤ . . . ≤ Cn|x0 − x1|.

Set d = |x0 − x1| and notice that for n > m we have

|xn − xm| ≤ |xn − xx−1| + |xn−1 − xn2
| + . . . |xm+1 + xm|

≤ Cn−1|x0 − x1| + Cn−2|x0 − x1| + . . . + Cm|x0 − x1|

≤ dCm(Cn−m−1 + Cn−m−2 + . . . + C + 1)

= dCm1 − Cn−m

1 − C
≤ d

Cm

1 − C
.

(For the last equality we used the formula 1 + r + . . . + rk = 1−rk+1

1−r
.) Since d Cm

1−C
goes

to 0 as m → ∞ we see that {xn} is a Cauchy sequence. Indeed, if ǫ > 0 is given there
is some N such that d Cn

1−C
< ǫ for n ≥ N. Thus if n ≥ m ≥ N we that |xn − xm| ≤ ǫ.

Since Cauchy sequences converge we know there is some x such that xn → x. Notice
that since f is continuous we have that

f(x) = f(lim xn) = lim f(xn) = lim xn+1 = x.

Now consider the function f(x) = x + 1
1+ex . Suppose x is a fixed point, then we have

x = x +
1

1 + ex
.

That is 1
1+ex = 0. But since 1 + ex 6= 0 we see that implies 1 = 0. This contradiction

implies that f does not have a fixed point. But now notice that f ′(x) = 1 − ex

(1+ex)2
.

The second term is always positive so f ′(x) < 1 for all x but as x → −∞ the second
term goes to 0 so f ′(x) is not bounded above by any C < 1.

19. Let f be a twice differentiable function on the interval (a,∞). Show that

(

sup
x∈(a,∞)

{|f ′(x)|}

)2

≤ 4

(

sup
x∈(a,∞)

{|f(x)|}

)(

sup
x∈(a,∞)

{|f ′′(x)|}

)

.

Notice that this says we can bound the first derivative of f in terms of f and the second
derivative. Hint: Consider Taylor polynomial expanded about x evaluated at x + h to
get a quadratic equation in h.
Solution: Taylor’s theorem gives

f(y) = f(x) + f ′(x)(y − x) +
f ′′(c)

2
(y − x)2

for some c between x and y. So plugging in y = x + h we see

f(x + h) = f(x) + f ′(x)h +
f ′′(c)

2
h2.
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Rearranging we have

−f ′(x)h = f(x)h − f(x + h) +
f ′′(c)

2
h2.

Taking absolute values we get

|f ′(x)h| ≤ |f(x)| + |f(x + h)| + |
f ′′(c)

2
h2|.

If we let
Mk = sup{|f (k)(x)| : x ∈ (a,∞)}

then we see that

|f ′(x)h| ≤ 2M0 +
M2

2
|h|2

or
0 ≤ 4M0 − 2|f ′(x)||h| + M2|h|

2.

The right hand side is a quadratic expression in |h|. Recall the roots of a quadratic

ax2 + bx + c occur at −b±
√

b2−4ac
2a

. Thus if b < 0 for the quadratic to be non-negative for
all positive x there is either a double root at −b

2a
or the roots are complex. So we see

that we must have b2 − 4ac ≤ 0. Thus we see that

4|f ′(x)|2 − 16M0M2 ≤ 0.

That is, we have
|f ′(x)|2 ≤ 4M0M2.

Since this is true for any x ∈ (a,∞) we can take the supremum over x on the left and
get

M2
1 ≤ 4M0M2,

which is equivalent to the formula we were trying to establish.
20. Suppose f is n times continuously differentiable on some interval (a, b) that contains c.

If f ′(c) = f ′′(c) = . . . = f (n−1)(c) = 0 and f (n)(c) 6= 0, then show that

(a) If n is even and f (n)(c) > 0, then f has a relative minimum at c.
(b) If n is even and f (n)(c) < 0, then f has a relative maximum at c.
(c) If n is odd, then f has neither a relative minimum or a relative maximum at c.

This, of course, is a large generalizations of the “second derivative test” you learned in
calculus for determining if a critical point is a max or a min.
Solution: Let’s suppose that f (n)(c) > 0. Since f (n) is continuous we know there is
some interval (a, b) that contains c on which f (n) is positive. Now using the (n−1)-order
Taylor polynomial about c we have for x ∈ (a, b) that

f(x) = f(c) +
f (n)(d)

n!
(x − c)n,

for some d between c and x. (Notice that the other terms in the Taylor polynomial are
zero since f (k)(c) = 0 for k = 1, . . . , n − 1.) Now since n is even and f (n)(c) > 0 we see
that the last term is positive. Therefor

f(x) ≥ f(c).
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That is c is a relative minimum of f .
We have a similar argument for f (n)(c) < 0. If n is odd then we see that the second
term on the right in the equation above can be both positive and negative for x near
c (it will be positive for x on one side of c and negative on the other side of c), thus c
will be neither a relative minimum or maximum.
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