Math 4318 - Spring 2011
Homework 1 — Solutions

3. Let
f(z) =

x?  x rational
0  z irrational.

Show that f is differentiable at 0 and compute f'(0).

Solution: Notice that if the derivative of 22 at x = 0 is 0 and the derivative of the zero
function at 0 is 0. So it would be reasonable to try to prove that f’(0) = 0. To this end
let € > 0 we need to find some § > 0 such that if 0 < |h| < ¢ then

f(0+h) — £(0)
h

—0‘<€.

Rewriting this and recalling that f(0) = 0 we are trying to find 6 > 0 such that
0 < |h| < ¢ implies |f(h)/h| < €. If we simply take & = € then notice that if 0 < |h| < ¢
we either have h rational, in which case

[f(h)/z] = |W*/h| = |n| < b =,
or we have h irrational, in which case
|f(h)/h| =10/h] =0 <e.
In all cases we have the desired |f(h)/h| < e. Thus we have shown that

h—0 h

5. Suppose that f: R — R is differentiable at a and that f(a) = 0. If g(x) = |f(x)| show
that g is differentiable at a if and only if f'(a) = 0.
Solution: We begin by assuming that f'(a) # 0. With out loss of generality we assume
that f’(a) > 0. Thus we have that

lim M = lim
h—0 h h—0

=0.

f(a+h) _f(a) _ f/(a) > 0.

h
So if {h,} is a sequence of positive numbers such that h, — 0 then we have that
f(a+ hy)/h — f'(a). Thus there is some N such that |f(a+ h,)/h, — f'(a)| < f'(a)/2
for all n > N. In particular f(a+ h,)/h, is positive and hence f(a + h,) is positive for
all n > N. Now for n > N we have

glathn) —gla) _[flatha)| flath,)
i B e S AL

So if limy,_,g M exists then it must equal f’(a).

Now consider a sequence {k,} of negative numbers that converge to 0. As above we see
that there is some N’ such that n > N’ implies that f(a + k,)/k, is positive and hence
f(a+ k) is negative. So for n > N’ we see that

glat+kn) —gla) |flatky)|  —flatkn) :
i =% 5~
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Thus if limy,_ M exists then it must equal —f’(a). But since f'(a) # —f'(a)

we see that limy,_,g M does not exist. That is g is not differentiable at a. So ¢
differentiable at a implies that f'(a) = 0.

We now assume that f’(a) = 0. Notice that

_ ‘\f(a+h)|—|f(a)|‘ < ‘f(aJrh)—f(a) |
h - h

‘g(a +h) —g(a)
h

w_ﬂ)athOWesee

(The inequality follows from ||a| — |b]|| < |a —b|.) Since
that |¢’(a)] = 0. So ¢’(a) = 0 and g is differentiable.
Recall that a function f is even if f(—z) = f(z) for all z and odd if f(—z) = —f(2)
for all z. If f is an even function then show that f’ is an odd function.

Solution: If f is an even function the we compute

fl=x+h)— f(-x)

f/(~2) = lim )
o S =B = (=)
k—0 —k

(substitute h = —k)

k—0 k

Thus we see that f’(x) is an odd function.
Suppose that f is defined and twice differentiable in some interval containing c¢. Show

e Fle 1)+ fe— 1) = 24(0

” ) c c—h)—2f(c
fie) = lim h?

Given and example that shows the limit on the right hand side might exist even if the

second derivative of f at ¢ does not exits. Hint: L’Hopital and the previous problem

(which you should do but don’t have to write up).

Solution: Since the limit of the numerator and the limit of the denominator is zero,

L’Hopital’s rule give

i LeF W+ =) =2f(c) _ | Fleth) = fle=h)

h—0 h? h—0 2h

But now Problem 10 says that the limit on the right is computes the derivative of f” at
¢, that is f”(c).

One of the standard examples of a function whose second derivative does not exist is
f(x) = z|z| at x = 0. Indeed you can easily check that f'(x) = 2|z| and that

f”(:c):{z x>0

-2 x<0

and is not defined at x = 0. But we see that for ¢ = 0 we have

po Lt W)+ fle=h) —2(c) . BlAl=hlA| _
h—0 h? h—0 h?

0.

So this limit can exist even when the second derivative does not.
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Suppose that f : (a,b) — R and that f” exists everywhere. Then show that f”(z) > 0
for all € (a,b) if and only if f is convex by which we mean

fltz+ (1=t)y) <tf(x)+ (1 —1t)f(y)

for all z,y € (a,b) and t € [0, 1]. Hint: Problem 11.
Solution: Assuming f is convex notice that we can take x = a+ h and y = a — h and
t= % to see that

fla+h)+ f(a— h).

l\DI»—t

F5lath)+ 5a—m) <

So we have
fla+h)+ f(a—h) —2f(a) >0
If h # 0 then h? > 0 so for all h # 0 we have

fla+h)+ fla—h) —2f(a)
h2

Thus as we take the limit as h — 0 we see that f”(a) > 0 for all a.

We now assume that f”(x) > 0 for all z. For a fixed 2 and y with 2 < y and ¢ € [0, 1]
let z =tz + (1 — t)y. Now consider the order one Taylor polynomial for f at z. If we
evaluate this polynomial at = then there is some ¢ € [z, z] such that

> 0.

fl@)=f()+ f(z)(z —2) +
and if we evaluate at y then there is some d € [z, y] such that

f"(d)
2

Fl)=f2) + F(2)y — 2) + ——(y — 2)*
Since f”(c)/2(x — 2)* and f"(d)/2(y — z) are both non-negative so is

f"(c)
t 5 (x

— 22+ (1 -1 f”2(d) (y — 2).

Thus

tf@)+ A =0)f(y) =[tf(z) + A=) f @]+ [t ()@ —2) + A =) f'(2)(y — 2)]
+tf"(e)/2(x — 2)* + (1 =)/ (d)/2(y — )

(2) + ')tz + (1 — )y — 2) + tf”2(c) (x—2)2+(1—1) f"2<d> (v

f
> [(2) = [tz + (1 = 1)y).

So f is convex.

Suppose that f : R — R is a differentiable function. If there is a constant C' € (0, 1)
such that |f'(z)| < C for all x then show that f does have a fixed point. Show that
it is not sufficient to assume that |f'(x)| < 1 to guarantee a fixed point by considering
the function
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Hint: When C exists let z; be any point and set z, = f(z,-1). What can you say
about lim z,,? Does it exits?
Solution: We know form a lemma in class that

|f(z) = fy)] < Cle —yl.
So if we let zy be any point in R and set =, = f(z,_1) then notice that
|2y — Xpar| < Clzpg —xn] < .00 < C™zg — 141
Set d = |rg — x1| and notice that for n > m we have
[T — | < |Tp — Tpe1| 4+ |Tno1 — Ty | + -+ - |Tima1 + T
< C" Moy — x| + C" ag — 21| 4 ... + C™|zg — 21|

<dcm(ermTl o4 L 4+ 0+ 1)

1-crm o cm
= m < .
e e

_rk

(For the last equality we used the formula 1 +7r+ ... +r* = 11—_:1) Since dl(’:—”é goes
to 0 as m — oo we see that {z,} is a Cauchy sequence. Indeed, if € > 0 is given there
is some N such that d% < e forn > N. Thus if n > m > N we that |z, — x,,| < €.
Since Cauchy sequences converge we know there is some x such that x, — z. Notice

that since f is continuous we have that

f(z) = f(limz,) = lim f(z,) = limz,,; = .

1
1+e®*

Now consider the function f(x) =x + Suppose z is a fixed point, then we have

:E::)s+1+em.

That is H% = 0. But since 1 + e* # 0 we see that implies 1 = 0. This contradiction
implies that f does not have a fixed point. But now notice that f'(z) = 1 — ﬁ
The second term is always positive so f'(x) < 1 for all = but as z — —oo the second
term goes to 0 so f’(x) is not bounded above by any C' < 1.

Let f be a twice differentiable function on the interval (a, co). Show that

( sup {|f/($)\}> §4< sup ﬂf(@”’) ( sup {|f”($)\}>-
x€(a,00) z€(a,00) z€(a,00)

Notice that this says we can bound the first derivative of f in terms of f and the second
derivative. Hint: Consider Taylor polynomial expanded about = evaluated at = 4 h to
get a quadratic equation in h.

Solution: Taylor’s theorem gives

, f// c
F0) = @) + F )y — )+ Dy - a2
for some ¢ between x and y. So plugging in y = x + h we see

flx+h)=f(z)+ f(z)h + %(C)h?
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Rearranging we have

)= fah— f+ )+ L

Taking absolute values we get

P < £+ £+ )+ 1

If we let
My = sup{|fP(2)] : z € (a,00)}

then we see that M
7)) < 20y + =2 R

or

0 < 4Mo — 2| f"(2)[|A] + Ma|hf*.

The right hand side is a quadratic expression in |h|. Recall the roots of a quadratic
az? 4 bz + ¢ occur at —bEv—dac 315_4“0. Thus if b < 0 for the quadratic to be non-negative for
all positive x there is either a double root at ;—; or the roots are complex. So we see
that we must have b?> — 4ac < 0. Thus we see that

41f'(2)|* — 16 MM, < 0.

That is, we have
|f' ()| < 4Mo M.

Since this is true for any = € (a,00) we can take the supremum over x on the left and
get
M} < 4MoMs,,

which is equivalent to the formula we were trying to establish.
Suppose f is n times continuously differentiable on some interval (a,b) that contains c.
If f'(c) = f"(c) =...= f™Y(c) =0 and f™(c) # 0, then show that

(a) If n is even and f(™(c) > 0, then f has a relative minimum at c.
(b) If n is even and f™(c) < 0, then f has a relative maximum at c.
(c) If n is odd, then f has neither a relative minimum or a relative maximum at c.

This, of course, is a large generalizations of the “second derivative test” you learned in
calculus for determining if a critical point is a max or a min.

Solution: Let’s suppose that f(™(c) > 0. Since f™ is continuous we know there is
some interval (a, b) that contains ¢ on which f(™ is positive. Now using the (n—1)-order
Taylor polynomial about ¢ we have for x € (a,b) that

f(d)

n!

flz) = fle) +

(ZE - C)n>
for some d between ¢ and z. (Notice that the other terms in the Taylor polynomial are

zero since f®)(c) =0 for k=1,...,n — 1.) Now since n is even and f™(c) > 0 we see
that the last term is positive. Therefor

f(x) = f(c).

bt



That is ¢ is a relative minimum of f.

We have a similar argument for £ (¢) < 0. If n is odd then we see that the second
term on the right in the equation above can be both positive and negative for x near
¢ (it will be positive for x on one side of ¢ and negative on the other side of ¢), thus ¢
will be neither a relative minimum or maximum.



