
Math 4318 Midterm Exam 1 Solutions Spring 2011
1) Let f : [a, b] → R be Riemann integrable and set

F (x) =

∫ x

a

f(t) dt.

Prove that F is Lipschitz.
Solution: Since f is Riemann integrable it is bounded, that is there is some M such

that |f(x)| ≤ M for all x ∈ [a, b]. Now if y ≤ x we have

|F (x) − F (y)| = |
∫ x

y

f(t) dt| ≤
∫ x

y

|f(t)| dt ≤
∫ x

y

M dt = M(x − y) = M |x − y|.

Similarly |F (x)−F (y)| ≤ M(y − x) = M |x− y| if y ≥ x. So we see that for any x, y ∈ [a, b]
we have

|F (x) − F (y)| ≤ M |x − y|.
That is F is Lipschitz.
2) a) Let

f(x) =

{

x2 sin
(

1
x2

)

x 6= 0

0 x = 0.

Show that f is differentiable at all x ∈ R by computing the derivative. (Thought we did not
prove it in class you may use, without proof, the fact that the derivative of sin x is cos x as
well as other derivative rules you know.)

Solution: For x 6= 0 the function is a composition and product of differentiable functions
so we can use the product and chain rule to get

f ′(x) = 2x sin(1/x2) + x2 cos(1/x2)(−2x−3) = 2x sin(1/x2) − 2(1/x) cos(1/x2).

Now for x = 0 we compute
∣

∣

∣

∣

f(0 + h) − f(0)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

h2 sin(1/h2)

h

∣

∣

∣

∣

= |h sin 1/h2| ≤ |h|.

So as h goes to zero the difference quotient goes to zero thus f ′(0) = 0.
b) Show that f ′ is unbounded on [0, 1].

Solution: Let

xn =

√

1

2nπ
.

Notice that xn → 0 and n → ∞ but that f ′(xn) = −2(
√

2nπ) which is unbounded as n → ∞.
So f ′ is unbounded near 0.
3 a) Suppose that f : [a, b] → R satisfies f ′(x) ≥ 0 for all x ∈ [a, b]. Show that f is increasing
on [a, b]. (That is f(x) ≥ f(y) if x > y.)

Solution: Let x > y be two points in [a, b] we know by the mean value theorem that
there is a c between x and y such that

f(x) − f(y) = f ′(c)(x − y) ≥ 0.
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So f(x) ≥ f(y). Thus f is increasing on [a, b].
b) If in addition f ′(x) is not identically zero on any sub-interval of [a, b] then f is strictly
increasing. (That is f(x) > f(y) if x > y.)

Solution: Suppose that f is not strictly increasing. Then there is some x and y with
x > y such that f(x) = f(y). But then f(z) = f(x) for all z ∈ [y, x]. That is f is constant
on [y, x]. But this implies that f ′(z) = 0 on (y, x) contradicting the assumption. Thus f is
strictly increasing.
4) Let f : [a, b] → R be Riemann integrable. For c ∈ (a, b) we know that f restricted to
[a, c] and to [c, b] gives an integrable function too (you do not have to prove this). Using the
definition of the integral (either Riemann or Darboux) show that

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

Hint: Given ǫ > 0 choose a good partition that shows that both the right and left sides of
the above equation are with ǫ of each other.

Solution: Since f is integrable we know that for any ǫ > 0 there is some partition P
such that

U(f,P) − L(f,P) < ǫ.

Now let P ′ = P with the point c added. Since P ′ is a refinement of P we know the above
inequality holds for P ′ too (since the upper sum cannot be larger and the lower sum cannot

be smaller). We know that
∫ b

a
f(x) dx must be between U(f,P ′) and L(f,P ′) since it is

equal to the upper and lower Darboux integral. Moreover notice that if P1 consists of the
points of P ′ that are in [a, c] and P2 are the points of P ′ that are in [c, b], then

U(f,P ′) = U(f |[a,c],P1) + U(f[c.b],P2).

So
∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx ≤ U(f,P ′).

Similarly
∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx ≥ L(f,P ′).

That is
∫ c

a
f(x) dx +

∫ b

c
f(x) dx is between L(f,P ′) and U(f,P ′). Thus we know that

∣

∣

∣

∣

(
∫ c

a

f(x) dx +

∫ b

c

f(x) dx

)

−
∫ b

a

f(x) dx

∣

∣

∣

∣

< ǫ

since both the quantities on the left are in an interval of length less than ǫ, namely [L(f,P ′), U(f,P ′)].
Since the above inequality is true for all ǫ > 0 we know the left hand side is zero and this
establishes our desired equality.
5) Answer the following questions True or False. Circle either T or F to indicate your
answer. You do not need to justify your answer.
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1. Any union of sets of measure zero have measure zero.

F

2. Every continuous function has an anti-derivative.

T

3. Given any two partitions P and Q of [a, b] and any function f : [a, b] → R we must
have L(f,P) ≤ U(f,Q).

T

4. For any f and g with g(x) 6= 0 near c we have lim
x=→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

F

5. A Lipschitz function is differentiable.

F

6. If f : [a, b] → R is integrable and F (x) =
∫ x

a
f(t) dt, then F ′(x) = f(x).

F

7. A function f : [a, b] → R is continuous at c ∈ (a, b) if and only if the oscillation of f at
c is zero. Recall the oscillation of f at c is

oscc(f) = lim
t→0

(sup{f(x) : x ∈ [c − t, c + t]} − inf{f(x) : x ∈ [c − t, c + t]}).

T

8. A continuously differentiable function on a compact interval is Lipschitz on that inter-
val.

T

9. If a function f : [a, b] → R is differentiable on [a, b] then it is integrable on [a, b].

T

10. A function that is Riemannian integrable on [a, b] must be bounded on [a, b].

T
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