1) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and set

$$
F(x)=\int_{a}^{x} f(t) d t .
$$

Prove that F is Lipschitz.
Solution: Since f is Riemann integrable it is bounded, that is there is some M such that $|f(x)| \leq M$ for all $x \in[a, b]$. Now if $y \leq x$ we have

$$
|F(x)-F(y)|=\left|\int_{y}^{x} f(t) d t\right| \leq \int_{y}^{x}|f(t)| d t \leq \int_{y}^{x} M d t=M(x-y)=M|x-y|
$$

Similarly $|F(x)-F(y)| \leq M(y-x)=M|x-y|$ if $y \geq x$. So we see that for any $x, y \in[a, b]$ we have

$$
|F(x)-F(y)| \leq M|x-y|
$$

That is F is Lipschitz.
2) a) Let

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x^{2}}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that f is differentiable at all $x \in \mathbb{R}$ by computing the derivative. (Thought we did not prove it in class you may use, without proof, the fact that the derivative of $\sin x$ is $\cos x$ as well as other derivative rules you know.)

Solution: For $x \neq 0$ the function is a composition and product of differentiable functions so we can use the product and chain rule to get

$$
f^{\prime}(x)=2 x \sin \left(1 / x^{2}\right)+x^{2} \cos \left(1 / x^{2}\right)\left(-2 x^{-3}\right)=2 x \sin \left(1 / x^{2}\right)-2(1 / x) \cos \left(1 / x^{2}\right)
$$

Now for $x=0$ we compute

$$
\left|\frac{f(0+h)-f(0)}{h}\right|=\left|\frac{h^{2} \sin \left(1 / h^{2}\right)}{h}\right|=\left|h \sin 1 / h^{2}\right| \leq|h| .
$$

So as h goes to zero the difference quotient goes to zero thus $f^{\prime}(0)=0$.
b) Show that f^{\prime} is unbounded on $[0,1]$.

Solution: Let

$$
x_{n}=\sqrt{\frac{1}{2 n \pi}} .
$$

Notice that $x_{n} \rightarrow 0$ and $n \rightarrow \infty$ but that $f^{\prime}\left(x_{n}\right)=-2(\sqrt{2 n \pi})$ which is unbounded as $n \rightarrow \infty$. So f^{\prime} is unbounded near 0 .
3 a) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$. Show that f is increasing on $[a, b]$. (That is $f(x) \geq f(y)$ if $x>y$.)

Solution: Let $x>y$ be two points in $[a, b]$ we know by the mean value theorem that there is a c between x and y such that

$$
f(x)-f(y)=f^{\prime}(c)(x-y) \geq 0
$$

So $f(x) \geq f(y)$. Thus f is increasing on $[a, b]$.
b) If in addition $f^{\prime}(x)$ is not identically zero on any sub-interval of $[a, b]$ then f is strictly increasing. (That is $f(x)>f(y)$ if $x>y$.)

Solution: Suppose that f is not strictly increasing. Then there is some x and y with $x>y$ such that $f(x)=f(y)$. But then $f(z)=f(x)$ for all $z \in[y, x]$. That is f is constant on $[y, x]$. But this implies that $f^{\prime}(z)=0$ on (y, x) contradicting the assumption. Thus f is strictly increasing.
4) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable. For $c \in(a, b)$ we know that f restricted to $[a, c]$ and to $[c, b]$ gives an integrable function too (you do not have to prove this). Using the definition of the integral (either Riemann or Darboux) show that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Hint: Given $\epsilon>0$ choose a good partition that shows that both the right and left sides of the above equation are with ϵ of each other.

Solution: Since f is integrable we know that for any $\epsilon>0$ there is some partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon
$$

Now let $\mathcal{P}^{\prime}=\mathcal{P}$ with the point c added. Since \mathcal{P}^{\prime} is a refinement of \mathcal{P} we know the above inequality holds for \mathcal{P}^{\prime} too (since the upper sum cannot be larger and the lower sum cannot be smaller). We know that $\int_{a}^{b} f(x) d x$ must be between $U\left(f, \mathcal{P}^{\prime}\right)$ and $L\left(f, \mathcal{P}^{\prime}\right)$ since it is equal to the upper and lower Darboux integral. Moreover notice that if \mathcal{P}_{1} consists of the points of \mathcal{P}^{\prime} that are in $[a, c]$ and \mathcal{P}_{2} are the points of \mathcal{P}^{\prime} that are in $[c, b]$, then

$$
U\left(f, \mathcal{P}^{\prime}\right)=U\left(\left.f\right|_{[a, c]}, \mathcal{P}_{1}\right)+U\left(f_{[c . b]}, \mathcal{P}_{2}\right)
$$

So

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\overline{\int_{a}^{c}} f(x) d x+\overline{\int_{c}^{b}} f(x) d x \leq U\left(f, \mathcal{P}^{\prime}\right)
$$

Similarly

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\underline{\int_{a}^{c}} f(x) d x+\underline{\int_{c}^{b}} f(x) d x \geq L\left(f, \mathcal{P}^{\prime}\right)
$$

That is $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ is between $L\left(f, \mathcal{P}^{\prime}\right)$ and $U\left(f, \mathcal{P}^{\prime}\right)$. Thus we know that

$$
\left|\left(\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right)-\int_{a}^{b} f(x) d x\right|<\epsilon
$$

since both the quantities on the left are in an interval of length less than ϵ, namely $\left[L\left(f, \mathcal{P}^{\prime}\right), U\left(f, \mathcal{P}^{\prime}\right)\right]$. Since the above inequality is true for all $\epsilon>0$ we know the left hand side is zero and this establishes our desired equality.
5) Answer the following questions True or False. Circle either \mathbf{T} or \mathbf{F} to indicate your answer. You do not need to justify your answer.

1. Any union of sets of measure zero have measure zero.
2. Every continuous function has an anti-derivative.
3. Given any two partitions \mathcal{P} and \mathcal{Q} of $[a, b]$ and any function $f:[a, b] \rightarrow \mathbb{R}$ we must have $L(f, \mathcal{P}) \leq U(f, \mathcal{Q})$.

T

4. For any f and g with $g(x) \neq 0$ near c we have $\lim _{x=\rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
5. A Lipschitz function is differentiable.
6. If $f:[a, b] \rightarrow \mathbb{R}$ is integrable and $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$.
7. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous at $c \in(a, b)$ if and only if the oscillation of f at c is zero. Recall the oscillation of f at c is

$$
\operatorname{osc}_{c}(f)=\lim _{t \rightarrow 0}(\sup \{f(x): x \in[c-t, c+t]\}-\inf \{f(x): x \in[c-t, c+t]\})
$$

8. A continuously differentiable function on a compact interval is Lipschitz on that interval.
9. If a function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable on $[a, b]$ then it is integrable on $[a, b]$.
10. A function that is Riemannian integrable on $[a, b]$ must be bounded on $[a, b]$.
