Math 4318

Midterm Exam 1
Spring 2011
Solutions

1) For a fixed $c \in[a, b]$ define the function

$$
\delta_{c}: C^{0}([a, b]) \rightarrow \mathbb{R}: f \mapsto f(c)
$$

If we give $C^{0}([a, b])$ the usual sup-norm $\|\cdot\|_{\infty}$, then show that δ_{c} is continuous.
Solution: Notice that

$$
\left|\delta_{c}(f)-\delta_{c}(g)\right|=|f(c)-g(c)| \leq\|f-g\|_{\infty}
$$

So given $\epsilon>0$ let $\delta=\epsilon$ and we see that if $\|f-g\|_{\infty}<\delta$ then

$$
\left|\delta_{c}(f)-\delta_{c}(g)\right|<\delta=\epsilon
$$

So δ_{c} is continuous.
2) Show that for any function $f \in C^{1}([a, b])$ there is a sequence of polynomials p_{n} that converge to f in the $\|\cdot\|_{C^{1}}$ norm (that is the p_{n} converge uniformly to f and p_{n}^{\prime} converge uniformly to f^{\prime}). Hint: use the Weierstrass Theorem to approximate f^{\prime} first.
Solution: Since f is C^{1} we know that $f^{\prime} \in C^{0}([a, b])$. Thus the Weierstrass Theorem tells us that for each n there is a polynomial q_{n} such that

$$
\left\|f^{\prime}-q_{n}\right\|_{\infty}<1 / n
$$

Thus we see that $\left\{q_{n}\right\}$ converges uniformly to f^{\prime} on $[a, b]$. Let

$$
p_{n}(x)=f(a)+\int_{a}^{x} q_{n}(y) d y
$$

Notice that

$$
\begin{aligned}
\left|f(x)-p_{n}(x)\right| & =\left|\int_{a}^{x} f^{\prime}(y) d y+f(a)-\left(f(a)+\int_{a}^{x} q_{n}(y) d y\right)\right| \\
& =\left|\int_{a}^{x} f^{\prime}(y)-q_{n}(x) d y\right| \leq \int_{a}^{x}\left|f^{\prime}(x)-q_{n}(x)\right| d y \leq\left\|f^{\prime}-q_{n}\right\|_{\infty}(b-a)
\end{aligned}
$$

Thus $\left\|f-p_{n}\right\|_{\infty} \leq\left\|f^{\prime}-q_{n}\right\|_{\infty}(b-a)$ and $\left\|f-p_{n}\right\|_{C^{1}}=\left\|f-p_{n}\right\|_{\infty}+\left\|f^{\prime}-p_{n}^{\prime}\right\|_{\infty} \leq$ $(1+b-a)\left\|f^{\prime}-q_{n}\right\|_{\infty} \leq(1+b-a) \frac{1}{n}$. Thus we see that $\left\{p_{n}\right\}$ converges to f in the C^{1}-norm.
3) a) Give and example of a sequence of functions $\left\{f_{n}\right\}$ on the interval $[a, b]$ that are integrable and converge point-wise to a function f that is also integrable but where

$$
\int_{a}^{b} f(x) d x \neq \lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

Solution: Let

$$
f(x)= \begin{cases}n^{2} x & x \in[0,1 / n] \\ -n^{2} x+2 n & x \in[1 / n, 2 / n] \\ 0 & x \in[2 / n, 1]\end{cases}
$$

Notice that $\left\{f_{n}\right\}$ converges point-wise to $f(x)=0$. Clearly

$$
\begin{aligned}
\int_{0}^{1} f_{n}(x) d x & =\int_{0}^{1 / n} n^{2} x d x+\int_{1 / n}^{2 / n}\left(-n^{2} x+2 n\right) d x \\
& =\left.\frac{1}{2} n^{2} x^{2}\right|_{0} ^{1 / n}+\left.\left(-\frac{1}{2} n^{2} x^{2}+2 n x\right)\right|_{1 / n} ^{2 / n} \\
& =\frac{1}{2}(1-0)+\left(-\frac{1}{2}(4-1)+2 n(2 / n-1 / n)=1\right.
\end{aligned}
$$

and

$$
\int_{0}^{1} f(x) d x=0
$$

So $\int_{a}^{b} f(x) d x \neq \lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$.
b) Show that if $f_{n} \rightarrow f$ uniformly on $[a, b]$ then f must be integrable on $[a, b]$. (You only need to show f is integrable, but not anything about the integral.)
Solution: Recall a function is integrable if and only if it is bounded and continuous almost everywhere. Since $f_{n} \rightarrow f$ uniformly we know that given $\epsilon=1$ there is an N such that $\left|f_{n}(x)-f(x)\right| \leq 1$ for all $n \geq N$. Now since f_{N} is integrable it is bounded. Say M is the bound on f_{N}. Then $|f(x)| \leq M+1$. So f is bounded too.

Now let C_{n} be the set of points at which f_{n} is discontinuous and C the set of points at which f is discontinuous. We know that if $x \notin \cap C_{n}$ then f is continuous so $x \notin C$. In other works $C \subset \cup C_{n}$. We know that since f_{n} is integrable the sets C_{n} have measure zero. The countable union of sets of measure zero have measure zero so $\cup C_{n}$ has measure zero. Finally C being a subset of a set of measure zero has measure zero. Thus f in integrable (by the Riemann-Lebesgue Theorem).
Another solution: As above we know f is bounded (since the f_{n} are). Now given any $\epsilon>0$ there is some N such that $\left|f(x)-f_{n}(x)\right| \leq \epsilon / 3$ for all $n \geq N$ and $x \in[a, b]$. Thus $f_{n}(x)-\epsilon / 3 \leq f(x) \leq f_{n}(x)+\epsilon / 3$ for all $x \in[a, b]$ and $n \geq N$. Now since f_{N} is integrable there is a partition \mathcal{P} such that $U\left(f_{N}, \mathcal{P}\right)-L\left(f_{N}, \mathcal{P}\right)<\epsilon / 3$. So

$$
U(f, \mathcal{P})-L(f, \mathcal{P}) \leq U\left(f_{N}+\epsilon / 3, \mathcal{P}\right)-L\left(f_{N}-\epsilon / 3, \mathcal{P}\right)=U\left(f_{N}, \mathcal{P}\right)-L\left(f_{N}, \mathcal{P}\right)+2 \epsilon / 3<\epsilon .
$$

Thus f is integrable.
4) a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be defined by $f(x)=g(x)+c$ where $c \in \mathbb{R}^{m}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies

$$
\|g(x)\| \leq M\|x\|^{2}
$$

for some constant M. Use the definition of derivative to prove that $D f(0)=0$.
Solution: Notice that $\|f(0)-c\|]=\|g(0)\| \leq M\|0\|=0$. So $f(0)=c$. Consider

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\|f(x)-f(0)-0(x-0)\|}{\|x-0\|} & =\lim _{x \rightarrow 0} \frac{\|c+g(x)-c\|}{\|x\|} \\
& =\lim _{x \rightarrow 0} \frac{\|g(x)\|}{\|x\|} \leq \lim _{x \rightarrow c} \frac{M\|x\|^{2}}{\|x\|} \\
& =\lim _{x \rightarrow 0} M\|x\|=0
\end{aligned}
$$

So $D f(0)=0$.
b) Compute the derivative of $f(x, y, z)=\left(x^{2} z, 3 x+4 z\right)$.

Solution:

$$
D f=\left[\begin{array}{ccc}
2 x z & 0 & x^{2} \\
3 & 0 & 4
\end{array}\right]
$$

5) Answer the following questions True or False. Circle either \mathbf{T} or \mathbf{F} to indicate your answer. You do not need to justify your answer.
1. Smooth functions are analytic.

F We had a counter example in class.
2. If a sequence of function $\left\{f_{n}\right\}$ that are integrable on $[a, b]$ and converge to f points-wise then f is integrable.

F We had a counter example in class.
3. If the derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ exists then all the partial derivatives of the coordinate functions exist and are continuous.

F We had a counter example in class.
4. If the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x=c$ then it defines an differentiable function on the interval $(-|c|,|c|)$.
\mathbf{T} The hypothesis implies that the radius of convergence is at least $|c|$.
5. Given any continuous function $f:[5,10] \rightarrow \mathbb{R}$ there is a sequence of polynomials that converge to f uniformly on $[5,10]$.
\mathbf{T} This is the Weierstrass theorem.
6. If all the directional derivatives of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ exist and are continuous then the derivative of f exists.
\mathbf{T} If all the directional derivatives are continuous then all the partial derivatives are continuous so this follows from a theorem in class.
7. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ must be differentiable somewhere.

F We had a counter example in class.
8. A Lipschitz map must be differentiable everywhere.
$\mathbf{F} \quad$ Consider $f(x)=|x|$.
9. A Lipschitz map on a compact interval must have a fixed point.

F Only if the LIpschitz constant is less than 1 (so the mapping is a contraction).
10. Cauchy sequences must converge in a Banach space.

T This is part of the definition of a Banach space.

