
Math 4318 Midterm Exam 1 Spring 2011
Solutions

1) For a fixed c ∈ [a, b] define the function

δc : C0([a, b]) → R : f 7→ f(c).

If we give C0([a, b]) the usual sup-norm ‖ · ‖∞, then show that δc is continuous.
Solution: Notice that

|δc(f) − δc(g)| = |f(c) − g(c)| ≤ ‖f − g‖∞.

So given ǫ > 0 let δ = ǫ and we see that if ‖f − g‖∞ < δ then

|δc(f) − δc(g)| < δ = ǫ.

So δc is continuous.

2) Show that for any function f ∈ C1([a, b]) there is a sequence of polynomials pn that
converge to f in the ‖ · ‖C1 norm (that is the pn converge uniformly to f and p′n converge
uniformly to f ′). Hint: use the Weierstrass Theorem to approximate f ′ first.
Solution: Since f is C1 we know that f ′ ∈ C0([a, b]). Thus the Weierstrass Theorem tells
us that for each n there is a polynomial qn such that

‖f ′ − qn‖∞ < 1/n.

Thus we see that {qn} converges uniformly to f ′ on [a, b]. Let

pn(x) = f(a) +

∫ x

a

qn(y) dy.

Notice that

|f(x) − pn(x)| =

∣

∣

∣

∣

∫ x

a

f ′(y) dy + f(a) −

(

f(a) +

∫ x

a

qn(y) dy

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

a

f ′(y) − qn(x) dy

∣

∣

∣

∣

≤

∫ x

a

|f ′(x) − qn(x)| dy ≤ ‖f ′ − qn‖∞(b − a).

Thus ‖f − pn‖∞ ≤ ‖f ′ − qn‖∞(b − a) and ‖f − pn‖C1 = ‖f − pn‖∞ + ‖f ′ − p′n‖∞ ≤
(1 + b− a)‖f ′ − qn‖∞ ≤ (1 + b− a) 1

n
. Thus we see that {pn} converges to f in the C1-norm.

3) a) Give and example of a sequence of functions {fn} on the interval [a, b] that are integrable
and converge point-wise to a function f that is also integrable but where

∫ b

a

f(x) dx 6= limn→∞

∫ b

a

fn(x) dx.

Solution: Let

f(x) =











n2x x ∈ [0, 1/n]

−n2x + 2n x ∈ [1/n, 2/n]

0 x ∈ [2/n, 1]
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Notice that {fn} converges point-wise to f(x) = 0. Clearly

∫

1

0

fn(x) dx =

∫

1/n

0

n2x dx +

∫

2/n

1/n

(−n2x + 2n) dx

=
1

2
n2x2|

1/n
0

+ (−
1

2
n2x2 + 2nx)|

2/n
1/n

=
1

2
(1 − 0) + (−

1

2
(4 − 1) + 2n(2/n − 1/n) = 1

and
∫

1

0

f(x) dx = 0.

So
∫ b

a
f(x) dx 6= limn→∞

∫ b

a
fn(x) dx.

b) Show that if fn → f uniformly on [a, b] then f must be integrable on [a, b]. (You only
need to show f is integrable, but not anything about the integral.)
Solution: Recall a function is integrable if and only if it is bounded and continuous almost
everywhere. Since fn → f uniformly we know that given ǫ = 1 there is an N such that
|fn(x) − f(x)| ≤ 1 for all n ≥ N . Now since fN is integrable it is bounded. Say M is the
bound on fN . Then |f(x)| ≤ M + 1. So f is bounded too.

Now let Cn be the set of points at which fn is discontinuous and C the set of points at
which f is discontinuous. We know that if x 6∈ ∩Cn then f is continuous so x 6∈ C. In other
works C ⊂ ∪Cn. We know that since fn is integrable the sets Cn have measure zero. The
countable union of sets of measure zero have measure zero so ∪Cn has measure zero. Finally
C being a subset of a set of measure zero has measure zero. Thus f in integrable (by the
Riemann-Lebesgue Theorem).
Another solution: As above we know f is bounded (since the fn are). Now given any
ǫ > 0 there is some N such that |f(x) − fn(x)| ≤ ǫ/3 for all n ≥ N and x ∈ [a, b]. Thus
fn(x) − ǫ/3 ≤ f(x) ≤ fn(x) + ǫ/3 for all x ∈ [a, b] and n ≥ N . Now since fN is integrable
there is a partition P such that U(fN ,P) − L(fN ,P) < ǫ/3. So

U(f,P) − L(f,P) ≤ U(fN + ǫ/3,P) − L(fN − ǫ/3,P) = U(fN ,P) − L(fN ,P) + 2ǫ/3 < ǫ.

Thus f is integrable.

4) a) Let f : R
n → R

m be defined by f(x) = g(x) + c where c ∈ R
m and g : R

n → R
m

satisfies
‖g(x)‖ ≤ M‖x‖2

for some constant M . Use the definition of derivative to prove that Df(0) = 0.
Solution: Notice that ‖f(0) − c‖] = ‖g(0)‖ ≤ M‖0‖ = 0. So f(0) = c. Consider

lim
x→0

‖f(x) − f(0) − 0(x − 0)‖

‖x − 0‖
= lim

x→0

‖c + g(x) − c‖

‖x‖

= lim
x→0

‖g(x)‖

‖x‖
≤ lim

x→c

M‖x‖2

‖x‖

= lim
x→0

M‖x‖ = 0.
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So Df(0) = 0.

b) Compute the derivative of f(x, y, z) = (x2z, 3x + 4z).
Solution:

Df =

[

2xz 0 x2

3 0 4

]

5) Answer the following questions True or False. Circle either T or F to indicate your
answer. You do not need to justify your answer.

1. Smooth functions are analytic.

F We had a counter example in class.

2. If a sequence of function {fn} that are integrable on [a, b] and converge to f points-wise
then f is integrable.

F We had a counter example in class.

3. If the derivative of a function f : R
n → R

m exists then all the partial derivatives of
the coordinate functions exist and are continuous.

F We had a counter example in class.

4. If the power series
∑

∞

n=0
anx

n converges at x = c then it defines an differentiable
function on the interval (−|c|, |c|).

T The hypothesis implies that the radius of convergence is at least |c|.

5. Given any continuous function f : [5, 10] → R there is a sequence of polynomials that
converge to f uniformly on [5, 10].

T This is the Weierstrass theorem.

6. If all the directional derivatives of a function f : R
n → R exist and are continuous then

the derivative of f exists.

T If all the directional derivatives are continuous then all the partial derivatives
are continuous so this follows from a theorem in class.

7. A continuous function f : R → R must be differentiable somewhere.

F We had a counter example in class.

8. A Lipschitz map must be differentiable everywhere.

F Consider f(x) = |x|.
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9. A Lipschitz map on a compact interval must have a fixed point.

F Only if the LIpschitz constant is less than 1 (so the mapping is a contraction).

10. Cauchy sequences must converge in a Banach space.

T This is part of the definition of a Banach space.
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