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I. Single Variable Functions: Differentiation
A. Definitions and first properties

1. We recalled a few definitions concerning limits form Analysis I.
2. A function f : (a, b) → R is differentiable at a point p ∈ (a, b) if the limit

lim
h→0

f(p + h) − f(p)

h

exists. If the limit exists we denote it by f ′(p) and call it the derivative of f at p.
3. Interpreting the derivative as a slope we could also define

f ′(p) = lim
t→p

f(t) − f(p)

t − p
.

4. Theorem: If f is differentiable at p then f is continuous at p.
5. Theorem: Suppose f and g are differentiable at p. Then

i. The function f ± g is differentiable at p with

(f ± g)′(p) = f ′(p) ± g′(p).

ii. The function fg is differentiable at p with

(fg)′(p) = f ′(p)g(p) + f(p)g′(p).

iii. If g(p) 6= 0 then the function f/g is differentiable at p and

(f/g)′(p) =
f ′(p)g(p) − f(p)g′(p)

g2(p)
.

iv. If h(x) = c for some constant c ∈ R then h′(x) = 0 for all x.
v. If h(x) = x then h′(x) = 1 for all x.
vi. If f is differentiable at p and g is differentiable at f(p) then g ◦ f is differentiable

at p and

(g ◦ f)′(p) = g′(f(p))f ′(p).

6. Discussed the example

f(x) =

{

x2 sin 1
x

x 6= 0

0 x = 0.

It is differentiable on R (including 0) but its derivative is not continuous at 0.
7. The nth order derivative of f at p is defined to be the derivative of the (n − 1)st

derivative of f at p, if it exists. Denote the nth derivative by f (n)(p). With this notation
we take f (0) to denote f .

8. A function is continuously differentiable of order r on the interval I if f (r) exists
and is continuous on I. (Note this implies f (k) exists and is continuous on I for all k ≤ r.)
We denote the set of continuously rth order differentiable functions on I by Cr(I). The
set C∞(I) denotes functions whose derivative of all orders exist on I.

9. Clearly Cr(I) ⊃ Cr+1(I). This inclusion is strict (that is for any r there are functions
that are rth order continuously differentiable that are not continuously differentiable to
order r + 1). The first few examples are f(x) = |x|, g(x) = x|x|, h(x) = |x|3...

B. The Mean Value Theorem
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1. Theorem (Mean value theorem): If f : [a, b] → R is continuous and f is differentiable
on (a, b) then there is a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a).

2. Theorem: If f : (a, b) → R is differentiable at c ∈ (a, b) and f has a local maximum of
minimum at c then f ′(c) = 0.

3. Corollary: If f is differentiable on (a, b) and there is some K such that |f ′(x)|leqK for
all x ∈ (a, b) then

|f(x) − f(y)| ≤ K|x − y|

for all x, y ∈ [a, b]. (In particular f is Lipschitz.)
4. Suppose that f is differentiable on (a, b)

i. If f ′(x) ≥ 0 for all x then f is increasing.
ii. If f ′(x) ≤ 0 for all x then f is decreasing.
iii. If f ′(x) > 0 for all x then f is strictly increasing.
iv. If f ′(x) < 0 for all x then f is strictly decreasing.

5. Corollary (Intermediate value theorem for derivatives): Suppose that f : [a, b] →
R is differentiable. Given any λ between f ′(a) and f ′(b) there is some point c ∈ (a, b)
such that f ′(c) = λ.

6. Corollary (Inverse function theorem): Suppose that f : (a, b) → R is a differentiable
function and f ′(x) 6= 0 for all x ∈ (a, b). Then f is a bijection onto its image. The inverse
of f is continuous and

(f−1)′(y) =
1

f(x)

where y = f(x).
7. Theorem: Let f and g be two continuous functions on [a, b] that are differentiable on

(a, b). There is a point c ∈ (a, b) such that

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

8. Corollary (L’Hopital’s Rule): Let f, g be differentiable functions on (a, b). Suppose
f(x) → 0 and g(x) → 0 as x → b and g(x) and g′(x) are not zero near b. If

lim
x→b

f ′(x)

g′(x)
= L

then

lim
x→b

f(x)

g(x)
= L.

There are of course many other cases of L’Hopital’s rule.
C. Taylor Polynomials

1. Let f : [a, b] → R be a function and c ∈ (a, b). If f(c), f ′(c), . . . , f (n)(c) exist then the
nth order Taylor polynomial of f at c is

Pn(x) =

n
∑

k=0

f (k)(c)

k!
(x − c)k.

2. Theorem: Let f : [a, b] → R be a function such that f ′, f ′′, . . . , f (n+1) all exists on (a, b).
Let Pn(x) be the nth order Taylor polynomial of f at c. Then for each x ∈ [a, b] there is
some point t between c and x such that

f(x) = Pn(x) +
f (n+1)(t)

(n + 1)!
(x − c)n+1.



II. Single Variable Functions: Integration
A. Riemann integrability

1. A partition of an interval [a, b] is a finite collection of points P = {x0, x1, . . . , xn} such
that xi < xi+1, x0 = a and xn = b. The intervals of a partition are Ii = [xi−1, xi]
for i = 1, . . . n. The lengths of a partition are ∆xi = xi − xi−1. The size of the
partition P is ‖P‖ = max{∆x1, . . .∆xn}.

2. A tagged partition P t is a partition P = {x0, . . . , xn} together a choice of point ti in
each interval [xi−1, xi].

3. If f : [a, b] → R is a function and P is a tagged partition of [a, b] then the Riemann
sum of f associated to P t is

S(f,P t) =
n

∑

i=1

f(ti)∆xi.

We say f is Riemann integrable if there is come number I ∈ R such that for every
ǫ > 0 there is some δ > 0 such that for any tagged partition P t of [a, b] with ‖P t‖ < δ
we have

|S(f,P t) − I| < ǫ.

Let R([a, b]) be the set of Riemann integrable functions on [a, b].
4. Lemma: If f ∈ R([a, b]) then the I in the definition above is uniquely determined.
5. If f ∈ R([a, b]) then the Riemann integral of f over [a, b] is the number I in the

definition above. We denoted this number by
∫ b

a

f(x) dx.

6. Proposition:
i. R([a, b]) is a vector space.
ii. The map

R([a, b]) → R : f 7→

∫ b

a

f(x) dx

is a linear map.
iii. The constant function f(x) = k is in R([a, b]) for any [a, b] and

∫ b

a

k dx = k(b − a)

iv. If f(x) ≤ g(x0 and f, g ∈ R([a, b]) then
∫ b

a

f(x) dx ≤

∫ b

a

g(x) dx.

7. Theorem: If f ∈ R([a, b]) then f is bounded on [a, b].
B. Darboux integrability

1. Let f : [a, b] → R be a bounded function and P = {x0, . . . , xn} a partition of [a, b]. For
each i = 1, . . . , n set

Mi = sup{f(x) : x ∈ [xi−1, xi]} and mi = inf{f(x) : x ∈ [xi−1, xi]}.

The lower sum of f associated to the partition P is

L(f,P) =
n

∑

i=1

mi∆xi



and the upper sum is

U(f,P) =
n

∑

i=1

Mi∆xi.

The lower integral of f over [a, b] is
∫ b

a

f(x) dx = sup{L(f,P) : P a partition of [a, b]}

and the upper integral of f over [a, b] is
∫ b

a

f(x) dx =

∫

{U(f,P) : P a partition of [a, b]}.

We say f is Darboux integrable on [a, b] if
∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

2. Theorem: A function f : [a, b] → R is Riemann integrable if and only if it is Darboux
integrable. And if it is integrable then

∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

3. We say a partition P ′ refines a partition P if P ⊂ P ′.
4. Lemma: If P ′ refines P then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P).

5. Lemma: A bounded function f : [a, b] → R is Darboux integrable if and only if for every
ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

6. Corollary: A bounded function f : [a, b] → R is Riemann integrable if and only if for
every ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

7. Corollary: A continuous function f : [a, b] → R is Riemann integrable.
C. Sets of measure zero and the Riemann-Lebesgue theorem

1. A set S ⊂ R has measure zero or is a set of measure zero if for every ǫ > 0 there is
a countable collection of intervals (ai, bi) such that S ⊂ ∪(ai, bi) (that is the intervals are
a cover of S) and

∑

(bi − ai) ≤ ǫ.

2. Lemma:
i. A finite set has measure zero.
ii. A subset of a set of measure zero has measure zero.
iii. A countable union of sets of measure zero has measure zero.
iv. A countable set has measure zero.
v. The middle thirds Cantor set has measure zero.

3. A function f : [a, b] → R is continuous almost everywhere if the set of points at
which f is discontinuous has measure zero.

4. Theorem (the Riemann-Lebesgue Theorem): Function f : [a, b] → R is Riemann
integrable if and only if it is bounded and continuous almost everywhere.



5. Corollary: Every continuous and bounded piecewise continuous function on [a, b] is
Riemann integrable.

6. Corollary: If f : [a, b] → R is Riemann integrable and g : [c, d] → R is continuous with
f([a, b]) ⊂ [c, d] then g ◦ f is Riemann integrable.

7. Corollary: If f ∈ R([a, b]) then |f | ∈ R([a, b]) and
∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤

∫ b

a

|f(x)| dx

8. Corollary: The product of Riemann integrable functions is Riemann integrable.
9. Corollary: If a < c < b then f ∈ R([a, b]) if and only if f ∈ R([a, c]) and f ∈ R([c, b]).

Moreover,
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

10. Corollary: Suppose f : [a.b] → R is non-negative (that is f(x) ≥ 0) and integrable.

Then
∫ b

a
f(x) dx = 0 implies that f(x) = 0 at every point x where f is continuous.

D. Fundamental theorem of calculus

1. Theorem (Fundamental theorem of calculus I): Let f ∈ R([a, b]) and set

F (x) =

∫ x

a

f(t) dt

for all x ∈ [a, b]. Then the function F is continuous on [a, b] and if f is continuous at c
then F is differentiable at c and F ′(c) = f(c).

2. Corollary: Any continuous function f : [a, b] → R has han anti-derivative (i.e. a function
F such that F ′(x) = f(x) for all x ∈ [a, b]).

3. Theorem (Fundamental theorem of calculus II): If f is differentiable on [a, b] and
f ′ is integrable on [a, b] then

∫ b

a

f ′(x) dx = f(b) − f(a).

4. Theorem (Integration by parts): Let f and g be functions on [a, b] for which f ′ and
g′ are both integrable. Then

∫ b

a

f ′(x)g(x) dx = f(x)g(x)|ba −

∫ b

a

f(x)g′(x) dx.

5. Theorem (Change of variables): Let φ : [c, d] → R have continuous derivative and
f : [a, b] → R be continuous with [a, b] ⊂ φ([c, d]). Then

∫ d

c

f(φ(t))φ′(t) dt =

∫ φ(d)

φ(c)

f(x) dx.


