Outline for Midterm \#1 Math 4318, Spring 2011

I. Single Variable Functions: Differentiation
 A. Definitions and first properties

1. We recalled a few definitions concerning limits form Analysis I.
2. A function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $p \in(a, b)$ if the limit

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)}{h}
$$

exists. If the limit exists we denote it by $f^{\prime}(p)$ and call it the derivative of f at p.
3. Interpreting the derivative as a slope we could also define

$$
f^{\prime}(p)=\lim _{t \rightarrow p} \frac{f(t)-f(p)}{t-p}
$$

4. Theorem: If f is differentiable at p then f is continuous at p.
5. Theorem: Suppose f and g are differentiable at p. Then
i. The function $f \pm g$ is differentiable at p with

$$
(f \pm g)^{\prime}(p)=f^{\prime}(p) \pm g^{\prime}(p)
$$

ii. The function $f g$ is differentiable at p with

$$
(f g)^{\prime}(p)=f^{\prime}(p) g(p)+f(p) g^{\prime}(p) .
$$

iii. If $g(p) \neq 0$ then the function f / g is differentiable at p and

$$
(f / g)^{\prime}(p)=\frac{f^{\prime}(p) g(p)-f(p) g^{\prime}(p)}{g^{2}(p)} .
$$

iv. If $h(x)=c$ for some constant $c \in \mathbb{R}$ then $h^{\prime}(x)=0$ for all x.
\mathbf{v}. If $h(x)=x$ then $h^{\prime}(x)=1$ for all x.
vi. If f is differentiable at p and g is differentiable at $f(p)$ then $g \circ f$ is differentiable at p and

$$
(g \circ f)^{\prime}(p)=g^{\prime}(f(p)) f^{\prime}(p)
$$

6. Discussed the example

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

It is differentiable on \mathbb{R} (including 0) but its derivative is not continuous at 0 .
7. The nth order derivative of f at p is defined to be the derivative of the $(n-1)$ st derivative of f at p, if it exists. Denote the nth derivative by $f^{(n)}(p)$. With this notation we take $f^{(0)}$ to denote f.
8. A function is continuously differentiable of order r on the interval I if $f^{(r)}$ exists and is continuous on I. (Note this implies $f^{(k)}$ exists and is continuous on I for all $k \leq r$.) We denote the set of continuously r th order differentiable functions on I by $C^{r}(I)$. The set $C^{\infty}(I)$ denotes functions whose derivative of all orders exist on I.
9. Clearly $C^{r}(I) \supset C^{r+1}(I)$. This inclusion is strict (that is for any r there are functions that are r th order continuously differentiable that are not continuously differentiable to order $r+1$). The first few examples are $f(x)=|x|, g(x)=x|x|, h(x)=|x|^{3} \ldots$

B. The Mean Value Theorem

1. Theorem (Mean value theorem): If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a, b) then there is a point $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

2. Theorem: If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$ and f has a local maximum of minimum at c then $f^{\prime}(c)=0$.
3. Corollary: If f is differentiable on (a, b) and there is some K such that $\left|f^{\prime}(x)\right| l e q K$ for all $x \in(a, b)$ then

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in[a, b]$. (In particular f is Lipschitz.)
4. Suppose that f is differentiable on (a, b)
i. If $f^{\prime}(x) \geq 0$ for all x then f is increasing.
ii. If $f^{\prime}(x) \leq 0$ for all x then f is decreasing.
iii. If $f^{\prime}(x)>0$ for all x then f is strictly increasing.
iv. If $f^{\prime}(x)<0$ for all x then f is strictly decreasing.
5. Corollary (Intermediate value theorem for derivatives): Suppose that $f:[a, b] \rightarrow$ \mathbb{R} is differentiable. Given any λ between $f^{\prime}(a)$ and $f^{\prime}(b)$ there is some point $c \in(a, b)$ such that $f^{\prime}(c)=\lambda$.
6. Corollary (Inverse function theorem): Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then f is a bijection onto its image. The inverse of f is continuous and

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f(x)}
$$

where $y=f(x)$.
7. Theorem: Let f and g be two continuous functions on $[a, b]$ that are differentiable on (a, b). There is a point $c \in(a, b)$ such that

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

8. Corollary (L'Hopital's Rule): Let f, g be differentiable functions on (a, b). Suppose $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow b$ and $g(x)$ and $g^{\prime}(x)$ are not zero near b. If

$$
\lim _{x \rightarrow b} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then

$$
\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=L
$$

There are of course many other cases of L'Hopital's rule.
C. Taylor Polynomials

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. If $f(c), f^{\prime}(c), \ldots, f^{(n)}(c)$ exist then the $n \mathbf{t h}$ order Taylor polynomial of f at c is

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k} .
$$

2. Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n+1)}$ all exists on (a, b). Let $P_{n}(x)$ be the nth order Taylor polynomial of f at c. Then for each $x \in[a, b]$ there is some point t between c and x such that

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(t)}{(n+1)!}(x-c)^{n+1} .
$$

II. Single Variable Functions: Integration
 A. Riemann integrability

1. A partition of an interval $[a, b]$ is a finite collection of points $\mathcal{P}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that $x_{i}<x_{i+1}, x_{0}=a$ and $x_{n}=b$. The intervals of a partition are $I_{i}=\left[x_{i-1}, x_{i}\right]$ for $i=1, \ldots n$. The lengths of a partition are $\Delta x_{i}=x_{i}-x_{i-1}$. The size of the partition \mathcal{P} is $\|\mathcal{P}\|=\max \left\{\Delta x_{1}, \ldots \Delta x_{n}\right\}$.
2. A tagged partition \mathcal{P}^{t} is a partition $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ together a choice of point t_{i} in each interval $\left[x_{i-1}, x_{i}\right]$.
3. If $f:[a, b] \rightarrow \mathbb{R}$ is a function and \mathcal{P} is a tagged partition of $[a, b]$ then the Riemann sum of f associated to \mathcal{P}^{t} is

$$
S\left(f, \mathcal{P}^{t}\right)=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i}
$$

We say f is Riemann integrable if there is come number $I \in \mathbb{R}$ such that for every $\epsilon>0$ there is some $\delta>0$ such that for any tagged partition \mathcal{P}^{t} of $[a, b]$ with $\left\|\mathcal{P}^{t}\right\|<\delta$ we have

$$
\left|S\left(f, \mathcal{P}^{t}\right)-I\right|<\epsilon
$$

Let $\mathcal{R}([a, b])$ be the set of Riemann integrable functions on $[a, b]$.
4. Lemma: If $f \in \mathcal{R}([a, b])$ then the I in the definition above is uniquely determined.
5. If $f \in \mathcal{R}([a, b])$ then the Riemann integral of f over $[a, b]$ is the number I in the definition above. We denoted this number by

$$
\int_{a}^{b} f(x) d x
$$

6. Proposition:

i. $\mathcal{R}([a, b])$ is a vector space.
ii. The map

$$
\mathcal{R}([a, b]) \rightarrow \mathbb{R}: f \mapsto \int_{a}^{b} f(x) d x
$$

is a linear map.
iii. The constant function $f(x)=k$ is in $\mathcal{R}([a, b])$ for any $[a, b]$ and

$$
\int_{a}^{b} k d x=k(b-a)
$$

iv. If $f(x) \leq g(x 0$ and $f, g \in \mathcal{R}([a, b])$ then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

7. Theorem: If $f \in \mathcal{R}([a, b])$ then f is bounded on $[a, b]$.
B. Darboux integrability
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ a partition of $[a, b]$. For each $i=1, \ldots, n$ set

$$
M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\} \quad \text { and } \quad m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\} .
$$

The lower sum of f associated to the partition \mathcal{P} is

$$
L(f, \mathcal{P})=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

and the upper sum is

$$
U(f, \mathcal{P})=\sum_{i=1}^{n} M_{i} \Delta x_{i}
$$

The lower integral of f over $[a, b]$ is

$$
\underline{\int_{a}^{b}} f(x) d x=\sup \{L(f, \mathcal{P}): \mathcal{P} \text { a partition of }[a, b]\}
$$

and the upper integral of f over $[a, b]$ is

$$
\overline{\int_{a}^{b}} f(x) d x=\int\{U(f, \mathcal{P}): \mathcal{P} \text { a partition of }[a, b]\} .
$$

We say f is Darboux integrable on $[a, b]$ if

$$
\overline{\int_{a}^{b}} f(x) d x=\underline{\int_{a}^{b}} f(x) d x
$$

2. Theorem: A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is Darboux integrable. And if it is integrable then

$$
\int_{a}^{b} f(x) d x=\overline{\int_{a}^{b}} f(x) d x=\underline{\int_{a}^{b}} f(x) d x .
$$

3. We say a partition \mathcal{P}^{\prime} refines a partition \mathcal{P} if $\mathcal{P} \subset \mathcal{P}^{\prime}$.
4. Lemma: If \mathcal{P}^{\prime} refines \mathcal{P} then

$$
L(f, \mathcal{P}) \leq L\left(f, \mathcal{P}^{\prime}\right) \leq U\left(f, \mathcal{P}^{\prime}\right) \leq U(f, \mathcal{P})
$$

5. Lemma: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon>0$ there is some partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon
$$

6. Corollary: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if for every $\epsilon>0$ there is some partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon
$$

7. Corollary: A continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
C. Sets of measure zero and The Riemann-Lebesgue theorem
8. A set $S \subset \mathbb{R}$ has measure zero or is a set of measure zero if for every $\epsilon>0$ there is a countable collection of intervals $\left(a_{i}, b_{i}\right)$ such that $S \subset \cup\left(a_{i}, b_{i}\right)$ (that is the intervals are a cover of S) and

$$
\sum\left(b_{i}-a_{i}\right) \leq \epsilon .
$$

2. Lemma:

i. A finite set has measure zero.
ii. A subset of a set of measure zero has measure zero.
iii. A countable union of sets of measure zero has measure zero.
iv. A countable set has measure zero.
v. The middle thirds Cantor set has measure zero.
3. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous almost everywhere if the set of points at which f is discontinuous has measure zero.
4. Theorem (the Riemann-Lebesgue Theorem): Function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is bounded and continuous almost everywhere.
5. Corollary: Every continuous and bounded piecewise continuous function on $[a, b]$ is Riemann integrable.
6. Corollary: If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $g:[c, d] \rightarrow \mathbb{R}$ is continuous with $f([a, b]) \subset[c, d]$ then $g \circ f$ is Riemann integrable.
7. Corollary: If $f \in \mathcal{R}([a, b])$ then $|f| \in \mathcal{R}([a, b])$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

8. Corollary: The product of Riemann integrable functions is Riemann integrable.
9. Corollary: If $a<c<b$ then $f \in \mathcal{R}([a, b])$ if and only if $f \in \mathcal{R}([a, c])$ and $f \in \mathcal{R}([c, b])$. Moreover,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

10. Corollary: Suppose $f:[a . b] \rightarrow \mathbb{R}$ is non-negative (that is $f(x) \geq 0$) and integrable. Then $\int_{a}^{b} f(x) d x=0$ implies that $f(x)=0$ at every point x where f is continuous.

D. Fundamental theorem of calculus

1. Theorem (Fundamental theorem of calculus I): Let $f \in \mathcal{R}([a, b])$ and set

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for all $x \in[a, b]$. Then the function F is continuous on $[a, b]$ and if f is continuous at c then F is differentiable at c and $F^{\prime}(c)=f(c)$.
2. Corollary: Any continuous function $f:[a, b] \rightarrow \mathbb{R}$ has han anti-derivative (i.e. a function F such that $F^{\prime}(x)=f(x)$ for all $\left.x \in[a, b]\right)$.
3. Theorem (Fundamental theorem of calculus II): If f is differentiable on $[a, b]$ and f^{\prime} is integrable on $[a, b]$ then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

4. Theorem (Integration by parts): Let f and g be functions on $[a, b]$ for which f^{\prime} and g^{\prime} are both integrable. Then

$$
\int_{a}^{b} f^{\prime}(x) g(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

5. Theorem (Change of variables): Let $\phi:[c, d] \rightarrow \mathbb{R}$ have continuous derivative and $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $[a, b] \subset \phi([c, d])$. Then

$$
\int_{c}^{d} f(\phi(t)) \phi^{\prime}(t) d t=\int_{\phi(c)}^{\phi(d)} f(x) d x
$$

