Outline for Midterm #2Math 4318, Spring 2011

I. Single Variable Functions: Differentiation

A. Definitions and first properties

- **1.** We recalled a few definitions concerning limits form Analysis I.
- **2.** A function $f:(a,b) \to \mathbb{R}$ is **differentiable** at a point $p \in (a,b)$ if the limit

$$\lim_{h \to 0} \frac{f(p+h) - f(p)}{h}$$

exists. If the limit exists we denote it by f'(p) and call it the **derivative of** f at p.

3. Interpreting the derivative as a slope we could also define

$$f'(p) = \lim_{t \to p} \frac{f(t) - f(p)}{t - p}$$

- 4. Theorem: If f is differentiable at p then f is continuous at p.
- 5. Theorem: Suppose f and g are differentiable at p. Then
 - i. The function $f \pm g$ is differentiable at p with

$$(f \pm g)'(p) = f'(p) \pm g'(p).$$

ii. The function fg is differentiable at p with

$$(fg)'(p) = f'(p)g(p) + f(p)g'(p).$$

iii. If $g(p) \neq 0$ then the function f/g is differentiable at p and

$$(f/g)'(p) = \frac{f'(p)g(p) - f(p)g'(p)}{g^2(p)}$$

- iv. If h(x) = c for some constant $c \in \mathbb{R}$ then h'(x) = 0 for all x.
- **v.** If h(x) = x then h'(x) = 1 for all x.
- **vi.** If f is differentiable at p and g is differentiable at f(p) then $g \circ f$ is differentiable at p and

$$(g \circ f)'(p) = g'(f(p))f'(p).$$

6. Discussed the example

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

It is differentiable on \mathbb{R} (including 0) but its derivative is not continuous at 0.

- 7. The *n*th order derivative of f at p is defined to be the derivative of the (n-1)st derivative of f at p, if it exists. Denote the *n*th derivative by $f^{(n)}(p)$. With this notation we take $f^{(0)}$ to denote f.
- 8. A function is continuously differentiable of order r on the interval I if $f^{(r)}$ exists and is continuous on I. (Note this implies $f^{(k)}$ exists and is continuous on I for all $k \leq r$.) We denote the set of continuously rth order differentiable functions on I by $C^r(I)$. The set $C^{\infty}(I)$ denotes functions whose derivative of all orders exist on I.
- **9.** Clearly $C^r(I) \supset C^{r+1}(I)$. This inclusion is strict (that is for any r there are functions that are rth order continuously differentiable that are not continuously differentiable to order r + 1). The first few examples are $f(x) = |x|, g(x) = x|x|, h(x) = |x|^3$...
- **B.** THE MEAN VALUE THEOREM

1. Theorem (Mean value theorem): If $f : [a, b] \to \mathbb{R}$ is continuous and f is differentiable on (a, b) then there is a point $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

- **2. Theorem:** If $f : (a, b) \to \mathbb{R}$ is differentiable at $c \in (a, b)$ and f has a local maximum of minimum at c then f'(c) = 0.
- **3. Corollary:** If f is differentiable on (a, b) and there is some K such that |f'(x)| leqK for all $x \in (a, b)$ then

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in [a, b]$. (In particular f is Lipschitz.)

- **4.** Suppose that f is differentiable on (a, b)
 - i. If $f'(x) \ge 0$ for all x then f is increasing.
 - ii. If $f'(x) \leq 0$ for all x then f is decreasing.
 - iii. If f'(x) > 0 for all x then f is strictly increasing.
 - iv. If f'(x) < 0 for all x then f is strictly decreasing.
- 5. Corollary (Intermediate value theorem for derivatives): Suppose that $f : [a, b] \rightarrow \mathbb{R}$ is differentiable. Given any λ between f'(a) and f'(b) there is some point $c \in (a, b)$ such that $f'(c) = \lambda$.
- 6. Corollary (Inverse function theorem): Suppose that $f : (a, b) \to \mathbb{R}$ is a differentiable function and $f'(x) \neq 0$ for all $x \in (a, b)$. Then f is a bijection onto its image. The inverse of f is continuous and

$$(f^{-1})'(y) = \frac{1}{f(x)}$$

where y = f(x).

7. Theorem: Let f and g be two continuous functions on [a, b] that are differentiable on (a, b). There is a point $c \in (a, b)$ such that

$$f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

8. Corollary (L'Hopital's Rule): Let f, g be differentiable functions on (a, b). Suppose $f(x) \to 0$ and $g(x) \to 0$ as $x \to b$ and g(x) and g'(x) are not zero near b. If

$$\lim_{x \to b} \frac{f'(x)}{g'(x)} = L$$

then

$$\lim_{x \to b} \frac{f(x)}{g(x)} = L.$$

There are of course many other cases of L'Hopital's rule.

- C. TAYLOR POLYNOMIALS
 - **1.** Let $f : [a,b] \to \mathbb{R}$ be a function and $c \in (a,b)$. If $f(c), f'(c), \ldots, f^{(n)}(c)$ exist then the *n*th order Taylor polynomial of f at c is

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k.$$

2. Theorem: Let $f : [a, b] \to \mathbb{R}$ be a function such that $f', f'', \ldots, f^{(n+1)}$ all exists on (a, b). Let $P_n(x)$ be the *n*th order Taylor polynomial of f at c. Then for each $x \in [a, b]$ there is some point t between c and x such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(t)}{(n+1)!}(x-c)^{n+1}.$$

II. Single Variable Functions: Integration

A. RIEMANN INTEGRABILITY

- **1.** A partition of an interval [a, b] is a finite collection of points $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$ such that $x_i < x_{i+1}, x_0 = a$ and $x_n = b$. The intervals of a partition are $I_i = [x_{i-1}, x_i]$ for $i = 1, \ldots n$. The lengths of a partition are $\Delta x_i = x_i x_{i-1}$. The size of the partition \mathcal{P} is $\|\mathcal{P}\| = \max\{\Delta x_1, \ldots, \Delta x_n\}$.
- 2. A tagged partition \mathcal{P}^t is a partition $\mathcal{P} = \{x_0, \ldots, x_n\}$ together a choice of point t_i in each interval $[x_{i-1}, x_i]$.
- **3.** If $f : [a,b] \to \mathbb{R}$ is a function and \mathcal{P} is a tagged partition of [a,b] then the **Riemann** sum of f associated to \mathcal{P}^t is

$$S(f, \mathcal{P}^t) = \sum_{i=1}^n f(t_i) \Delta x_i.$$

We say f is **Riemann integrable** if there is come number $I \in \mathbb{R}$ such that for every $\epsilon > 0$ there is some $\delta > 0$ such that for any tagged partition \mathcal{P}^t of [a, b] with $\|\mathcal{P}^t\| < \delta$ we have

$$|S(f, \mathcal{P}^t) - I| < \epsilon.$$

Let $\mathcal{R}([a, b])$ be the set of Riemann integrable functions on [a, b].

- **4. Lemma:** If $f \in \mathcal{R}([a, b])$ then the *I* in the definition above is uniquely determined.
- 5. If $f \in \mathcal{R}([a, b])$ then the **Riemann integral of** f over [a, b] is the number I in the definition above. We denoted this number by

$$\int_{a}^{b} f(x) \, dx.$$

6. Proposition:

i. $\mathcal{R}([a, b])$ is a vector space.

ii. The map

$$\mathcal{R}([a,b]) \to \mathbb{R} : f \mapsto \int_a^b f(x) \, dx$$

is a linear map.

iii. The constant function f(x) = k is in $\mathcal{R}([a, b])$ for any [a, b] and

$$\int_{a}^{b} k \, dx = k(b-a)$$

iv. If $f(x) \leq g(x)$ and $f, g \in \mathcal{R}([a, b])$ then

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

7. Theorem: If $f \in \mathcal{R}([a, b])$ then f is bounded on [a, b].

- **B.** DARBOUX INTEGRABILITY
 - **1.** Let $f : [a, b] \to \mathbb{R}$ be a bounded function and $\mathcal{P} = \{x_0, \ldots, x_n\}$ a partition of [a, b]. For each $i = 1, \ldots, n$ set

 $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$

The lower sum of f associated to the partition \mathcal{P} is

$$L(f, \mathcal{P}) = \sum_{i=1}^{n} m_i \Delta x_i$$

and the **upper sum** is

$$U(f, \mathcal{P}) = \sum_{i=1}^{n} M_i \Delta x_i$$

The lower integral of f over [a, b] is

$$\underline{\int_{a}^{b}} f(x) \, dx = \sup\{L(f, \mathcal{P}) : \mathcal{P} \text{ a partition of } [a, b]\}$$

and the **upper integral of** f **over** [a, b] is

$$\int_{a}^{b} f(x) dx = \int \{ U(f, \mathcal{P}) : \mathcal{P} \text{ a partition of } [a, b] \}$$

We say f is **Darboux integrable on** [a, b] if

$$\overline{\int_{a}^{b}}f(x)\,dx = \underline{\int_{a}^{b}}f(x)\,dx.$$

2. Theorem: A function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if it is Darboux integrable. And if it is integrable then

$$\int_{a}^{b} f(x) \, dx = \overline{\int_{a}^{b}} f(x) \, dx = \underline{\int_{a}^{b}} f(x) \, dx.$$

- **3.** We say a partition \mathcal{P}' refines a partition \mathcal{P} if $\mathcal{P} \subset \mathcal{P}'$.
- 4. Lemma: If \mathcal{P}' refines \mathcal{P} then

$$L(f, \mathcal{P}) \le L(f, \mathcal{P}') \le U(f, \mathcal{P}') \le U(f, \mathcal{P}).$$

5. Lemma: A bounded function $f : [a, b] \to \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon > 0$ there is some partition \mathcal{P} such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

6. Corollary: A bounded function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if for every $\epsilon > 0$ there is some partition \mathcal{P} such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

7. Corollary: A continuous function $f : [a, b] \to \mathbb{R}$ is Riemann integrable.

C. Sets of measure zero and the Riemann-Lebesgue theorem

1. A set $S \subset \mathbb{R}$ has **measure zero** or is a set of measure zero if for every $\epsilon > 0$ there is a countable collection of intervals (a_i, b_i) such that $S \subset \cup (a_i, b_i)$ (that is the intervals are a cover of S) and

$$\sum (b_i - a_i) \le \epsilon$$

2. Lemma:

- i. A finite set has measure zero.
- ii. A subset of a set of measure zero has measure zero.
- iii. A countable union of sets of measure zero has measure zero.
- iv. A countable set has measure zero.
- **v.** The middle thirds Cantor set has measure zero.
- **3.** A function $f : [a, b] \to \mathbb{R}$ is **continuous almost everywhere** if the set of points at which f is discontinuous has measure zero.
- 4. Theorem (the Riemann-Lebesgue Theorem): Function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if it is bounded and continuous almost everywhere.

- 5. Corollary: Every continuous and bounded piecewise continuous function on [a, b] is Riemann integrable.
- **6. Corollary:** If $f : [a, b] \to \mathbb{R}$ is Riemann integrable and $g : [c, d] \to \mathbb{R}$ is continuous with $f([a, b]) \subset [c, d]$ then $g \circ f$ is Riemann integrable.
- 7. Corollary: If $f \in \mathcal{R}([a, b])$ then $|f| \in \mathcal{R}([a, b])$ and

$$\left|\int_{a}^{b} f(x) \, dx\right| \leq \int_{a}^{b} \left|f(x)\right| \, dx$$

- 8. Corollary: The product of Riemann integrable functions is Riemann integrable.
- **9. Corollary:** If a < c < b then $f \in \mathcal{R}([a, b])$ if and only if $f \in \mathcal{R}([a, c])$ and $f \in \mathcal{R}([c, b])$. Moreover,

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

- 10. Corollary: Suppose $f : [a,b] \to \mathbb{R}$ is non-negative (that is $f(x) \ge 0$) and integrable. Then $\int_a^b f(x) dx = 0$ implies that f(x) = 0 at every point x where f is continuous.
- **D.** FUNDAMENTAL THEOREM OF CALCULUS
 - **1. Theorem (Fundamental theorem of calculus I):** Let $f \in \mathcal{R}([a, b])$ and set

$$F(x) = \int_{a}^{x} f(t) \, dt$$

for all $x \in [a, b]$. Then the function F is continuous on [a, b] and if f is continuous at c then F is differentiable at c and F'(c) = f(c).

- **2. Corollary:** Any continuous function $f : [a, b] \to \mathbb{R}$ has han anti-derivative (*i.e.* a function F such that F'(x) = f(x) for all $x \in [a, b]$).
- **3. Theorem (Fundamental theorem of calculus II):** If f is differentiable on [a, b] and f' is integrable on [a, b] then

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

4. Theorem (Integration by parts): Let f and g be functions on [a, b] for which f' and g' are both integrable. Then

$$\int_{a}^{b} f'(x)g(x) \, dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f(x)g'(x) \, dx.$$

5. Theorem (Change of variables): Let $\phi : [c, d] \to \mathbb{R}$ have continuous derivative and $f : [a, b] \to \mathbb{R}$ be continuous with $[a, b] \subset \phi([c, d])$. Then

$$\int_{c}^{d} f(\phi(t))\phi'(t) \, dt = \int_{\phi(c)}^{\phi(d)} f(x) \, dx.$$

E. IMPROPER INTEGRALS

1. If $f:(a,b] \to \mathbb{R}$ is a function and $c \in (a,b]$ then if f is integrable on [c,b] set

$$I_c = \int_c^b f(x) \, dx.$$

Define the **improper integral of** f **on** [a, b] to be

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to a^{+}} I_c$$

if the limit exists. (One can similarly define the improper integral of $f:[a,b] \to \mathbb{R}$.)

2. If $f : [a, b] \to \mathbb{R}$ is integrable then this definition agrees with the Riemann integral of f.

III. Sequences of functions and function spaces

- A. SEQUENCES OF FUNCTIONS
 - **1.** If $S \subset \mathbb{R}$ and $\{f_n : S \to \mathbb{R}\}$ is a sequence of functions on f (that is if $\mathcal{F}(S, \mathbb{R})$ is the set of all functions from S to \mathbb{R} , then $\{f_n\}$ is a sequence in the set $\mathcal{F}(S, \mathbb{R})$), the we say the sequence **converges point wise to** f if for each $x \in S$ we have the sequence of numbers $\{f_n(x)\}$ converges to f(x). That is for all $x \in S$ and $\epsilon > 0$ there is some N such that $|f(x) - f_n(x)| < \epsilon$ for all $n \ge N$.
 - **2.** We say that a sequence of functions $\{f_n : S \to \mathbb{R}\}$ converges uniformly to f on S if for all $\epsilon > 0$ there is a N such that $|f(x) f_n(x)| < \epsilon$ for all $n \ge N$ and $x \in S$.
 - **3. Lemma:** The sequence $\{f_n : S \to \mathbb{R}\}$ converges uniformly to some function on S if and only if for all $\epsilon > 0$ there is an N such that $|f_n(x) f_m(x)| < \epsilon$ for all $n, m \ge N$ and $x \in S$.
 - **4. Theorem:** If $f_n \to f$ uniformly on S and the f_n are continuous at $c \in S$ then f is continuous at c.
 - **5. Theorem:** If $\{f_n|\}$ is a sequence in $\mathcal{R}([a, b])$ and $f_n \to f$ uniformly on [a, b] then $f \in \mathcal{R}(a, b]$ and

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx.$$

- 6. Theorem: Let $\{f_n : [a, b] \to \mathbb{R}\}$ be a sequence of functions. Suppose that
 - i. there is some $c \in [a, b]$ such that $\{f_n(c)\}$ converges,

ii. the functions f_n are all differentiable on [a, b], and

iii. $f'_n \to g$ uniformly on [a, b] for some function g.

Then there is some function f such that $f_n \to f$ uniformly on [a, b] and f' = g. **B.** METRIC SPACE TOPOLOGY

D. MEIRIC SPACE TOPOLOGY

1. Let X be a set. A **metric** on X is a function

$$d: X \times X \to \mathbb{R}$$

such that

- i. $d(p,q) \ge 0$ for all $p,q \in X$,
- ii. d(p,q) = 0 if and only if p = q
- **iii.** d(p,q) = d(q,p), and

iv. $d(p,q) \leq d(p,r) + d(r,q)$ for all $p,q,r \in X$. We think of d(p,q) as being the distance between p and q. The pair (X,d) is called a **metric space**.

2. Example: Given a norm $\|\cdot\|$ on a vector space V one has a metric associated to the norm by setting

$$d(v,w) = \|v - w\|$$

for all $v, w \in V$. Thus if $\langle \cdot, \cdot \rangle$ is an inner product on V then $||v|| = \sqrt{\langle v, v \rangle}$ is a norm and hence we get a metric associated to the inner product too.

- **3.** Given a metric space (X, d) most all the concepts form Analysis I can be defined for (X, d) since they only depended on some notion of distance (where there we used the standard norm on \mathbb{R}^n). For example
 - i. A set $U \subset X$ is open if for all $p \in U$ there is some r > 0 such that $B_r(p) \subset U$ where $B_r(p) = \{x \in X : d(x, p) < r\}.$
 - ii. A neighborhood of a point $p \in X$ is an open set N containing p.
 - iii. A subset $S \subset X$ has $p \in X$ as a **cluster point** if for all neighborhoods N of p we have $(N \{p\}) \cap S \neq \emptyset$. (This is equivalent to saying for all $\epsilon > 0$ there is some $q \in S$ with $q \neq p$ and $d(q, p) < \epsilon$.)

iv. A set S in X is closed if it contains all of its cluster points.

- **v.** A set S is bounded if there is some $p \in X$ and R such that $S \subset B_r(p)$.
- vi. A sequence $\{x_n\}$ in X is Cauchy if for all $\epsilon > 0$ there is some N such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge N$.

Most all the other concepts can be rephrased in terms of d too.

- 4. A metric space is complete if every Cauchy sequence converges.
- 5. Theorem (from Analysis I): The space (\mathbb{R}^n, d) is complete. (Here $d(x, y) = \sqrt{\sum (x_i y_i)^2}$.)
- **6.** Suppose V is a vector space and d is a metric on V that is complete. If d comes from a norm then (V, d) is called a **Banach space**. If d comes from an inner product then (V, d) is called a **Hilbert space**.

C. FUNCTION SPACES

1. Let $D \subset \mathbb{R}$. We set

$$\mathcal{B}(D,\mathbb{R}) = \{ \text{bounded functions } f: D \to \mathbb{R} \}$$

and for $f \in \mathcal{B}(D, \mathbb{R})$ let

$$||f||_{\infty} = \sup\{|f(x)| : x \in D\}.$$

We call this the **sup-norm** or **uniform norm** on $\mathcal{B}(D,\mathbb{R})$ and one easily checks that this is a norm.

- **2. Lemma:** Let $\{f_n\}$ be a sequence in $\mathcal{B}(D,\mathbb{R})$. Then the following are equivalent
 - i. $f_n \to f$ uniformly on D.
 - ii. f_n converges to f in the sup-norm.
 - iii. $||f_n f||_{\infty} \to 0$ as $n \to \infty$.
- **3. Theorem:** The sequence $\{f_n\}$ in $\mathcal{B}(D, \mathbb{R})$ is Cauchy in the sup-norm if and only if it converges in the sup-norm. That is $(\mathcal{B}(D, \mathbb{R}), \|\cdot\|_{\infty})$ is a Banach space.
- **4.** Let

$$C_b^0\{D\} = \{ f \in \mathcal{B}(D, \mathbb{R}) : f \text{ is continuous} \}.$$

(Notice that if D is compact then $C_b^0(D) = C^0(D)$.)

- 5. Theorem: $C_b^0(D)$ is a Banach space (in the sup-norm).
- **6. Theorem:** The set $\mathcal{R}([a, b])$ (which is a subset of $\mathcal{B}([a, b], \mathbb{R})$) is a Banach space in the sup-norm and the function

$$I: \mathcal{R}([a,b]) \to \mathbb{R}: f \to \int_a^b f(x) \, dx$$

is continuous.

7. For a function in $f \in C^n([a, b])$ and any $k \leq n$ define

$$||f||_{C^k} = ||f||_{\infty} + ||f'||_{\infty} + \ldots + ||f^{(k)}||_{\infty}.$$

It is easy to check this is a norm on $C^n([a, b])$.

8. Theorem: $(C^n([a, b]), \|\cdot\|_{C^n})$ is a Banach space.

D. Approximation of functions

- **1. Theorem (Weierstrass):** Polynomials are dense in $C^0([a, b])$. (That is for every $f \in C^0([a, b])$ and $\epsilon > 0$ there is a polynomial p such that $||f p|| < \epsilon$.)
- **2.** Given two functions $f, g : \mathbb{R} \to \mathbb{R}$ we define the **convolution** of f and g to be

$$f * g(x) = \int_{\mathbb{R}} f(x-t)g(t) , dt,$$

if the integral is well defined (and it will be if, for example, one of the functions has compact support and the functions are integrable on compact intervals).

3. A sequence of functions $K_n(x)$ is called an **approximation to the identity** if

- i. $K_n(x) \ge 0$ for all x and n,
- ii. $\int K_n(x) dx = 1$ for all n, and
- **iii.** $\int_{|x|>\epsilon} K_n(x) dx \to 0$ as $n \to \infty$ for any $\epsilon > 0$.
- **4. Lemma:** If $\{K_n\}$ is an approximation to the identity and f is a compactly supported continuous function then $(f * K_n) \to f$ uniformly.
- **5. Lemma:** If p is a polynomial and $f \in \mathcal{R}([a, b])$ has compact support then p * f is a polynomial.

E. FIXED POINT THEOREMS AND DIFFERENTIAL EQUATIONS

- **1. Theorem (Contraction mapping theorem):** Let (M, d) be a complete metric space and $f: M \to M$ a contraction mapping (that is there is some $0 \le k < 1$ such that $d(f(x), f(y)) \le kd(x, y)$ for all $x, y \in M$). Then there is a unique fixed point $p \in M$ for f. (That is f(p) = p and p is the only point with this property.)
- 2. Theorem (Existence ad uniqueness of solutions to ODEs): Let $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ be a function on a neighborhood D of (t_0, x_0) in \mathbb{R}^2 . Assume that
 - i. f is Lipschitz in the x variable (that is there is some K such that $|f(t, x) f(t, x')| \le K|x x'|$) and
 - **ii.** f is continuous on D.

Then there is some $\delta > 0$ and a unique C^1 solution to the initial value problem

$$\frac{dx}{dt} = f(t, x) \qquad x(t_0) = x_0$$

on $(t_0 - \delta, t_0 + \delta)$. (That is there is some continuously differentiable function $\gamma : (t_0 - \delta, t_0 + \delta) \to \mathbb{R}$ such that $\gamma'(t) = f(t, \gamma(t))$ and $\gamma(t_0) = x_0$.)

3. A function γ solves the initial value problem if and only if it is a fixed point of

$$\Phi(\gamma)(t) = x_0 + \int_{t_0}^t f(s, \gamma(s)) \, ds.$$

F. COMPACTNESS IN FUNCTION SPACES

- **1.** A subset $S \subset \mathcal{F}(D, \mathbb{R}) = \{$ functions from D to $\mathbb{R} \}$ is called **equicontinuous** if for every $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ for all $x, y \in D$ with $|x y| < \delta$ and $f \in S$. (Of course sequences are subsets so we can talk about equicontinuous sequences.)
- **2. Theorem:** A subset $S \subset \mathcal{F}(D, \mathbb{R})$ is compact (in the sup-norm) if and only if it is closed, bounded and equicontinuous.
- **3.** Recall that a set in a metric space is called compact if every open cover of the set has a finite sub-cover. This is equivalent to saying that every sequence in the set has a convergent sub-sequence.
- 4. Theorem (Arzelá-Ascoli Theorem): Let $\{f_n\}$ be a sequence of functions $f_n : D \to \mathbb{R}$. If
 - i. D is compact,
 - ii. $\{f_n\}$ is bounded in the sup-norm and
 - iii. $\{f_n\}$ is equicontinuous (not this implies that each f_n is continuous),

then there is a sub-sequence of $\{f_n\}$ that converges uniformly on D.

5. Theorem (Peano's Theorem): Let $f : D \subset \mathbb{R}^2 \to \mathbb{R}$ be a function on a neighborhood D of (t_0, x_0) in \mathbb{R}^2 . If f is continuous on D then there is some $\delta > 0$ and a unique C^1 solution to the initial value problem

$$\frac{dx}{dt} = f(t, x) \qquad x(t_0) = x_0$$

on $[t_0, t_0 + \delta]$.

6. Notice that when you drop the hypothesis of f being Lipschitz in the x variable you loose uniqueness of solutions. For example you can see that $x'(t) = \sqrt{x(t)}$ with the initial condition x(0) = 0 has infinitely many solutions. Indeed for $c \ge 0$ let $\gamma_c(t) = 0$ for $t \le c$ and $\frac{1}{4}(t-c)^2$ for $t \ge c$ and we see that γ_c solves the initial value problem.

G. SERIES OF FUNCTIONS

1. Given a sequence $\{g_k\}$ of functions on a set $D \subset \mathbb{R}$ we can associated the partial sums

$$s_n(x) = \sum_{k=0}^n g_k(x).$$

We say the series $\sum_{k=0}^{\infty} g_k$ converges uniformly, respectively point-wise to g if the sequence of partial sums $\{s_n\}$ converges uniformly, respectively point-wise, to g. We say the series converges absolutely if for each $x \in D$ the series of real numbers $\sum_{k=0}^{\infty} |g_k(x)|$ converges.

- 2. Theorem (Weierstrass *M*-test): Let $\{g_k\}$ be a sequence of functions on *D* and M_k be constants such that $|g_k(x)| \leq M_k$ for all $x \in D$. If $\sum_{k=0}^{\infty} M_k$ converges then $\sum_{k=0}^{\infty} g_k$ converges absolutely and uniformly on D.
- **3. Theorem:** If $\sum_{k=0}^{\infty} g_k$ converges uniformly to g on [a, b] and each $g_k \in \mathcal{R}([a, b])$ then $g \in \mathcal{R}([a,b])$ and

$$\int_{a}^{b} g(x) \, dx = \int_{a}^{b} \sum_{k=0}^{\infty} g_{k}(x) \, dx = \sum_{k=0}^{\infty} \int_{a}^{b} g_{k}(x) \, dx.$$

4. Suppose that $\sum_{k=0}^{\infty} g_k$ converges point-wise on [a, b] and each of the g_k is differentiable. If $\sum_{k=0}^{\infty} g'_k$ converges uniformly on [a, b] then

$$\left(\sum_{k=0}^{\infty} g_k(x)\right)' = \sum_{k=0}^{\infty} g'_k(x).$$

- **5. Theorem:** There is a continuous function $f : \mathbb{R} \to \mathbb{R}$ that is nowhere differentiable!
- 6. Facts we did not prove: Lipschitz functions are differentiable almost everywhere. The set of nowhere differentiable functions is dense in the set of continuous functions.

H. POWER SERIES

1. A **power series** about the point *c* is a series of the form

$$\sum_{k=0}^{\infty} a_n (x-c)^n.$$

2. Recall from Analysis I:

i. The radius of convergence is defined to be $R = \frac{1}{a}$ where

$$\rho = \limsup_k |a_k|^{\frac{1}{k}}.$$

- ii. If $\lim_{n\to infty} \frac{|a_n|}{|a_{n+1}|}$ exists then it is equal to the radius of convergence. iii. For any |x-c| < R the series $\sum_{k=0}^{\infty} a_n (x-c)^n$ converges absolutely and for |x-c| > Rthe series diverges.
- iv. A power series converges uniformly on any compact subset of (c R, c + R).
- **v.** A power series defines a continuous function on (c R, c + R).
- **3.** Theorem: If *R* is the radius of convergence of the power series

$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$

Then f is differentiable of all orders on (c - R, c + R) and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)a_n(x-c)^{n-k}.$$

- **4. Corollary:** Suppose $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ and $g(x) = \sum_{n=0}^{\infty} b_n (x-c)^n$ converge on some interval (a, b) containing c. If f(x) = g(x) for all $x \in (a, b)$ then $a_n = b_n$ for all n.
- 5. A function f on an open interval is called **analytic** if it can be represented as a power series with non-zero radius of convergence, about each point in its domain.
- 6. Theorem: if $f:(a,b) \to \mathbb{R}$ is C^{∞} and there is some constant M such that

$$|f^{(k)}(x)| \le M$$

for all $x \in (a, b)$ then f is analytic.

7. Given a function $f:(a,b) \to \mathbb{R}$ that is infinitely differentiable, $c \in (a,b)$ and $\delta > 0$ such that $I_{c,\delta} = [c - \delta, c + \delta] \subset (a,b)$, we can set $M_{c,\delta}^k = \sup\{|f^{(k)}(x)| : x \in I_{c,\delta}\}$. We call

$$g_{c,\delta} = \limsup_{k \to \infty} (M_{c,\delta}^k / k!)^{1/k}$$

the derivative growth rate of $f \delta$ -near c. We say f has locally bounded derivative growth rate in (a, b) if for all $c \in (a, b)$ there is some δ so that $g_{c,\delta}$ is finite.

8. Theorem: An infinitely differentiable function $f : (a, b) \to \mathbb{R}$ is analytic if and only if it has locally bounded derivative growth rate.

IV. Derivatives in higher dimensions

A. DEFINITIONS AND FIRST PROPERTIES

1. A map $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ is **differentiable at** $c \in A$ if there is a linear map

$$L: \mathbb{R}^n \to \mathbb{R}^m$$

such that

$$\lim_{x \to c} \frac{\|f(x) - (f(c) + L(x - c))\|}{\|x - c\|} = 0.$$

If such an L exists then we call it the **derivative of** f at c and denote it by Df(c).

- **2.** Alternate definition: *L* is the derivative of *f* at *c* if and only if for all $\epsilon > 0$ there is some $\delta > 0$ such that $||x c|| < \delta$ implies that $||f(x) (f(c) + L(x c))|| \le \epsilon ||x c||$.
- **3. Lemma:** If there is a linear map L as in the definition above then it is uniquely determined by f and c.
- **4. Theorem:** If $f : A \to \mathbb{R}^m$ is differentiable at $c \in A$ with A and open set in \mathbb{R}^n , then f is continuous at c.
- 5. Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a function on the open set A. We can write

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)).$$

The *i*th partial derivative of f_j at (x_1, \ldots, x_n) is

$$\frac{\partial f_j}{\partial x_i} = \lim_{h \to 0} \frac{f_j(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

(if the limit exists.

6. Theorem: Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a function on the open set A. If f is differentiable on A then the partial derivatives $\frac{\partial f_j}{\partial x_i}$ exist for all i and j and in the standard basis for \mathbb{R}^n and \mathbb{R}^m the linear map $Df(x_1, \ldots, x_n)$ is given by the matrix

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

This matrix is called the **Jacobian matrix of** f at (x_1, \ldots, x_n) .

7. If $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable function then $Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \end{bmatrix}$. That is it is a linear map from \mathbb{R}^n to \mathbb{R} . This is very similar to a familiar concept: the **gradient of** f. The gradient is a vector containing the partial derivatives of f

$$\nabla f = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \vdots \\ \frac{\partial f_1}{\partial x_n} \end{bmatrix}.$$

While it is common to write this vector as a row vector, we will always write it as a column vector (actually all our vectors are column vectors, so when we think of a point $x \in \mathbb{R}^n$ we will think of it as a column vector so our matrix can act on it by matrix multiplication).

- 8. Theorem: Let $A \subset \mathbb{R}^m$ be an open set and $f : A \to \mathbb{R}^n$. Suppose that $f = (f_1, \ldots, f_m)$ and each partial derivative $\frac{\partial f_j}{\partial x_i}$ exists and is continuous near on A. Then f is differentiable on A.
- **9.** Let $A \subset \mathbb{R}^m$ be an open set and $f : A \to \mathbb{R}^n$. For e a unit vector in \mathbb{R}^n and $c \in A$ we define the **directional derivative of** f at c in the direction of e to be

$$f'(c,e) = \lim_{h \to 0} \frac{f(c+he) - f(c)}{h}$$

if the limit exists.

10. It is simple to check that (Df(c))e = f'(c, e).

B. CHAIN RULE AND PRODUCT RULE

1. Theorem (Chain Rule): Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$ be open sets. Suppose that $f : A \to \mathbb{R}^m$, $g : B \to \mathbb{R}^p$ and $f(A) \subset B$. If f is differentiable at $x_0 \in A$ and g is differentiable at $f(x_0) \in B$ then $g \circ f$ is differentiable at x_0 and

$$D(g \circ f)(x_0) = (Dg(f(x_0))) (Df(x_0))$$