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I. Single Variable Functions: Differentiation
A. Definitions and first properties

1. We recalled a few definitions concerning limits form Analysis I.
2. A function f : (a, b) → R is differentiable at a point p ∈ (a, b) if the limit

lim
h→0

f(p + h) − f(p)

h

exists. If the limit exists we denote it by f ′(p) and call it the derivative of f at p.
3. Interpreting the derivative as a slope we could also define

f ′(p) = lim
t→p

f(t) − f(p)

t − p
.

4. Theorem: If f is differentiable at p then f is continuous at p.
5. Theorem: Suppose f and g are differentiable at p. Then

i. The function f ± g is differentiable at p with

(f ± g)′(p) = f ′(p) ± g′(p).

ii. The function fg is differentiable at p with

(fg)′(p) = f ′(p)g(p) + f(p)g′(p).

iii. If g(p) 6= 0 then the function f/g is differentiable at p and

(f/g)′(p) =
f ′(p)g(p) − f(p)g′(p)

g2(p)
.

iv. If h(x) = c for some constant c ∈ R then h′(x) = 0 for all x.
v. If h(x) = x then h′(x) = 1 for all x.
vi. If f is differentiable at p and g is differentiable at f(p) then g ◦ f is differentiable

at p and

(g ◦ f)′(p) = g′(f(p))f ′(p).

6. Discussed the example

f(x) =

{

x2 sin 1
x

x 6= 0

0 x = 0.

It is differentiable on R (including 0) but its derivative is not continuous at 0.
7. The nth order derivative of f at p is defined to be the derivative of the (n − 1)st

derivative of f at p, if it exists. Denote the nth derivative by f (n)(p). With this notation
we take f (0) to denote f .

8. A function is continuously differentiable of order r on the interval I if f (r) exists
and is continuous on I. (Note this implies f (k) exists and is continuous on I for all k ≤ r.)
We denote the set of continuously rth order differentiable functions on I by Cr(I). The
set C∞(I) denotes functions whose derivative of all orders exist on I.

9. Clearly Cr(I) ⊃ Cr+1(I). This inclusion is strict (that is for any r there are functions
that are rth order continuously differentiable that are not continuously differentiable to
order r + 1). The first few examples are f(x) = |x|, g(x) = x|x|, h(x) = |x|3...

B. The Mean Value Theorem
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1. Theorem (Mean value theorem): If f : [a, b] → R is continuous and f is differentiable
on (a, b) then there is a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a).

2. Theorem: If f : (a, b) → R is differentiable at c ∈ (a, b) and f has a local maximum of
minimum at c then f ′(c) = 0.

3. Corollary: If f is differentiable on (a, b) and there is some K such that |f ′(x)|leqK for
all x ∈ (a, b) then

|f(x) − f(y)| ≤ K|x − y|

for all x, y ∈ [a, b]. (In particular f is Lipschitz.)
4. Suppose that f is differentiable on (a, b)

i. If f ′(x) ≥ 0 for all x then f is increasing.
ii. If f ′(x) ≤ 0 for all x then f is decreasing.
iii. If f ′(x) > 0 for all x then f is strictly increasing.
iv. If f ′(x) < 0 for all x then f is strictly decreasing.

5. Corollary (Intermediate value theorem for derivatives): Suppose that f : [a, b] →
R is differentiable. Given any λ between f ′(a) and f ′(b) there is some point c ∈ (a, b)
such that f ′(c) = λ.

6. Corollary (Inverse function theorem): Suppose that f : (a, b) → R is a differentiable
function and f ′(x) 6= 0 for all x ∈ (a, b). Then f is a bijection onto its image. The inverse
of f is continuous and

(f−1)′(y) =
1

f(x)

where y = f(x).
7. Theorem: Let f and g be two continuous functions on [a, b] that are differentiable on

(a, b). There is a point c ∈ (a, b) such that

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

8. Corollary (L’Hopital’s Rule): Let f, g be differentiable functions on (a, b). Suppose
f(x) → 0 and g(x) → 0 as x → b and g(x) and g′(x) are not zero near b. If

lim
x→b

f ′(x)

g′(x)
= L

then

lim
x→b

f(x)

g(x)
= L.

There are of course many other cases of L’Hopital’s rule.
C. Taylor Polynomials

1. Let f : [a, b] → R be a function and c ∈ (a, b). If f(c), f ′(c), . . . , f (n)(c) exist then the
nth order Taylor polynomial of f at c is

Pn(x) =

n
∑

k=0

f (k)(c)

k!
(x − c)k.

2. Theorem: Let f : [a, b] → R be a function such that f ′, f ′′, . . . , f (n+1) all exists on (a, b).
Let Pn(x) be the nth order Taylor polynomial of f at c. Then for each x ∈ [a, b] there is
some point t between c and x such that

f(x) = Pn(x) +
f (n+1)(t)

(n + 1)!
(x − c)n+1.



II. Single Variable Functions: Integration
A. Riemann integrability

1. A partition of an interval [a, b] is a finite collection of points P = {x0, x1, . . . , xn} such
that xi < xi+1, x0 = a and xn = b. The intervals of a partition are Ii = [xi−1, xi]
for i = 1, . . . n. The lengths of a partition are ∆xi = xi − xi−1. The size of the
partition P is ‖P‖ = max{∆x1, . . .∆xn}.

2. A tagged partition P t is a partition P = {x0, . . . , xn} together a choice of point ti in
each interval [xi−1, xi].

3. If f : [a, b] → R is a function and P is a tagged partition of [a, b] then the Riemann
sum of f associated to P t is

S(f,P t) =
n
∑

i=1

f(ti)∆xi.

We say f is Riemann integrable if there is come number I ∈ R such that for every
ǫ > 0 there is some δ > 0 such that for any tagged partition P t of [a, b] with ‖P t‖ < δ
we have

|S(f,P t) − I| < ǫ.

Let R([a, b]) be the set of Riemann integrable functions on [a, b].
4. Lemma: If f ∈ R([a, b]) then the I in the definition above is uniquely determined.
5. If f ∈ R([a, b]) then the Riemann integral of f over [a, b] is the number I in the

definition above. We denoted this number by
∫ b

a

f(x) dx.

6. Proposition:
i. R([a, b]) is a vector space.
ii. The map

R([a, b]) → R : f 7→

∫ b

a

f(x) dx

is a linear map.
iii. The constant function f(x) = k is in R([a, b]) for any [a, b] and

∫ b

a

k dx = k(b − a)

iv. If f(x) ≤ g(x) and f, g ∈ R([a, b]) then
∫ b

a

f(x) dx ≤

∫ b

a

g(x) dx.

7. Theorem: If f ∈ R([a, b]) then f is bounded on [a, b].
B. Darboux integrability

1. Let f : [a, b] → R be a bounded function and P = {x0, . . . , xn} a partition of [a, b]. For
each i = 1, . . . , n set

Mi = sup{f(x) : x ∈ [xi−1, xi]} and mi = inf{f(x) : x ∈ [xi−1, xi]}.

The lower sum of f associated to the partition P is

L(f,P) =
n
∑

i=1

mi∆xi



and the upper sum is

U(f,P) =
n
∑

i=1

Mi∆xi.

The lower integral of f over [a, b] is
∫ b

a

f(x) dx = sup{L(f,P) : P a partition of [a, b]}

and the upper integral of f over [a, b] is
∫ b

a

f(x) dx =

∫

{U(f,P) : P a partition of [a, b]}.

We say f is Darboux integrable on [a, b] if
∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

2. Theorem: A function f : [a, b] → R is Riemann integrable if and only if it is Darboux
integrable. And if it is integrable then

∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

3. We say a partition P ′ refines a partition P if P ⊂ P ′.
4. Lemma: If P ′ refines P then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P).

5. Lemma: A bounded function f : [a, b] → R is Darboux integrable if and only if for every
ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

6. Corollary: A bounded function f : [a, b] → R is Riemann integrable if and only if for
every ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

7. Corollary: A continuous function f : [a, b] → R is Riemann integrable.
C. Sets of measure zero and the Riemann-Lebesgue theorem

1. A set S ⊂ R has measure zero or is a set of measure zero if for every ǫ > 0 there is
a countable collection of intervals (ai, bi) such that S ⊂ ∪(ai, bi) (that is the intervals are
a cover of S) and

∑

(bi − ai) ≤ ǫ.

2. Lemma:
i. A finite set has measure zero.
ii. A subset of a set of measure zero has measure zero.
iii. A countable union of sets of measure zero has measure zero.
iv. A countable set has measure zero.
v. The middle thirds Cantor set has measure zero.

3. A function f : [a, b] → R is continuous almost everywhere if the set of points at
which f is discontinuous has measure zero.

4. Theorem (the Riemann-Lebesgue Theorem): Function f : [a, b] → R is Riemann
integrable if and only if it is bounded and continuous almost everywhere.



5. Corollary: Every continuous and bounded piecewise continuous function on [a, b] is
Riemann integrable.

6. Corollary: If f : [a, b] → R is Riemann integrable and g : [c, d] → R is continuous with
f([a, b]) ⊂ [c, d] then g ◦ f is Riemann integrable.

7. Corollary: If f ∈ R([a, b]) then |f | ∈ R([a, b]) and
∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤

∫ b

a

|f(x)| dx

8. Corollary: The product of Riemann integrable functions is Riemann integrable.
9. Corollary: If a < c < b then f ∈ R([a, b]) if and only if f ∈ R([a, c]) and f ∈ R([c, b]).

Moreover,
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

10. Corollary: Suppose f : [a.b] → R is non-negative (that is f(x) ≥ 0) and integrable.

Then
∫ b

a
f(x) dx = 0 implies that f(x) = 0 at every point x where f is continuous.

D. Fundamental theorem of calculus
1. Theorem (Fundamental theorem of calculus I): Let f ∈ R([a, b]) and set

F (x) =

∫ x

a

f(t) dt

for all x ∈ [a, b]. Then the function F is continuous on [a, b] and if f is continuous at c
then F is differentiable at c and F ′(c) = f(c).

2. Corollary: Any continuous function f : [a, b] → R has han anti-derivative (i.e. a function
F such that F ′(x) = f(x) for all x ∈ [a, b]).

3. Theorem (Fundamental theorem of calculus II): If f is differentiable on [a, b] and
f ′ is integrable on [a, b] then

∫ b

a

f ′(x) dx = f(b) − f(a).

4. Theorem (Integration by parts): Let f and g be functions on [a, b] for which f ′ and
g′ are both integrable. Then

∫ b

a

f ′(x)g(x) dx = f(x)g(x)|ba −

∫ b

a

f(x)g′(x) dx.

5. Theorem (Change of variables): Let φ : [c, d] → R have continuous derivative and
f : [a, b] → R be continuous with [a, b] ⊂ φ([c, d]). Then

∫ d

c

f(φ(t))φ′(t) dt =

∫ φ(d)

φ(c)

f(x) dx.

E. Improper integrals
1. If f : (a, b] → R is a function and c ∈ (a, b] then if f is integrable on [c, b] set

Ic =

∫ b

c

f(x) dx.

Define the improper integral of f on [a, b] to be
∫ b

a

f(x) dx = lim
c→a+

Ic

if the limit exists. (One can similarly define the improper integral of f : [a, b) → R.)



2. If f : [a, b] → R is integrable then this definition agrees with the Riemann integral of f .

III. Sequences of functions and function spaces
A. Sequences of functions

1. If S ⊂ R and {fn : S → R} is a sequence of functions on f (that is if F(S, R) is the set
of all functions from S to R, then {fn} is a sequence in the set F(S, R)), the we say the
sequence converges point wise to f if for each x ∈ S we have the sequence of numbers
{fn(x)} converges to f(x). That is for all x ∈ S and ǫ > 0 there is some N such that
|f(x) − fn(x)| < ǫ for all n ≥ N .

2. We say that a sequence of functions {fn : S → R} converges uniformly to f on S if
for all ǫ > 0 there is a N such that |f(x) − fn(x)| < ǫ for all n ≥ N and x ∈ S.

3. Lemma: The sequence {fn : S → R} converges uniformly to some function on S if and
only if for all ǫ > 0 there is an N such that |fn(x) − fm(x)| < ǫ for all n, m ≥ N and
x ∈ S.

4. Theorem: If fn → f uniformly on S and the fn are continuous at c ∈ S then f is
continuous at c.

5. Theorem: If {fn|} is a sequence in R([a, b]) and fn → f uniformly on [a, b] then f ∈
R(a, b]) and

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

6. Theorem: Let {fn : [a, b] → R} be a sequence of functions. Suppose that
i. there is some c ∈ [a, b] such that {fn(c)} converges,
ii. the functions fn are all differentiable on [a, b], and
iii. f ′

n → g uniformly on [a, b] for some function g.
Then there is some function f such that fn → f uniformly on [a, b] and f ′ = g.

B. Metric space topology
1. Let X be a set. A metric on X is a function

d : X × X → R

such that
i. d(p, q) ≥ 0 for all p, q ∈ X,
ii. d(p, q) = 0 if and only if p = q
iii. d(p, q) = d(q, p), and
iv. d(p, q) ≤ d(p, r)+d(r, q) for all p, q, r ∈ X. We think of d(p, q) as being the distance

between p and q. The pair (X, d) is called a metric space.
2. Example: Given a norm ‖ · ‖ on a vector space V one has a metric associated to the

norm by setting

d(v, w) = ‖v − w‖

for all v, w ∈ V . Thus if 〈·, ·〉 is an inner product on V then ‖v‖ =
√

〈v, v〉 is a norm and
hence we get a metric associated to the inner product too.

3. Given a metric space (X, d) most all the concepts form Analysis I can be defined for
(X, d) since they only depended on some notion of distance (where there we used the
standard norm on R

n). For example
i. A set U ⊂ X is open if for all p ∈ U there is some r > 0 such that Br(p) ⊂ U

where Br(p) = {x ∈ X : d(x, p) < r}.
ii. A neighborhood of a point p ∈ X is an open set N containing p.
iii. A subset S ⊂ X has p ∈ X as a cluster point if for all neighborhoods N of p we

have (N − {p}) ∩ S 6= ∅. (This is equivalent to saying for all ǫ > 0 there is some
q ∈ S with q 6= p and d(q, p) < ǫ.)



iv. A set S in X is closed if it contains all of its cluster points.
v. A set S is bounded if there is some p ∈ X and R such that S ⊂ Br(p).
vi. A sequence {xn} in X is Cauchy if for all ǫ > 0 there is some N such that

d(xn, xm) < ǫ for all n, m ≥ N .
Most all the other concepts can be rephrased in terms of d too.

4. A metric space is complete if every Cauchy sequence converges.
5. Theorem (from Analysis I): The space (Rn, d) is complete. (Here d(x, y) =

√

∑

(xi − yi)2.)
6. Suppose V is a vector space and d is a metric on V that is complete. If d comes from a

norm then (V, d) is called a Banach space. If d comes from an inner product then (V, d)
is called a Hilbert space.

C. Function spaces
1. Let D ⊂ R. We set

B(D, R) = {bounded functions f : D → R}

and for f ∈ B(D, R) let

‖f‖∞ = sup{|f(x)| : x ∈ D}.

We call this the sup-norm or uniform norm on B(D, R) and one easily checks that
this is a norm.

2. Lemma: Let {fn} be a sequence in B(D, R). Then the following are equivalent
i. fn → f uniformly on D.
ii. fn converges to f in the sup-norm.
iii. ‖fn − f‖∞ → 0 as n → ∞.

3. Theorem: The sequence {fn} in B(D, R) is Cauchy in the sup-norm if and only if it
converges in the sup-norm. That is (B(D, R), ‖ · ‖∞) is a Banach space.

4. Let
C0

b {D} = {f ∈ B(D, R) : f is continuous}.

(Notice that if D is compact then C0
b (D) = C0(D).)

5. Theorem: C0
b (D) is a Banach space (in the sup-norm).

6. Theorem: The set R([a, b]) (which is a subset of B([a, b], R)) is a Banach space in the
sup-norm and the function

I : R([a, b]) → R : f →

∫ b

a

f(x) dx

is continuous.
7. For a function in f ∈ Cn([a, b]) and any k ≤ n define

‖f‖Ck = ‖f‖∞ + ‖f ′‖∞ + . . . + ‖f (k)‖∞.

It is easy to check this is a norm on Cn([a, b]).
8. Theorem: (Cn([a, b]), ‖ · ‖Cn) is a Banach space.

D. Approximation of functions
1. Theorem (Weierstrass): Polynomials are dense in C0([a, b]). (That is for every f ∈

C0([a, b]) and ǫ > 0 there is a polynomial p such that ‖f − p‖ < ǫ.)
2. Given two functions f, g : R → R we define the convolution of f and g to be

f ∗ g(x) =

∫

R

f(x − t)g(t) , dt,

if the integral is well defined (and it will be if, for example, one of the functions has
compact support and the functions are integrable on compact intervals).

3. A sequence of functions Kn(x) is called an approximation to the identity if



i. Kn(x) ≥ 0 for all x and n,
ii.
∫

Kn(x) dx = 1 for all n, and
iii.

∫

|x|≥ǫ
Kn(x) dx → 0 as n → ∞ for any ǫ > 0.

4. Lemma: If {Kn} is an approximation to the identity and f is a compactly supported
continuous function then (f ∗ Kn) → f uniformly.

5. Lemma: If p is a polynomial and f ∈ R([a, b]) has compact support then p ∗ f is a
polynomial.

E. Fixed point theorems and differential equations
1. Theorem (Contraction mapping theorem): Let (M, d) be a complete metric space

and f : M → M a contraction mapping (that is there is some 0 ≤ k < 1 such that
d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ M). Then there is a unique fixed point p ∈ M for
f . (That is f(p) = p and p is the only point with this property.)

2. Theorem (Existence ad uniqueness of solutions to ODEs): Let f : D ⊂ R
2 → R

be a function on a neighborhood D of (t0, x0) in R
2. Assume that

i. f is Lipschitz in the x variable (that is there is some K such that |f(t, x)−f(t, x′)| ≤
K|x − x′|) and

ii. f is continuous on D.
Then there is some δ > 0 and a unique C1 solution to the initial value problem

dx

dt
= f(t, x) x(t0) = x0

on (t0 − δ, t0 + δ). (That is there is some continuously differentiable function γ : (t0 −
δ, t0 + δ) → R such that γ′(t) = f(t, γ(t)) and γ(t0) = x0.)

3. A function γ solves the initial value problem if and only if it is a fixed point of

Φ(γ)(t) = x0 +

∫ t

t0

f(s, γ(s)) ds.

F. Compactness in function spaces
1. A subset S ⊂ F(D, R) = {functions from D to R} is called equicontinuous if for every

ǫ > 0 there is a δ > 0 such that |f(x) − f(y)| < ǫ for all x, y ∈ D with |x − y| < δ and
f ∈ S. (Of course sequences are subsets so we can talk about equicontinuous sequences.)

2. Theorem: A subset S ⊂ F(D, R) is compact (in the sup-norm) if and only if it is closed,
bounded and equicontinuous.

3. Recall that a set in a metric space is called compact if every open cover of the set has
a finite sub-cover. This is equivalent to saying that every sequence in the set has a
convergent sub-sequence.

4. Theorem (Arzelá-Ascoli Theorem): Let {fn} be a sequence of functions fn : D → R.
If

i. D is compact,
ii. {fn} is bounded in the sup-norm and
iii. {fn} is equicontinuous (not this implies that each fn is continuous),

then there is a sub-seqence of {fn} that converges uniformly on D.
5. Theorem (Peano’s Theorem): Let f : D ⊂ R

2 → R be a function on a neighborhood
D of (t0, x0) in R

2. If f is continuous on D then there is some δ > 0 and a unique C1

solution to the initial value problem

dx

dt
= f(t, x) x(t0) = x0

on [t0, t0 + δ].



6. Notice that when you drop the hypothesis of f being Lipschitz in the x variable you loose
uniqueness of solutions. For example you can see that x′(t) =

√

x(t) with the initial
condition x(0) = 0 has infinitely many solutions. Indeed for c ≥ 0 let γc(t) = 0 for t ≤ c
and 1

4
(t − c)2 for t ≥ c and we see that γc solves the initial value problem.

G. Series of functions
1. Given a sequence {gk} of functions on a set D ⊂ R we can associated the partial sums

sn(x) =
n
∑

k=0

gk(x).

We say the series
∑∞

k=0 gk converges uniformly, respectively point-wise to g if the
sequence of partial sums {sn} converges uniformly, respectively point-wise, to g. We say
the series converges absolutely if for each x ∈ D the series of real numbers

∑∞
k=0 |gk(x)|

converges.
2. Theorem (Weierstrass M-test): Let {gk} be a sequence of functions on D and Mk

be constants such that |gk(x)| ≤ Mk for all x ∈ D. If
∑∞

k=0 Mk converges then
∑∞

k=0 gk

converges absolutely and uniformly on D.
3. Theorem: If

∑∞
k=0 gk converges uniformly to g on [a, b] and each gk ∈ R([a, b]) then

g ∈ R([a, b]) and
∫ b

a

g(x) dx =

∫ b

a

∞
∑

k=0

gk(x) dx =

∞
∑

k=0

∫ b

a

gk(x) dx.

4. Suppose that
∑∞

k=0 gk converges point-wise on [a, b] and each of the gk is differentiable.
If
∑∞

k=0 g′
k converges uniformly on [a, b] then

(

∞
∑

k=0

gk(x)

)′

=
∞
∑

k=0

g′
k(x).

5. Theorem: There is a continuous function f : R → R that is nowhere differentiable!
6. Facts we did not prove: Lipschitz functions are differentiable almost everywhere. The set

of nowhere differentiable functions is dense in the set of continuous functions.
H. Power series

1. A power series about the point c is a series of the form
∞
∑

k=0

an(x − c)n.

2. Recall from Analysis I:
i. The radius of convergence is defined to be R = 1

ρ
where

ρ = lim sup
k

|ak|
1

k .

ii. If limn→infty
|an|

|an+1|
exists then it is equal to the radius of convergence.

iii. For any |x−c| < R the series
∑∞

k=0 an(x−c)n converges absolutely and for |x−c| > R
the series diverges.

iv. A power series converges uniformly on any compact subset of (c − R, c + R).
v. A power series defines a continuous function on (c − R, c + R).

3. Theorem: If R is the radius of convergence of the power series

f(x) =
∞
∑

n=0

an(x − c)n



Then f is differentiable of all orders on (c − R, c + R) and

f (k)(x) =

∞
∑

n=k

n(n − 1) . . . (n − k + 1)an(x − c)n−k.

4. Corollary: Suppose f(x) =
∑∞

n=0 an(x − c)n and g(x) =
∑∞

n=0 bn(x − c)n converge on
some interval (a, b) containing c. If f(x) = g(x) for all x ∈ (a, b) then an = bn for all n.

5. A function f on an open interval is called analytic if it can be represented as a power
series with non-zero radius of convergence, about each point in its domain.

6. Theorem: if f : (a, b) → R is C∞ and there is some constant M such that

|f (k)(x)| ≤ M

for all x ∈ (a, b) then f is analytic.
7. Given a function f : (a, b) → R that is infinitely differentiable, c ∈ (a, b) and δ > 0 such

that Ic,δ = [c − δ, c + δ] ⊂ (a, b), we can set Mk
c,δ = sup{|f (k)(x)| : x ∈ Ic,δ}. We call

gc,δ = lim sup
k→∞

(Mk
c,δ/k!)1/k

the derivative growth rate of f δ-near c. We say f has locally bounded derivative
growth rate in (a, b) if for all c ∈ (a, b) there is some δ so that gc,δ is finite.

8. Theorem: An infinitely differentiable function f : (a, b) → R is analytic if and only if it
has locally bounded derivative growth rate.

IV. Derivatives in higher dimensions
A. Definitions and first properties

1. A map f : A ⊂ R
n → R

m is differentiable at c ∈ A if there is a linear map

L : R
n → R

m

such that

lim
x→c

‖f(x) − (f(c) + L(x − c)‖

‖x − c‖
= 0.

If such an L exists then we call it the derivative of f at c and denote it by Df(c).
2. Alternate definition: L is the derivative of f at c if and only if for all ǫ > 0 there is some

δ > 0 such that ‖x − c‖ < δ implies that ‖f(x) − (f(c) + L(x − c))‖ ≤ ǫ‖x − c‖.
3. Lemma: If there is a linear map L as in the definition above then it is uniquely deter-

mined by f and c.
4. Theorem: If f : A → R

m is differentiable at c ∈ A with A and open set in R
n, then f

is continuous at c.
5. Let f : A ⊂ R

n → R
m be a function on the open set A. We can write

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

The ith partial derivative of fj at (x1, . . . , xn) is

∂fj

∂xi
= lim

h→0

fj(x1, . . . , xi−1, xi + h, xi+1, . . . , xn) − f(x1, . . . , xn)

h

(if the limit exists.
6. Theorem: Let f : A ⊂ R

n → R
m be a function on the open set A. If f is differentiable

on A then the partial derivatives
∂fj

∂xi
exist for all i and j and in the standard basis for R

n



and R
m the linear map Df(x1, . . . , xn) is given by the matrix







∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn







This matrix is called the Jacobian matrix of f at (x1, . . . , xn).

7. If f : R
n → R is a differentiable function then Df =

[

∂f1

∂x1
. . . ∂f1

∂xn

]

. That is it is a

linear map from R
n to R. This is very similar to a familiar concept: the gradient of f .

The gradient is a vector containing the partial derivatives of f

∇f =







∂f1

∂x1

...
∂f1

∂xn






.

While it is common to write this vector as a row vector, we will always write it as a
column vector (actually all our vectors are column vectors, so when we think of a point
x ∈ R

n we will think of it as a column vector so our matrix can act on it by matrix
multiplication).

8. Theorem: Let A ⊂ R
m be an open set and f : A → R

n. Suppose that f = (f1, . . . , fm)

and each partial derivative
∂fj

∂xi
exists and is continuous near on A. Then f is differentiable

on A.
9. Let A ⊂ R

m be an open set and f : A → R
n. For e a unit vector in R

n and c ∈ A we
define the directional derivative of f at c in the direction of e to be

f ′(c, e) = lim
h→0

f(c + he) − f(c)

h
if the limit exists.

10. It is simple to check that (Df(c))e = f ′(c, e).
B. Chain rule and product rule

1. Theorem (Chain Rule): Let A ⊂ R
n and B ⊂ R

m be open sets. Suppose that
f : A → R

m, g : B → R
p and f(A) ⊂ B. If f is differentiable at x0 ∈ A and g is

differentiable at f(x0) ∈ B then g ◦ f is differentiable at x0 and

D(g ◦ f)(x0) = (Dg(f(x0))) (Df(x0)) .


