Outline for Midterm \#2 Math 4318, Spring 2011

I. Single Variable Functions: Differentiation
 A. Definitions and first properties

1. We recalled a few definitions concerning limits form Analysis I.
2. A function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $p \in(a, b)$ if the limit

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)}{h}
$$

exists. If the limit exists we denote it by $f^{\prime}(p)$ and call it the derivative of f at p.
3. Interpreting the derivative as a slope we could also define

$$
f^{\prime}(p)=\lim _{t \rightarrow p} \frac{f(t)-f(p)}{t-p}
$$

4. Theorem: If f is differentiable at p then f is continuous at p.
5. Theorem: Suppose f and g are differentiable at p. Then
i. The function $f \pm g$ is differentiable at p with

$$
(f \pm g)^{\prime}(p)=f^{\prime}(p) \pm g^{\prime}(p)
$$

ii. The function $f g$ is differentiable at p with

$$
(f g)^{\prime}(p)=f^{\prime}(p) g(p)+f(p) g^{\prime}(p) .
$$

iii. If $g(p) \neq 0$ then the function f / g is differentiable at p and

$$
(f / g)^{\prime}(p)=\frac{f^{\prime}(p) g(p)-f(p) g^{\prime}(p)}{g^{2}(p)} .
$$

iv. If $h(x)=c$ for some constant $c \in \mathbb{R}$ then $h^{\prime}(x)=0$ for all x.
\mathbf{v}. If $h(x)=x$ then $h^{\prime}(x)=1$ for all x.
vi. If f is differentiable at p and g is differentiable at $f(p)$ then $g \circ f$ is differentiable at p and

$$
(g \circ f)^{\prime}(p)=g^{\prime}(f(p)) f^{\prime}(p)
$$

6. Discussed the example

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

It is differentiable on \mathbb{R} (including 0) but its derivative is not continuous at 0 .
7. The nth order derivative of f at p is defined to be the derivative of the $(n-1)$ st derivative of f at p, if it exists. Denote the nth derivative by $f^{(n)}(p)$. With this notation we take $f^{(0)}$ to denote f.
8. A function is continuously differentiable of order r on the interval I if $f^{(r)}$ exists and is continuous on I. (Note this implies $f^{(k)}$ exists and is continuous on I for all $k \leq r$.) We denote the set of continuously r th order differentiable functions on I by $C^{r}(I)$. The set $C^{\infty}(I)$ denotes functions whose derivative of all orders exist on I.
9. Clearly $C^{r}(I) \supset C^{r+1}(I)$. This inclusion is strict (that is for any r there are functions that are r th order continuously differentiable that are not continuously differentiable to order $r+1$). The first few examples are $f(x)=|x|, g(x)=x|x|, h(x)=|x|^{3} \ldots$

B. The Mean Value Theorem

1. Theorem (Mean value theorem): If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a, b) then there is a point $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

2. Theorem: If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$ and f has a local maximum of minimum at c then $f^{\prime}(c)=0$.
3. Corollary: If f is differentiable on (a, b) and there is some K such that $\left|f^{\prime}(x)\right| l e q K$ for all $x \in(a, b)$ then

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in[a, b]$. (In particular f is Lipschitz.)
4. Suppose that f is differentiable on (a, b)
i. If $f^{\prime}(x) \geq 0$ for all x then f is increasing.
ii. If $f^{\prime}(x) \leq 0$ for all x then f is decreasing.
iii. If $f^{\prime}(x)>0$ for all x then f is strictly increasing.
iv. If $f^{\prime}(x)<0$ for all x then f is strictly decreasing.
5. Corollary (Intermediate value theorem for derivatives): Suppose that $f:[a, b] \rightarrow$ \mathbb{R} is differentiable. Given any λ between $f^{\prime}(a)$ and $f^{\prime}(b)$ there is some point $c \in(a, b)$ such that $f^{\prime}(c)=\lambda$.
6. Corollary (Inverse function theorem): Suppose that $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then f is a bijection onto its image. The inverse of f is continuous and

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f(x)}
$$

where $y=f(x)$.
7. Theorem: Let f and g be two continuous functions on $[a, b]$ that are differentiable on (a, b). There is a point $c \in(a, b)$ such that

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

8. Corollary (L'Hopital's Rule): Let f, g be differentiable functions on (a, b). Suppose $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow b$ and $g(x)$ and $g^{\prime}(x)$ are not zero near b. If

$$
\lim _{x \rightarrow b} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

then

$$
\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=L
$$

There are of course many other cases of L'Hopital's rule.
C. Taylor Polynomials

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. If $f(c), f^{\prime}(c), \ldots, f^{(n)}(c)$ exist then the $n \mathbf{t h}$ order Taylor polynomial of f at c is

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k} .
$$

2. Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n+1)}$ all exists on (a, b). Let $P_{n}(x)$ be the nth order Taylor polynomial of f at c. Then for each $x \in[a, b]$ there is some point t between c and x such that

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(t)}{(n+1)!}(x-c)^{n+1} .
$$

II. Single Variable Functions: Integration
 A. Riemann integrability

1. A partition of an interval $[a, b]$ is a finite collection of points $\mathcal{P}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that $x_{i}<x_{i+1}, x_{0}=a$ and $x_{n}=b$. The intervals of a partition are $I_{i}=\left[x_{i-1}, x_{i}\right]$ for $i=1, \ldots n$. The lengths of a partition are $\Delta x_{i}=x_{i}-x_{i-1}$. The size of the partition \mathcal{P} is $\|\mathcal{P}\|=\max \left\{\Delta x_{1}, \ldots \Delta x_{n}\right\}$.
2. A tagged partition \mathcal{P}^{t} is a partition $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ together a choice of point t_{i} in each interval $\left[x_{i-1}, x_{i}\right]$.
3. If $f:[a, b] \rightarrow \mathbb{R}$ is a function and \mathcal{P} is a tagged partition of $[a, b]$ then the Riemann sum of f associated to \mathcal{P}^{t} is

$$
S\left(f, \mathcal{P}^{t}\right)=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i}
$$

We say f is Riemann integrable if there is come number $I \in \mathbb{R}$ such that for every $\epsilon>0$ there is some $\delta>0$ such that for any tagged partition \mathcal{P}^{t} of $[a, b]$ with $\left\|\mathcal{P}^{t}\right\|<\delta$ we have

$$
\left|S\left(f, \mathcal{P}^{t}\right)-I\right|<\epsilon
$$

Let $\mathcal{R}([a, b])$ be the set of Riemann integrable functions on $[a, b]$.
4. Lemma: If $f \in \mathcal{R}([a, b])$ then the I in the definition above is uniquely determined.
5. If $f \in \mathcal{R}([a, b])$ then the Riemann integral of f over $[a, b]$ is the number I in the definition above. We denoted this number by

$$
\int_{a}^{b} f(x) d x
$$

6. Proposition:

i. $\mathcal{R}([a, b])$ is a vector space.
ii. The map

$$
\mathcal{R}([a, b]) \rightarrow \mathbb{R}: f \mapsto \int_{a}^{b} f(x) d x
$$

is a linear map.
iii. The constant function $f(x)=k$ is in $\mathcal{R}([a, b])$ for any $[a, b]$ and

$$
\int_{a}^{b} k d x=k(b-a)
$$

iv. If $f(x) \leq g(x)$ and $f, g \in \mathcal{R}([a, b])$ then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

7. Theorem: If $f \in \mathcal{R}([a, b])$ then f is bounded on $[a, b]$.
B. Darboux integrability
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ a partition of $[a, b]$. For each $i=1, \ldots, n$ set

$$
M_{i}=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\} \quad \text { and } \quad m_{i}=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\} .
$$

The lower sum of f associated to the partition \mathcal{P} is

$$
L(f, \mathcal{P})=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

and the upper sum is

$$
U(f, \mathcal{P})=\sum_{i=1}^{n} M_{i} \Delta x_{i}
$$

The lower integral of f over $[a, b]$ is

$$
\underline{\int_{a}^{b}} f(x) d x=\sup \{L(f, \mathcal{P}): \mathcal{P} \text { a partition of }[a, b]\}
$$

and the upper integral of f over $[a, b]$ is

$$
\overline{\int_{a}^{b}} f(x) d x=\int\{U(f, \mathcal{P}): \mathcal{P} \text { a partition of }[a, b]\} .
$$

We say f is Darboux integrable on $[a, b]$ if

$$
\overline{\int_{a}^{b}} f(x) d x=\underline{\int_{a}^{b}} f(x) d x
$$

2. Theorem: A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is Darboux integrable. And if it is integrable then

$$
\int_{a}^{b} f(x) d x=\overline{\int_{a}^{b}} f(x) d x=\underline{\int_{a}^{b}} f(x) d x .
$$

3. We say a partition \mathcal{P}^{\prime} refines a partition \mathcal{P} if $\mathcal{P} \subset \mathcal{P}^{\prime}$.
4. Lemma: If \mathcal{P}^{\prime} refines \mathcal{P} then

$$
L(f, \mathcal{P}) \leq L\left(f, \mathcal{P}^{\prime}\right) \leq U\left(f, \mathcal{P}^{\prime}\right) \leq U(f, \mathcal{P})
$$

5. Lemma: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Darboux integrable if and only if for every $\epsilon>0$ there is some partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon
$$

6. Corollary: A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if for every $\epsilon>0$ there is some partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon
$$

7. Corollary: A continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
C. Sets of measure zero and The Riemann-Lebesgue theorem
8. A set $S \subset \mathbb{R}$ has measure zero or is a set of measure zero if for every $\epsilon>0$ there is a countable collection of intervals $\left(a_{i}, b_{i}\right)$ such that $S \subset \cup\left(a_{i}, b_{i}\right)$ (that is the intervals are a cover of S) and

$$
\sum\left(b_{i}-a_{i}\right) \leq \epsilon .
$$

2. Lemma:

i. A finite set has measure zero.
ii. A subset of a set of measure zero has measure zero.
iii. A countable union of sets of measure zero has measure zero.
iv. A countable set has measure zero.
v. The middle thirds Cantor set has measure zero.
3. A function $f:[a, b] \rightarrow \mathbb{R}$ is continuous almost everywhere if the set of points at which f is discontinuous has measure zero.
4. Theorem (the Riemann-Lebesgue Theorem): Function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is bounded and continuous almost everywhere.
5. Corollary: Every continuous and bounded piecewise continuous function on $[a, b]$ is Riemann integrable.
6. Corollary: If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $g:[c, d] \rightarrow \mathbb{R}$ is continuous with $f([a, b]) \subset[c, d]$ then $g \circ f$ is Riemann integrable.
7. Corollary: If $f \in \mathcal{R}([a, b])$ then $|f| \in \mathcal{R}([a, b])$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

8. Corollary: The product of Riemann integrable functions is Riemann integrable.
9. Corollary: If $a<c<b$ then $f \in \mathcal{R}([a, b])$ if and only if $f \in \mathcal{R}([a, c])$ and $f \in \mathcal{R}([c, b])$. Moreover,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

10. Corollary: Suppose $f:[a . b] \rightarrow \mathbb{R}$ is non-negative (that is $f(x) \geq 0$) and integrable.

Then $\int_{a}^{b} f(x) d x=0$ implies that $f(x)=0$ at every point x where f is continuous.

D. Fundamental theorem of calculus

1. Theorem (Fundamental theorem of calculus I): Let $f \in \mathcal{R}([a, b])$ and set

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for all $x \in[a, b]$. Then the function F is continuous on $[a, b]$ and if f is continuous at c then F is differentiable at c and $F^{\prime}(c)=f(c)$.
2. Corollary: Any continuous function $f:[a, b] \rightarrow \mathbb{R}$ has han anti-derivative (i.e. a function F such that $F^{\prime}(x)=f(x)$ for all $\left.x \in[a, b]\right)$.
3. Theorem (Fundamental theorem of calculus II): If f is differentiable on $[a, b]$ and f^{\prime} is integrable on $[a, b]$ then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

4. Theorem (Integration by parts): Let f and g be functions on $[a, b]$ for which f^{\prime} and g^{\prime} are both integrable. Then

$$
\int_{a}^{b} f^{\prime}(x) g(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

5. Theorem (Change of variables): Let $\phi:[c, d] \rightarrow \mathbb{R}$ have continuous derivative and $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $[a, b] \subset \phi([c, d])$. Then

$$
\int_{c}^{d} f(\phi(t)) \phi^{\prime}(t) d t=\int_{\phi(c)}^{\phi(d)} f(x) d x .
$$

E. IMPROPER INTEGRALS

1. If $f:(a, b] \rightarrow \mathbb{R}$ is a function and $c \in(a, b]$ then if f is integrable on $[c, b]$ set

$$
I_{c}=\int_{c}^{b} f(x) d x
$$

Define the improper integral of f on $[a, b]$ to be

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} I_{c}
$$

if the limit exists. (One can similarly define the improper integral of $f:[a, b) \rightarrow \mathbb{R}$.)
2. If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then this definition agrees with the Riemann integral of f.

III. Sequences of functions and function spaces
 A. SEQUENCES OF FUNCTIONS

1. If $S \subset \mathbb{R}$ and $\left\{f_{n}: S \rightarrow \mathbb{R}\right\}$ is a sequence of functions on f (that is if $\mathcal{F}(S, \mathbb{R})$ is the set of all functions from S to \mathbb{R}, then $\left\{f_{n}\right\}$ is a sequence in the set $\mathcal{F}(S, \mathbb{R})$), the we say the sequence converges point wise to f if for each $x \in S$ we have the sequence of numbers $\left\{f_{n}(x)\right\}$ converges to $f(x)$. That is for all $x \in S$ and $\epsilon>0$ there is some N such that $\left|f(x)-f_{n}(x)\right|<\epsilon$ for all $n \geq N$.
2. We say that a sequence of functions $\left\{f_{n}: S \rightarrow \mathbb{R}\right\}$ converges uniformly to f on S if for all $\epsilon>0$ there is a N such that $\left|f(x)-f_{n}(x)\right|<\epsilon$ for all $n \geq N$ and $x \in S$.
3. Lemma: The sequence $\left\{f_{n}: S \rightarrow \mathbb{R}\right\}$ converges uniformly to some function on S if and only if for all $\epsilon>0$ there is an N such that $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $n, m \geq N$ and $x \in S$.
4. Theorem: If $f_{n} \rightarrow f$ uniformly on S and the f_{n} are continuous at $c \in S$ then f is continuous at c.
5. Theorem: If $\left\{f_{n} \mid\right\}$ is a sequence in $\mathcal{R}([a, b])$ and $f_{n} \rightarrow f$ uniformly on $[a, b]$ then $f \in$ $\mathcal{R}(a, b])$ and

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

6. Theorem: Let $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right\}$ be a sequence of functions. Suppose that
i. there is some $c \in[a, b]$ such that $\left\{f_{n}(c)\right\}$ converges,
ii. the functions f_{n} are all differentiable on $[a, b]$, and
iii. $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, b]$ for some function g.

Then there is some function f such that $f_{n} \rightarrow f$ uniformly on $[a, b]$ and $f^{\prime}=g$.
B. Metric space Topology

1. Let X be a set. A metric on X is a function

$$
d: X \times X \rightarrow \mathbb{R}
$$

such that
i. $d(p, q) \geq 0$ for all $p, q \in X$,
ii. $d(p, q)=0$ if and only if $p=q$
iii. $d(p, q)=d(q, p)$, and
iv. $d(p, q) \leq d(p, r)+d(r, q)$ for all $p, q, r \in X$. We think of $d(p, q)$ as being the distance between p and q. The pair (X, d) is called a metric space.
2. Example: Given a norm $\|\cdot\|$ on a vector space V one has a metric associated to the norm by setting

$$
d(v, w)=\|v-w\|
$$

for all $v, w \in V$. Thus if $\langle\cdot, \cdot\rangle$ is an inner product on V then $\|v\|=\sqrt{\langle v, v\rangle}$ is a norm and hence we get a metric associated to the inner product too.
3. Given a metric space (X, d) most all the concepts form Analysis I can be defined for (X, d) since they only depended on some notion of distance (where there we used the standard norm on \mathbb{R}^{n}). For example
i. A set $U \subset X$ is open if for all $p \in U$ there is some $r>0$ such that $B_{r}(p) \subset U$ where $B_{r}(p)=\{x \in X: d(x, p)<r\}$.
ii. A neighborhood of a point $p \in X$ is an open set N containing p.
iii. A subset $S \subset X$ has $p \in X$ as a cluster point if for all neighborhoods N of p we have $(N-\{p\}) \cap S \neq \emptyset$. (This is equivalent to saying for all $\epsilon>0$ there is some $q \in S$ with $q \neq p$ and $d(q, p)<\epsilon$.)
iv. A set S in X is closed if it contains all of its cluster points.
v. A set S is bounded if there is some $p \in X$ and R such that $S \subset B_{r}(p)$.
vi. A sequence $\left\{x_{n}\right\}$ in X is Cauchy if for all $\epsilon>0$ there is some N such that $d\left(x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq N$.
Most all the other concepts can be rephrased in terms of d too.
4. A metric space is complete if every Cauchy sequence converges.
5. Theorem (from Analysis I): The space $\left(\mathbb{R}^{n}, d\right)$ is complete. (Here $d(x, y)=\sqrt{\sum\left(x_{i}-y_{i}\right)^{2}}$.)
6. Suppose V is a vector space and d is a metric on V that is complete. If d comes from a norm then (V, d) is called a Banach space. If d comes from an inner product then (V, d) is called a Hilbert space.

C. Function spaces

1. Let $D \subset \mathbb{R}$. We set

$$
\mathcal{B}(D, \mathbb{R})=\{\text { bounded functions } f: D \rightarrow \mathbb{R}\}
$$

and for $f \in \mathcal{B}(D, \mathbb{R})$ let

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in D\}
$$

We call this the sup-norm or uniform norm on $\mathcal{B}(D, \mathbb{R})$ and one easily checks that this is a norm.
2. Lemma: Let $\left\{f_{n}\right\}$ be a sequence in $\mathcal{B}(D, \mathbb{R})$. Then the following are equivalent
i. $f_{n} \rightarrow f$ uniformly on D.
ii. f_{n} converges to f in the sup-norm.
iii. $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.
3. Theorem: The sequence $\left\{f_{n}\right\}$ in $\mathcal{B}(D, \mathbb{R})$ is Cauchy in the sup-norm if and only if it converges in the sup-norm. That is $\left(\mathcal{B}(D, \mathbb{R}),\|\cdot\|_{\infty}\right)$ is a Banach space.
4. Let

$$
C_{b}^{0}\{D\}=\{f \in \mathcal{B}(D, \mathbb{R}): f \text { is continuous }\} .
$$

(Notice that if D is compact then $C_{b}^{0}(D)=C^{0}(D)$.)
5. Theorem: $C_{b}^{0}(D)$ is a Banach space (in the sup-norm).
6. Theorem: The set $\mathcal{R}([a, b])$ (which is a subset of $\mathcal{B}([a, b], \mathbb{R}))$ is a Banach space in the sup-norm and the function

$$
I: \mathcal{R}([a, b]) \rightarrow \mathbb{R}: f \rightarrow \int_{a}^{b} f(x) d x
$$

is continuous.
7. For a function in $f \in C^{n}([a, b])$ and any $k \leq n$ define

$$
\|f\|_{C^{k}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}+\ldots+\left\|f^{(k)}\right\|_{\infty}
$$

It is easy to check this is a norm on $C^{n}([a, b])$.
8. Theorem: $\left(C^{n}([a, b]),\|\cdot\|_{C^{n}}\right)$ is a Banach space.

D. Approximation of functions

1. Theorem (Weierstrass): Polynomials are dense in $C^{0}([a, b])$. (That is for every $f \in$ $C^{0}([a, b])$ and $\epsilon>0$ there is a polynomial p such that $\|f-p\|<\epsilon$.)
2. Given two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ we define the convolution of f and g to be

$$
f * g(x)=\int_{\mathbb{R}} f(x-t) g(t), d t
$$

if the integral is well defined (and it will be if, for example, one of the functions has compact support and the functions are integrable on compact intervals).
3. A sequence of functions $K_{n}(x)$ is called an approximation to the identity if
i. $K_{n}(x) \geq 0$ for all x and n,
ii. $\int K_{n}(x) d x=1$ for all n, and
iii. $\int_{|x| \geq \epsilon} K_{n}(x) d x \rightarrow 0$ as $n \rightarrow \infty$ for any $\epsilon>0$.
4. Lemma: If $\left\{K_{n}\right\}$ is an approximation to the identity and f is a compactly supported continuous function then $\left(f * K_{n}\right) \rightarrow f$ uniformly.
5. Lemma: If p is a polynomial and $f \in \mathcal{R}([a, b])$ has compact support then $p * f$ is a polynomial.

E. Fixed point theorems and differential EQUATIONS

1. Theorem (Contraction mapping theorem): Let (M, d) be a complete metric space and $f: M \rightarrow M$ a contraction mapping (that is there is some $0 \leq k<1$ such that $d(f(x), f(y)) \leq k d(x, y)$ for all $x, y \in M)$. Then there is a unique fixed point $p \in M$ for f. (That is $f(p)=p$ and p is the only point with this property.)
2. Theorem (Existence ad uniqueness of solutions to ODEs): Let $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function on a neighborhood D of $\left(t_{0}, x_{0}\right)$ in \mathbb{R}^{2}. Assume that
i. f is Lipschitz in the x variable (that is there is some K such that $\left|f(t, x)-f\left(t, x^{\prime}\right)\right| \leq$ $\left.K\left|x-x^{\prime}\right|\right)$ and
ii. f is continuous on D.

Then there is some $\delta>0$ and a unique C^{1} solution to the initial value problem

$$
\frac{d x}{d t}=f(t, x) \quad x\left(t_{0}\right)=x_{0}
$$

on $\left(t_{0}-\delta, t_{0}+\delta\right)$. (That is there is some continuously differentiable function $\gamma:\left(t_{0}-\right.$ $\left.\delta, t_{0}+\delta\right) \rightarrow \mathbb{R}$ such that $\gamma^{\prime}(t)=f(t, \gamma(t))$ and $\gamma\left(t_{0}\right)=x_{0}$.)
3. A function γ solves the initial value problem if and only if it is a fixed point of

$$
\Phi(\gamma)(t)=x_{0}+\int_{t_{0}}^{t} f(s, \gamma(s)) d s
$$

F. Compactness in Function spaces

1. A subset $S \subset \mathcal{F}(D, \mathbb{R})=\{$ functions from D to $\mathbb{R}\}$ is called equicontinuous if for every $\epsilon>0$ there is a $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ for all $x, y \in D$ with $|x-y|<\delta$ and $f \in S$. (Of course sequences are subsets so we can talk about equicontinuous sequences.)
2. Theorem: A subset $S \subset \mathcal{F}(D, \mathbb{R})$ is compact (in the sup-norm) if and only if it is closed, bounded and equicontinuous.
3. Recall that a set in a metric space is called compact if every open cover of the set has a finite sub-cover. This is equivalent to saying that every sequence in the set has a convergent sub-sequence.
4. Theorem (Arzelá-Ascoli Theorem): Let $\left\{f_{n}\right\}$ be a sequence of functions $f_{n}: D \rightarrow \mathbb{R}$. If
i. D is compact,
ii. $\left\{f_{n}\right\}$ is bounded in the sup-norm and
iii. $\left\{f_{n}\right\}$ is equicontinuous (not this implies that each f_{n} is continuous), then there is a sub-seqence of $\left\{f_{n}\right\}$ that converges uniformly on D.
5. Theorem (Peano's Theorem): Let $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function on a neighborhood D of $\left(t_{0}, x_{0}\right)$ in \mathbb{R}^{2}. If f is continuous on D then there is some $\delta>0$ and a unique C^{1} solution to the initial value problem

$$
\frac{d x}{d t}=f(t, x) \quad x\left(t_{0}\right)=x_{0}
$$

on $\left[t_{0}, t_{0}+\delta\right]$.
6. Notice that when you drop the hypothesis of f being Lipschitz in the x variable you loose uniqueness of solutions. For example you can see that $x^{\prime}(t)=\sqrt{x(t)}$ with the initial condition $x(0)=0$ has infinitely many solutions. Indeed for $c \geq 0$ let $\gamma_{c}(t)=0$ for $t \leq c$ and $\frac{1}{4}(t-c)^{2}$ for $t \geq c$ and we see that γ_{c} solves the initial value problem.

G. SERIES OF FUNCTIONS

1. Given a sequence $\left\{g_{k}\right\}$ of functions on a set $D \subset \mathbb{R}$ we can associated the partial sums

$$
s_{n}(x)=\sum_{k=0}^{n} g_{k}(x)
$$

We say the series $\sum_{k=0}^{\infty} g_{k}$ converges uniformly, respectively point-wise to g if the sequence of partial sums $\left\{s_{n}\right\}$ converges uniformly, respectively point-wise, to g. We say the series converges absolutely if for each $x \in D$ the series of real numbers $\sum_{k=0}^{\infty}\left|g_{k}(x)\right|$ converges.
2. Theorem (Weierstrass M-test): Let $\left\{g_{k}\right\}$ be a sequence of functions on D and M_{k} be constants such that $\left|g_{k}(x)\right| \leq M_{k}$ for all $x \in D$. If $\sum_{k=0}^{\infty} M_{k}$ converges then $\sum_{k=0}^{\infty} g_{k}$ converges absolutely and uniformly on D.
3. Theorem: If $\sum_{k=0}^{\infty} g_{k}$ converges uniformly to g on $[a, b]$ and each $g_{k} \in \mathcal{R}([a, b])$ then $g \in \mathcal{R}([a, b])$ and

$$
\int_{a}^{b} g(x) d x=\int_{a}^{b} \sum_{k=0}^{\infty} g_{k}(x) d x=\sum_{k=0}^{\infty} \int_{a}^{b} g_{k}(x) d x
$$

4. Suppose that $\sum_{k=0}^{\infty} g_{k}$ converges point-wise on $[a, b]$ and each of the g_{k} is differentiable. If $\sum_{k=0}^{\infty} g_{k}^{\prime}$ converges uniformly on $[a, b]$ then

$$
\left(\sum_{k=0}^{\infty} g_{k}(x)\right)^{\prime}=\sum_{k=0}^{\infty} g_{k}^{\prime}(x)
$$

5. Theorem: There is a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is nowhere differentiable!
6. Facts we did not prove: Lipschitz functions are differentiable almost everywhere. The set of nowhere differentiable functions is dense in the set of continuous functions.

H. Power series

1. A power series about the point c is a series of the form

$$
\sum_{k=0}^{\infty} a_{n}(x-c)^{n}
$$

2. Recall from Analysis I:
i. The radius of convergence is defined to be $R=\frac{1}{\rho}$ where

$$
\rho=\limsup _{k}\left|a_{k}\right|^{\frac{1}{k}} .
$$

ii. If $\lim _{n \rightarrow \text { infty }} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$ exists then it is equal to the radius of convergence.
iii. For any $|x-c|<R$ the series $\sum_{k=0}^{\infty} a_{n}(x-c)^{n}$ converges absolutely and for $|x-c|>R$ the series diverges.
iv. A power series converges uniformly on any compact subset of $(c-R, c+R)$.
v. A power series defines a continuous function on $(c-R, c+R)$.
3. Theorem: If R is the radius of convergence of the power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

Then f is differentiable of all orders on $(c-R, c+R)$ and

$$
f^{(k)}(x)=\sum_{n=k}^{\infty} n(n-1) \ldots(n-k+1) a_{n}(x-c)^{n-k}
$$

4. Corollary: Suppose $f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n}(x-c)^{n}$ converge on some interval (a, b) containing c. If $f(x)=g(x)$ for all $x \in(a, b)$ then $a_{n}=b_{n}$ for all n.
5. A function f on an open interval is called analytic if it can be represented as a power series with non-zero radius of convergence, about each point in its domain.
6. Theorem: if $f:(a, b) \rightarrow \mathbb{R}$ is C^{∞} and there is some constant M such that

$$
\left|f^{(k)}(x)\right| \leq M
$$

for all $x \in(a, b)$ then f is analytic.
7. Given a function $f:(a, b) \rightarrow \mathbb{R}$ that is infinitely differentiable, $c \in(a, b)$ and $\delta>0$ such that $I_{c, \delta}=[c-\delta, c+\delta] \subset(a, b)$, we can set $M_{c, \delta}^{k}=\sup \left\{\left|f^{(k)}(x)\right|: x \in I_{c, \delta}\right\}$. We call

$$
g_{c, \delta}=\limsup _{k \rightarrow \infty}\left(M_{c, \delta}^{k} / k!\right)^{1 / k}
$$

the derivative growth rate of $f \delta$-near c. We say f has locally bounded derivative growth rate in (a, b) if for all $c \in(a, b)$ there is some δ so that $g_{c, \delta}$ is finite.
8. Theorem: An infinitely differentiable function $f:(a, b) \rightarrow \mathbb{R}$ is analytic if and only if it has locally bounded derivative growth rate.

IV. Derivatives in higher dimensions

A. Definitions and First properties

1. A map $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $c \in A$ if there is a linear map

$$
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

such that

$$
\lim _{x \rightarrow c} \frac{\| f(x)-(f(c)+L(x-c) \|}{\|x-c\|}=0 .
$$

If such an L exists then we call it the derivative of f at c and denote it by $D f(c)$.
2. Alternate definition: L is the derivative of f at c if and only if for all $\epsilon>0$ there is some $\delta>0$ such that $\|x-c\|<\delta$ implies that $\|f(x)-(f(c)+L(x-c))\| \leq \epsilon\|x-c\|$.
3. Lemma: If there is a linear map L as in the definition above then it is uniquely determined by f and c.
4. Theorem: If $f: A \rightarrow \mathbb{R}^{m}$ is differentiable at $c \in A$ with A and open set in \mathbb{R}^{n}, then f is continuous at c.
5. Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function on the open set A. We can write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

The $i^{\text {th }}$ partial derivative of f_{j} at $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\frac{\partial f_{j}}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f_{j}\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

(if the limit exists.
6. Theorem: Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function on the open set A. If f is differentiable on A then the partial derivatives $\frac{\partial f_{j}}{\partial x_{i}}$ exist for all i and j and in the standard basis for \mathbb{R}^{n}
and \mathbb{R}^{m} the linear map $D f\left(x_{1}, \ldots, x_{n}\right)$ is given by the matrix

$$
\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \ldots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

This matrix is called the Jacobian matrix of f at $\left(x_{1}, \ldots, x_{n}\right)$.
7. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable function then $D f=\left[\begin{array}{lll}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\end{array}\right]$. That is it is a linear map from \mathbb{R}^{n} to \mathbb{R}. This is very similar to a familiar concept: the gradient of f. The gradient is a vector containing the partial derivatives of f

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right]
$$

While it is common to write this vector as a row vector, we will always write it as a column vector (actually all our vectors are column vectors, so when we think of a point $x \in \mathbb{R}^{n}$ we will think of it as a column vector so our matrix can act on it by matrix multiplication).
8. Theorem: Let $A \subset \mathbb{R}^{m}$ be an open set and $f: A \rightarrow \mathbb{R}^{n}$. Suppose that $f=\left(f_{1}, \ldots, f_{m}\right)$ and each partial derivative $\frac{\partial f_{j}}{\partial x_{i}}$ exists and is continuous near on A. Then f is differentiable on A.
9. Let $A \subset \mathbb{R}^{m}$ be an open set and $f: A \rightarrow \mathbb{R}^{n}$. For e a unit vector in \mathbb{R}^{n} and $c \in A$ we define the directional derivative of f at c in the direction of e to be

$$
f^{\prime}(c, e)=\lim _{h \rightarrow 0} \frac{f(c+h e)-f(c)}{h}
$$

if the limit exists.
10. It is simple to check that $(D f(c)) e=f^{\prime}(c, e)$.
B. Chain Rule and product Rule

1. Theorem (Chain Rule): Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$ be open sets. Suppose that $f: A \rightarrow \mathbb{R}^{m}, g: B \rightarrow \mathbb{R}^{p}$ and $f(A) \subset B$. If f is differentiable at $x_{0} \in A$ and g is differentiable at $f\left(x_{0}\right) \in B$ then $g \circ f$ is differentiable at x_{0} and

$$
D(g \circ f)\left(x_{0}\right)=\left(D g\left(f\left(x_{0}\right)\right)\right)\left(D f\left(x_{0}\right)\right)
$$

