
Outline for Midterm #2
Math 4318, Spring 2011

I. Single Variable Functions: Differentiation
A. Definitions and first properties

1. We recalled a few definitions concerning limits form Analysis I.
2. A function f : (a, b) → R is differentiable at a point p ∈ (a, b) if the limit

lim
h→0

f(p + h) − f(p)

h

exists. If the limit exists we denote it by f ′(p) and call it the derivative of f at p.
3. Interpreting the derivative as a slope we could also define

f ′(p) = lim
t→p

f(t) − f(p)

t − p
.

4. Theorem: If f is differentiable at p then f is continuous at p.
5. Theorem: Suppose f and g are differentiable at p. Then

i. The function f ± g is differentiable at p with

(f ± g)′(p) = f ′(p) ± g′(p).

ii. The function fg is differentiable at p with

(fg)′(p) = f ′(p)g(p) + f(p)g′(p).

iii. If g(p) 6= 0 then the function f/g is differentiable at p and

(f/g)′(p) =
f ′(p)g(p) − f(p)g′(p)

g2(p)
.

iv. If h(x) = c for some constant c ∈ R then h′(x) = 0 for all x.
v. If h(x) = x then h′(x) = 1 for all x.
vi. If f is differentiable at p and g is differentiable at f(p) then g ◦ f is differentiable

at p and

(g ◦ f)′(p) = g′(f(p))f ′(p).

6. Discussed the example

f(x) =

{

x2 sin 1
x

x 6= 0

0 x = 0.

It is differentiable on R (including 0) but its derivative is not continuous at 0.
7. The nth order derivative of f at p is defined to be the derivative of the (n − 1)st

derivative of f at p, if it exists. Denote the nth derivative by f (n)(p). With this notation
we take f (0) to denote f .

8. A function is continuously differentiable of order r on the interval I if f (r) exists
and is continuous on I. (Note this implies f (k) exists and is continuous on I for all k ≤ r.)
We denote the set of continuously rth order differentiable functions on I by Cr(I). The
set C∞(I) denotes functions whose derivative of all orders exist on I.

9. Clearly Cr(I) ⊃ Cr+1(I). This inclusion is strict (that is for any r there are functions
that are rth order continuously differentiable that are not continuously differentiable to
order r + 1). The first few examples are f(x) = |x|, g(x) = x|x|, h(x) = |x|3...

B. The Mean Value Theorem
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1. Theorem (Mean value theorem): If f : [a, b] → R is continuous and f is differentiable
on (a, b) then there is a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a).

2. Theorem: If f : (a, b) → R is differentiable at c ∈ (a, b) and f has a local maximum of
minimum at c then f ′(c) = 0.

3. Corollary: If f is differentiable on (a, b) and there is some K such that |f ′(x)|leqK for
all x ∈ (a, b) then

|f(x) − f(y)| ≤ K|x − y|

for all x, y ∈ [a, b]. (In particular f is Lipschitz.)
4. Suppose that f is differentiable on (a, b)

i. If f ′(x) ≥ 0 for all x then f is increasing.
ii. If f ′(x) ≤ 0 for all x then f is decreasing.
iii. If f ′(x) > 0 for all x then f is strictly increasing.
iv. If f ′(x) < 0 for all x then f is strictly decreasing.

5. Corollary (Intermediate value theorem for derivatives): Suppose that f : [a, b] →
R is differentiable. Given any λ between f ′(a) and f ′(b) there is some point c ∈ (a, b)
such that f ′(c) = λ.

6. Corollary (Inverse function theorem): Suppose that f : (a, b) → R is a differentiable
function and f ′(x) 6= 0 for all x ∈ (a, b). Then f is a bijection onto its image. The inverse
of f is continuous and

(f−1)′(y) =
1

f(x)

where y = f(x).
7. Theorem: Let f and g be two continuous functions on [a, b] that are differentiable on

(a, b). There is a point c ∈ (a, b) such that

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

8. Corollary (L’Hopital’s Rule): Let f, g be differentiable functions on (a, b). Suppose
f(x) → 0 and g(x) → 0 as x → b and g(x) and g′(x) are not zero near b. If

lim
x→b

f ′(x)

g′(x)
= L

then

lim
x→b

f(x)

g(x)
= L.

There are of course many other cases of L’Hopital’s rule.
C. Taylor Polynomials

1. Let f : [a, b] → R be a function and c ∈ (a, b). If f(c), f ′(c), . . . , f (n)(c) exist then the
nth order Taylor polynomial of f at c is

Pn(x) =

n∑

k=0

f (k)(c)

k!
(x − c)k.

2. Theorem: Let f : [a, b] → R be a function such that f ′, f ′′, . . . , f (n+1) all exists on (a, b).
Let Pn(x) be the nth order Taylor polynomial of f at c. Then for each x ∈ [a, b] there is
some point t between c and x such that

f(x) = Pn(x) +
f (n+1)(t)

(n + 1)!
(x − c)n+1.



II. Single Variable Functions: Integration
A. Riemann integrability

1. A partition of an interval [a, b] is a finite collection of points P = {x0, x1, . . . , xn} such
that xi < xi+1, x0 = a and xn = b. The intervals of a partition are Ii = [xi−1, xi]
for i = 1, . . . n. The lengths of a partition are ∆xi = xi − xi−1. The size of the
partition P is ‖P‖ = max{∆x1, . . .∆xn}.

2. A tagged partition P t is a partition P = {x0, . . . , xn} together a choice of point ti in
each interval [xi−1, xi].

3. If f : [a, b] → R is a function and P is a tagged partition of [a, b] then the Riemann
sum of f associated to P t is

S(f,P t) =
n∑

i=1

f(ti)∆xi.

We say f is Riemann integrable if there is come number I ∈ R such that for every
ǫ > 0 there is some δ > 0 such that for any tagged partition P t of [a, b] with ‖P t‖ < δ
we have

|S(f,P t) − I| < ǫ.

Let R([a, b]) be the set of Riemann integrable functions on [a, b].
4. Lemma: If f ∈ R([a, b]) then the I in the definition above is uniquely determined.
5. If f ∈ R([a, b]) then the Riemann integral of f over [a, b] is the number I in the

definition above. We denoted this number by
∫ b

a

f(x) dx.

6. Proposition:
i. R([a, b]) is a vector space.
ii. The map

R([a, b]) → R : f 7→

∫ b

a

f(x) dx

is a linear map.
iii. The constant function f(x) = k is in R([a, b]) for any [a, b] and

∫ b

a

k dx = k(b − a)

iv. If f(x) ≤ g(x) and f, g ∈ R([a, b]) then
∫ b

a

f(x) dx ≤

∫ b

a

g(x) dx.

7. Theorem: If f ∈ R([a, b]) then f is bounded on [a, b].
B. Darboux integrability

1. Let f : [a, b] → R be a bounded function and P = {x0, . . . , xn} a partition of [a, b]. For
each i = 1, . . . , n set

Mi = sup{f(x) : x ∈ [xi−1, xi]} and mi = inf{f(x) : x ∈ [xi−1, xi]}.

The lower sum of f associated to the partition P is

L(f,P) =
n∑

i=1

mi∆xi



and the upper sum is

U(f,P) =
n∑

i=1

Mi∆xi.

The lower integral of f over [a, b] is
∫ b

a

f(x) dx = sup{L(f,P) : P a partition of [a, b]}

and the upper integral of f over [a, b] is
∫ b

a

f(x) dx =

∫

{U(f,P) : P a partition of [a, b]}.

We say f is Darboux integrable on [a, b] if
∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

2. Theorem: A function f : [a, b] → R is Riemann integrable if and only if it is Darboux
integrable. And if it is integrable then

∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

3. We say a partition P ′ refines a partition P if P ⊂ P ′.
4. Lemma: If P ′ refines P then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P).

5. Lemma: A bounded function f : [a, b] → R is Darboux integrable if and only if for every
ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

6. Corollary: A bounded function f : [a, b] → R is Riemann integrable if and only if for
every ǫ > 0 there is some partition P such that

U(f,P) − L(f,P) < ǫ.

7. Corollary: A continuous function f : [a, b] → R is Riemann integrable.
C. Sets of measure zero and the Riemann-Lebesgue theorem

1. A set S ⊂ R has measure zero or is a set of measure zero if for every ǫ > 0 there is
a countable collection of intervals (ai, bi) such that S ⊂ ∪(ai, bi) (that is the intervals are
a cover of S) and

∑

(bi − ai) ≤ ǫ.

2. Lemma:
i. A finite set has measure zero.
ii. A subset of a set of measure zero has measure zero.
iii. A countable union of sets of measure zero has measure zero.
iv. A countable set has measure zero.
v. The middle thirds Cantor set has measure zero.

3. A function f : [a, b] → R is continuous almost everywhere if the set of points at
which f is discontinuous has measure zero.

4. Theorem (the Riemann-Lebesgue Theorem): Function f : [a, b] → R is Riemann
integrable if and only if it is bounded and continuous almost everywhere.



5. Corollary: Every continuous and bounded piecewise continuous function on [a, b] is
Riemann integrable.

6. Corollary: If f : [a, b] → R is Riemann integrable and g : [c, d] → R is continuous with
f([a, b]) ⊂ [c, d] then g ◦ f is Riemann integrable.

7. Corollary: If f ∈ R([a, b]) then |f | ∈ R([a, b]) and
∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
≤

∫ b

a

|f(x)| dx

8. Corollary: The product of Riemann integrable functions is Riemann integrable.
9. Corollary: If a < c < b then f ∈ R([a, b]) if and only if f ∈ R([a, c]) and f ∈ R([c, b]).

Moreover,
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

10. Corollary: Suppose f : [a.b] → R is non-negative (that is f(x) ≥ 0) and integrable.

Then
∫ b

a
f(x) dx = 0 implies that f(x) = 0 at every point x where f is continuous.

D. Fundamental theorem of calculus
1. Theorem (Fundamental theorem of calculus I): Let f ∈ R([a, b]) and set

F (x) =

∫ x

a

f(t) dt

for all x ∈ [a, b]. Then the function F is continuous on [a, b] and if f is continuous at c
then F is differentiable at c and F ′(c) = f(c).

2. Corollary: Any continuous function f : [a, b] → R has han anti-derivative (i.e. a function
F such that F ′(x) = f(x) for all x ∈ [a, b]).

3. Theorem (Fundamental theorem of calculus II): If f is differentiable on [a, b] and
f ′ is integrable on [a, b] then

∫ b

a

f ′(x) dx = f(b) − f(a).

4. Theorem (Integration by parts): Let f and g be functions on [a, b] for which f ′ and
g′ are both integrable. Then

∫ b

a

f ′(x)g(x) dx = f(x)g(x)|ba −

∫ b

a

f(x)g′(x) dx.

5. Theorem (Change of variables): Let φ : [c, d] → R have continuous derivative and
f : [a, b] → R be continuous with [a, b] ⊂ φ([c, d]). Then

∫ d

c

f(φ(t))φ′(t) dt =

∫ φ(d)

φ(c)

f(x) dx.

E. Improper integrals
1. If f : (a, b] → R is a function and c ∈ (a, b] then if f is integrable on [c, b] set

Ic =

∫ b

c

f(x) dx.

Define the improper integral of f on [a, b] to be
∫ b

a

f(x) dx = lim
c→a+

Ic

if the limit exists. (One can similarly define the improper integral of f : [a, b) → R.)



2. If f : [a, b] → R is integrable then this definition agrees with the Riemann integral of f .

III. Sequences of functions and function spaces
A. Sequences of functions

1. If S ⊂ R and {fn : S → R} is a sequence of functions on f (that is if F(S, R) is the set
of all functions from S to R, then {fn} is a sequence in the set F(S, R)), the we say the
sequence converges point wise to f if for each x ∈ S we have the sequence of numbers
{fn(x)} converges to f(x). That is for all x ∈ S and ǫ > 0 there is some N such that
|f(x) − fn(x)| < ǫ for all n ≥ N .

2. We say that a sequence of functions {fn : S → R} converges uniformly to f on S if
for all ǫ > 0 there is a N such that |f(x) − fn(x)| < ǫ for all n ≥ N and x ∈ S.

3. Lemma: The sequence {fn : S → R} converges uniformly to some function on S if and
only if for all ǫ > 0 there is an N such that |fn(x) − fm(x)| < ǫ for all n, m ≥ N and
x ∈ S.

4. Theorem: If fn → f uniformly on S and the fn are continuous at c ∈ S then f is
continuous at c.

5. Theorem: If {fn|} is a sequence in R([a, b]) and fn → f uniformly on [a, b] then f ∈
R(a, b]) and

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

6. Theorem: Let {fn : [a, b] → R} be a sequence of functions. Suppose that
i. there is some c ∈ [a, b] such that {fn(c)} converges,
ii. the functions fn are all differentiable on [a, b], and
iii. f ′

n → g uniformly on [a, b] for some function g.
Then there is some function f such that fn → f uniformly on [a, b] and f ′ = g.

B. Metric space topology
1. Let X be a set. A metric on X is a function

d : X × X → R

such that
i. d(p, q) ≥ 0 for all p, q ∈ X,
ii. d(p, q) = 0 if and only if p = q
iii. d(p, q) = d(q, p), and
iv. d(p, q) ≤ d(p, r)+d(r, q) for all p, q, r ∈ X. We think of d(p, q) as being the distance

between p and q. The pair (X, d) is called a metric space.
2. Example: Given a norm ‖ · ‖ on a vector space V one has a metric associated to the

norm by setting

d(v, w) = ‖v − w‖

for all v, w ∈ V . Thus if 〈·, ·〉 is an inner product on V then ‖v‖ =
√

〈v, v〉 is a norm and
hence we get a metric associated to the inner product too.

3. Given a metric space (X, d) most all the concepts form Analysis I can be defined for
(X, d) since they only depended on some notion of distance (where there we used the
standard norm on R

n). For example
i. A set U ⊂ X is open if for all p ∈ U there is some r > 0 such that Br(p) ⊂ U

where Br(p) = {x ∈ X : d(x, p) < r}.
ii. A neighborhood of a point p ∈ X is an open set N containing p.
iii. A subset S ⊂ X has p ∈ X as a cluster point if for all neighborhoods N of p we

have (N − {p}) ∩ S 6= ∅. (This is equivalent to saying for all ǫ > 0 there is some
q ∈ S with q 6= p and d(q, p) < ǫ.)



iv. A set S in X is closed if it contains all of its cluster points.
v. A set S is bounded if there is some p ∈ X and R such that S ⊂ Br(p).
vi. A sequence {xn} in X is Cauchy if for all ǫ > 0 there is some N such that

d(xn, xm) < ǫ for all n, m ≥ N .
Most all the other concepts can be rephrased in terms of d too.

4. A metric space is complete if every Cauchy sequence converges.
5. Theorem (from Analysis I): The space (Rn, d) is complete. (Here d(x, y) =

√∑
(xi − yi)2.)

6. Suppose V is a vector space and d is a metric on V that is complete. If d comes from a
norm then (V, d) is called a Banach space. If d comes from an inner product then (V, d)
is called a Hilbert space.

C. Function spaces
1. Let D ⊂ R. We set

B(D, R) = {bounded functions f : D → R}

and for f ∈ B(D, R) let

‖f‖∞ = sup{|f(x)| : x ∈ D}.

We call this the sup-norm or uniform norm on B(D, R) and one easily checks that
this is a norm.

2. Lemma: Let {fn} be a sequence in B(D, R). Then the following are equivalent
i. fn → f uniformly on D.
ii. fn converges to f in the sup-norm.
iii. ‖fn − f‖∞ → 0 as n → ∞.

3. Theorem: The sequence {fn} in B(D, R) is Cauchy in the sup-norm if and only if it
converges in the sup-norm. That is (B(D, R), ‖ · ‖∞) is a Banach space.

4. Let
C0

b {D} = {f ∈ B(D, R) : f is continuous}.

(Notice that if D is compact then C0
b (D) = C0(D).)

5. Theorem: C0
b (D) is a Banach space (in the sup-norm).

6. Theorem: The set R([a, b]) (which is a subset of B([a, b], R)) is a Banach space in the
sup-norm and the function

I : R([a, b]) → R : f →

∫ b

a

f(x) dx

is continuous.
7. For a function in f ∈ Cn([a, b]) and any k ≤ n define

‖f‖Ck = ‖f‖∞ + ‖f ′‖∞ + . . . + ‖f (k)‖∞.

It is easy to check this is a norm on Cn([a, b]).
8. Theorem: (Cn([a, b]), ‖ · ‖Cn) is a Banach space.

D. Approximation of functions
1. Theorem (Weierstrass): Polynomials are dense in C0([a, b]). (That is for every f ∈

C0([a, b]) and ǫ > 0 there is a polynomial p such that ‖f − p‖ < ǫ.)
2. Given two functions f, g : R → R we define the convolution of f and g to be

f ∗ g(x) =

∫

R

f(x − t)g(t) , dt,

if the integral is well defined (and it will be if, for example, one of the functions has
compact support and the functions are integrable on compact intervals).

3. A sequence of functions Kn(x) is called an approximation to the identity if



i. Kn(x) ≥ 0 for all x and n,
ii.
∫

Kn(x) dx = 1 for all n, and
iii.

∫

|x|≥ǫ
Kn(x) dx → 0 as n → ∞ for any ǫ > 0.

4. Lemma: If {Kn} is an approximation to the identity and f is a compactly supported
continuous function then (f ∗ Kn) → f uniformly.

5. Lemma: If p is a polynomial and f ∈ R([a, b]) has compact support then p ∗ f is a
polynomial.

E. Fixed point theorems and differential equations
1. Theorem (Contraction mapping theorem): Let (M, d) be a complete metric space

and f : M → M a contraction mapping (that is there is some 0 ≤ k < 1 such that
d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ M). Then there is a unique fixed point p ∈ M for
f . (That is f(p) = p and p is the only point with this property.)

2. Theorem (Existence ad uniqueness of solutions to ODEs): Let f : D ⊂ R
2 → R

be a function on a neighborhood D of (t0, x0) in R
2. Assume that

i. f is Lipschitz in the x variable (that is there is some K such that |f(t, x)−f(t, x′)| ≤
K|x − x′|) and

ii. f is continuous on D.
Then there is some δ > 0 and a unique C1 solution to the initial value problem

dx

dt
= f(t, x) x(t0) = x0

on (t0 − δ, t0 + δ). (That is there is some continuously differentiable function γ : (t0 −
δ, t0 + δ) → R such that γ′(t) = f(t, γ(t)) and γ(t0) = x0.)

3. A function γ solves the initial value problem if and only if it is a fixed point of

Φ(γ)(t) = x0 +

∫ t

t0

f(s, γ(s)) ds.

F. Compactness in function spaces
1. A subset S ⊂ F(D, R) = {functions from D to R} is called equicontinuous if for every

ǫ > 0 there is a δ > 0 such that |f(x) − f(y)| < ǫ for all x, y ∈ D with |x − y| < δ and
f ∈ S. (Of course sequences are subsets so we can talk about equicontinuous sequences.)

2. Theorem: A subset S ⊂ F(D, R) is compact (in the sup-norm) if and only if it is closed,
bounded and equicontinuous.

3. Recall that a set in a metric space is called compact if every open cover of the set has
a finite sub-cover. This is equivalent to saying that every sequence in the set has a
convergent sub-sequence.

4. Theorem (Arzelá-Ascoli Theorem): Let {fn} be a sequence of functions fn : D → R.
If

i. D is compact,
ii. {fn} is bounded in the sup-norm and
iii. {fn} is equicontinuous (not this implies that each fn is continuous),

then there is a sub-seqence of {fn} that converges uniformly on D.
5. Theorem (Peano’s Theorem): Let f : D ⊂ R

2 → R be a function on a neighborhood
D of (t0, x0) in R

2. If f is continuous on D then there is some δ > 0 and a unique C1

solution to the initial value problem

dx

dt
= f(t, x) x(t0) = x0

on [t0, t0 + δ].



6. Notice that when you drop the hypothesis of f being Lipschitz in the x variable you loose
uniqueness of solutions. For example you can see that x′(t) =

√

x(t) with the initial
condition x(0) = 0 has infinitely many solutions. Indeed for c ≥ 0 let γc(t) = 0 for t ≤ c
and 1

4
(t − c)2 for t ≥ c and we see that γc solves the initial value problem.

G. Series of functions
1. Given a sequence {gk} of functions on a set D ⊂ R we can associated the partial sums

sn(x) =
n∑

k=0

gk(x).

We say the series
∑∞

k=0 gk converges uniformly, respectively point-wise to g if the
sequence of partial sums {sn} converges uniformly, respectively point-wise, to g. We say
the series converges absolutely if for each x ∈ D the series of real numbers

∑∞
k=0 |gk(x)|

converges.
2. Theorem (Weierstrass M-test): Let {gk} be a sequence of functions on D and Mk

be constants such that |gk(x)| ≤ Mk for all x ∈ D. If
∑∞

k=0 Mk converges then
∑∞

k=0 gk

converges absolutely and uniformly on D.
3. Theorem: If

∑∞
k=0 gk converges uniformly to g on [a, b] and each gk ∈ R([a, b]) then

g ∈ R([a, b]) and
∫ b

a

g(x) dx =

∫ b

a

∞∑

k=0

gk(x) dx =

∞∑

k=0

∫ b

a

gk(x) dx.

4. Suppose that
∑∞

k=0 gk converges point-wise on [a, b] and each of the gk is differentiable.
If
∑∞

k=0 g′
k converges uniformly on [a, b] then

(
∞∑

k=0

gk(x)

)′

=
∞∑

k=0

g′
k(x).

5. Theorem: There is a continuous function f : R → R that is nowhere differentiable!
6. Facts we did not prove: Lipschitz functions are differentiable almost everywhere. The set

of nowhere differentiable functions is dense in the set of continuous functions.
H. Power series

1. A power series about the point c is a series of the form
∞∑

k=0

an(x − c)n.

2. Recall from Analysis I:
i. The radius of convergence is defined to be R = 1

ρ
where

ρ = lim sup
k

|ak|
1

k .

ii. If limn→infty
|an|

|an+1|
exists then it is equal to the radius of convergence.

iii. For any |x−c| < R the series
∑∞

k=0 an(x−c)n converges absolutely and for |x−c| > R
the series diverges.

iv. A power series converges uniformly on any compact subset of (c − R, c + R).
v. A power series defines a continuous function on (c − R, c + R).

3. Theorem: If R is the radius of convergence of the power series

f(x) =
∞∑

n=0

an(x − c)n



Then f is differentiable of all orders on (c − R, c + R) and

f (k)(x) =

∞∑

n=k

n(n − 1) . . . (n − k + 1)an(x − c)n−k.

4. Corollary: Suppose f(x) =
∑∞

n=0 an(x − c)n and g(x) =
∑∞

n=0 bn(x − c)n converge on
some interval (a, b) containing c. If f(x) = g(x) for all x ∈ (a, b) then an = bn for all n.

5. A function f on an open interval is called analytic if it can be represented as a power
series with non-zero radius of convergence, about each point in its domain.

6. Theorem: if f : (a, b) → R is C∞ and there is some constant M such that

|f (k)(x)| ≤ M

for all x ∈ (a, b) then f is analytic.
7. Given a function f : (a, b) → R that is infinitely differentiable, c ∈ (a, b) and δ > 0 such

that Ic,δ = [c − δ, c + δ] ⊂ (a, b), we can set Mk
c,δ = sup{|f (k)(x)| : x ∈ Ic,δ}. We call

gc,δ = lim sup
k→∞

(Mk
c,δ/k!)1/k

the derivative growth rate of f δ-near c. We say f has locally bounded derivative
growth rate in (a, b) if for all c ∈ (a, b) there is some δ so that gc,δ is finite.

8. Theorem: An infinitely differentiable function f : (a, b) → R is analytic if and only if it
has locally bounded derivative growth rate.

IV. Derivatives in higher dimensions
A. Definitions and first properties

1. A map f : A ⊂ R
n → R

m is differentiable at c ∈ A if there is a linear map

L : R
n → R

m

such that

lim
x→c

‖f(x) − (f(c) + L(x − c)‖

‖x − c‖
= 0.

If such an L exists then we call it the derivative of f at c and denote it by Df(c).
2. Alternate definition: L is the derivative of f at c if and only if for all ǫ > 0 there is some

δ > 0 such that ‖x − c‖ < δ implies that ‖f(x) − (f(c) + L(x − c))‖ ≤ ǫ‖x − c‖.
3. Lemma: If there is a linear map L as in the definition above then it is uniquely deter-

mined by f and c.
4. Theorem: If f : A → R

m is differentiable at c ∈ A with A and open set in R
n, then f

is continuous at c.
5. Let f : A ⊂ R

n → R
m be a function on the open set A. We can write

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

The ith partial derivative of fj at (x1, . . . , xn) is

∂fj

∂xi
= lim

h→0

fj(x1, . . . , xi−1, xi + h, xi+1, . . . , xn) − f(x1, . . . , xn)

h

(if the limit exists.
6. Theorem: Let f : A ⊂ R

n → R
m be a function on the open set A. If f is differentiable

on A then the partial derivatives
∂fj

∂xi
exist for all i and j and in the standard basis for R

n



and R
m the linear map Df(x1, . . . , xn) is given by the matrix






∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn






This matrix is called the Jacobian matrix of f at (x1, . . . , xn).

7. If f : R
n → R is a differentiable function then Df =

[
∂f1

∂x1
. . . ∂f1

∂xn

]

. That is it is a

linear map from R
n to R. This is very similar to a familiar concept: the gradient of f .

The gradient is a vector containing the partial derivatives of f

∇f =






∂f1

∂x1

...
∂f1

∂xn




 .

While it is common to write this vector as a row vector, we will always write it as a
column vector (actually all our vectors are column vectors, so when we think of a point
x ∈ R

n we will think of it as a column vector so our matrix can act on it by matrix
multiplication).

8. Theorem: Let A ⊂ R
m be an open set and f : A → R

n. Suppose that f = (f1, . . . , fm)

and each partial derivative
∂fj

∂xi
exists and is continuous near on A. Then f is differentiable

on A.
9. Let A ⊂ R

m be an open set and f : A → R
n. For e a unit vector in R

n and c ∈ A we
define the directional derivative of f at c in the direction of e to be

f ′(c, e) = lim
h→0

f(c + he) − f(c)

h

if the limit exists.
10. It is simple to check that (Df(c))e = f ′(c, e).

B. Chain rule and product rule
1. Theorem (Chain Rule): Let A ⊂ R

n and B ⊂ R
m be open sets. Suppose that

f : A → R
m, g : B → R

p and f(A) ⊂ B. If f is differentiable at x0 ∈ A and g is
differentiable at f(x0) ∈ B then g ◦ f is differentiable at x0 and

D(g ◦ f)(x0) = (Dg(f(x0))) (Df(x0)) .

2. Theorem (Product Rule): Let A be a subset of R
n, f : A → R

m and g : A → R

be differentiable functions. THen gf is differentiable and the derivative D(gf)(x) is the
linear function

D(gf)(x)(v) = (Dg(x)(v)) f(x) + g(x) (Df(x)(v)) .

If h : A → R
m is also differentiable then h • f is differentiable with derivative

D(h • f)(x)(v) = (Dh(x)(v)) • f(x) + h(x) • (Df(x)(v)) .

C. Mean Value Theorem
1. Theorem (Mean Value Theorem): Let A ⊂ R

n be an open set and f : A → R
m a

differentiable function. Suppose there is some M such that

‖Df(x)(v)‖ ≤ M‖v‖

for all v ∈ R
n and x ∈ A. If the line segment connecting p, q ∈ A is contained in A then

‖f(p) − f(q)‖ ≤ M‖p − q‖.



2. Corollary: Suppose A ⊂ R
n is open and any two points in A can be connected by a

straight line that is contained in A. If f : A → R
m satisfies Df(x) = 0 for all x ∈ A then

f is constant.
D. Higher Derivatives

1. If f : R
n → R is a function then ∂f

∂xi
is another function R

n → R so we can take a partial
derivative of it. The second order partial derivative of f with respect to xi then

xj is ∂2f
∂xj∂xi

= ∂
∂xj

( ∂f
∂xi

). You can similarly define higher order partial derivatives.

2. Theorem: If f has continuous second order partial derivatives then

∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
.

3. If f : R
n → R

m is differentiable then the derivative of f at x, Df(x) : R
n → R

m, is a
linear map. So for each x ∈ R

n the derivative gives a linear map R
n → R

m. That is

Df : R
n → L(Rn, Rm) : x 7→ Df(x),

where L(Rn, Rm) is the set of linear maps from R
n to R

m. By Choosing a basis for R
n

and R
m we can identify L(Rn, Rm) with m×n matrices. The set of m×n matrices can be

identified with R
nm. So Df gives a map Df : R

n → R
nm. The second derivative of f at

x is the derivative of this map at x and is denoted D2f(x) = D(Df)(x). (Notice that we
don’t really need to identify L(Rn, Rm) with R

nm to define the derivative, since L(Rn, Rm)
is a vector space we can define the derivative as normal, but using the identification
above might be physiologically more acceptable on the first pass since we have not talked
about derivatives of functions to a general vector space). We can similarly define higher
derivatives.

4. Notice that D2f(x) is a linear map R
n → L(Rn, Rm). So D2f(x)(v) is a linear map

R
n → R

m. So D2f(x)(v)(w) is an element of R
m. Thus we see that D2f(x) can be thought

of as a bilinear map D2f(x) : R
n × R

n → R
m, by writing D2f(x)(v, w) = D2f(x)(v)(w).

5. If B : R
n × R

n → R is a bilinear map then by choosing a basis e1, . . . , en for R
n we can

set bij = B(ei, ej). Then given two vectors v =
∑

viei and w =
∑

wjej we see that

B(v, w) =
∑

bijviwj.

So we can think of

B(v, w) = vt(bij)w

where (bij) is an n × n matrix.
6. Theorem: If A ⊂ R

n is an open set and f : A → R is twice differentiable then in the
standard basis for |Rn we can write

D2f =






∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn∂xn






7. We say that f : A ⊂ R
n → R

m is Cr, or r times continuously differentiable, if all
the rth order partial derivatives exist and are continuous (which implies that Drf exists
and is continuous).

8. In general if f : R
n → R is k times differentiable then in the standard basis e1, . . . en for

R
n we have

Dkf(x)(v1, . . . vk) =
n∑

i1,...ik=1

∂kf

∂xi1 . . . ∂xik

(v1)i1 . . . (vk)ik ,



where vi =
∑

(vi)jej.
9. Theorem: Let A ⊂ R

n be an open set and f : A → R be a Cr+1 function. If x, y ∈ A
and the line between x and y is in A then there is some c on the line between x and y
such that

f(y) =
r∑

k=0

1

k!
(Dkf(x))(y − x, . . . , y − x

︸ ︷︷ ︸

k times

)

︸ ︷︷ ︸

rth order Taylor polynomial

+
1

(r + 1)!
Dr+1f(c)(y − x, . . . y − x

︸ ︷︷ ︸

r+1 times

).

E. Minima and Maxima
1. Theorem: Let A ⊂ R

n be an open set and f : A → R a differentiable function. If x0 is
a (local) maximum or minimum of f then Df(x0) = 0 (that is x0 is a critical point).

2. A bilinear form B : R
n ×R

n → R is called positive definite if B(x, x) > 0 for all x 6= 0,
it is positive semi-definite if B(x, x) ≥ 0 for all x. We have similar definitions for
n
¯
egative definite and negative semi-definite.

3. Theorem: Let A ⊂ R
n be an open set and f : A → R be a C2-function.

i. If x0 ∈ A is a critical point then D2f(x0) positive definite implies that x0 is a local
minimum and D2f(x0) negative definite implies that x0 is a local maximum.

ii. If f has a local minimum at x0 then D2f(x0) is positive semi-definite and if x0 is a
local maximum then D2f(x0) is negative semi-definite.

4. Lemma: If

[
a b
b d

]

represents a bilinear form R
2 × R

2 → R then it is positive definite

if and only if a > 0 and ad − b2 > 0. It is negative definite if and only if a < 0 and
ad − b2 > 0.

F. Inverse Function Theorem
1. Theorem (Inverse Function Theorem): Let A ⊂ R

n be an open set and f : A → R
n

a C1-function. If x0 ∈ A and Df(x0) is invertible then there is a neighborhood U of x0

and W of f(x0) such that f |U : U → W is a bijection and (f |U)−1 is differentiable with
derivative

D(f−1)(y) = (Df(x))−1

where f(x) = y ∈ W .

V. Multivariable Integration
A. The integral

1. Let A ⊂ R
n be a bounded set and f : A → R a bounded function. Let A ⊂ B =

[a1, b1] × · · · × [an, bn] (we call something of the form of B a “rectangle”). A partition
of B, P, is a choice of partition of the intervals [a1, b1], . . . , [an, bn]. That is, a1 = x1

0 <
x1

1 < . . . < x1
m1

= b1 and a2 = x2
0 < . . . < x2

m2
= b2 and so on. This divides B into many

(precisely m1m2 . . .mn) smaller rectangles Bi1,...,in = [x1
i1−1, x

1
i1
] × · · · × [xn

in−1 − xn
in ]. We

define the volume of Bi1,...,in to be

vol(Bi1,...,in) = (bi1 − bi1−1) . . . (bin − bin−1)

and the mesh of P to be the longest length of an edge of one of the Bi1,...,in and denote
it by m(P).
extend f to B by defining it to be 0 at points in B −A. We define the lower sum of f
for P to be

L(f,P) =
∑

i1,...,in

inf{f(x) : x ∈ Bi1,...in}vol(Bi1,...in)



and the upper sum of f for P to be

U(f,P) =
∑

i1,...,in

sup{f(x) : x ∈ Bi1,...in}vol(Bi1,...in)

2. We say a partition P ′ refines P if each rectangle P ′ defines is contained in a rectangle
of P. It is easy to see the following.

i. If P ′ refines P then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P).

ii. If P and Q are any partitions of B then

L(f,P) ≤ U(f,Q).

Thus the lower sums are bounded below and the upper sums are bounded above.
3. Define the upper integral of f over A to be

∫

A

f = inf{U(f,P : P is a partition of B}

and the lower integral of f over A to be
∫

A

f = sup{L(f,P : P is a partition of B}.

We say f is integrable over A is
∫

A
f =

∫

A
f and in this case we define the integral to

be the common value and denote it
∫

A
f or

∫

A
f(x) dx.

4. Theorem (Darboux’s Theorem): Suppose A is a bounded set and contained in the
rectangle B and f : A → R is a bounded function. Then f is integrable over A with
integral I if and only if for all ǫ > 0 there is a δ > 0 such that for any partition P with
m(P) < δ and points xi1,...,in ∈ Bii,...,in we have

∣
∣
∣

∑

f(xi1,...,in)vol(Bi1,...,in) − I
∣
∣
∣ < ǫ.

5. Theorem (Riemann’s Criterion): If f and A are as in the last theorem then f is
integrable if and only if for each ǫ > 0 there is a partition P such that 0 ≤ U(f,P) −
L(f,P) < ǫ.

B. Sets of measure zero and the Lebesgue Theorem
1. A set S ⊂ R

n has measure zero if for every ǫ > 0 S can be covered by a countable
collection of rectangles {Ri} such that

∑

i vol(Ri) < ǫ.
2. Lemma:

i. Countable sets have measure zero.
ii. Subsets of measure zero have measure zero.
iii. Countable unions of sets of measure zero have measure zero.
iv. If V is a linear subspace of R

n of dimension less than n then V has measure zero in
R

n.
3. Theorem (Lebegue’s Theorem): Suppose A ⊂ Rn is a bounded set and f : A → R is

bounded. Extend f to all of R
n by setting it to zero for all x 6∈ A. Then f is integrable

on A if and only if the set of discontinuities of the extended function f has measure zero
(that is the extended function is continuous almost everywhere).

4. Theorem: If f : A → R is integrable and f(x) ≥ 0 for all x ∈ A then
∫

A
f = 0 implies

that {x ∈ A : f(x) 6= 0} has measure zero.
C. Properties of the integral



1. Theorem: Let A and B be bounded subsets of R
n, f, g : A → R be bounded, integrable

functions and c ∈ R.
i. Then f ± g is integrable and

∫

A

f ± g =

∫

A

f ±

∫

A

g.

ii. cf is integrable and
∫

A

cf = c

∫

A

f

iii. |f | is integrable and
∣
∣
∣
∣

∫

A

f

∣
∣
∣
∣
≤

∫

A

|f |.

iv. f ≤ g then
∫

A
f ≤

∫

A
g.

v. If f : A∪B → R is a function, A∩B has measure zero and f |A, f |B and f |A∩B are
integrable then f is integrable on A ∪ B and

∫

A∪B

f =

∫

A

f +

∫

B

f.

2. If A ⊂ R
n is a bounded set then set χA(x) = 1 if x ∈ A and zero otherwise. Then we say

A has volume if χA is integrable on A and define the volume of A to be vol(A) =
∫

A
χA.

3. Theorem (Mean Value Theorem): If f : A → R is continuous and A is compact,
connected and has bounded volume then there is a point x0 ∈ A such that

∫

A

f = f(x0)vol(A).

D. Fubini’s Theorem
1. Theorem (Fubini’s Theorem): Let A ⊂ R

n and B ⊂ R
m be rectangles and f :

A × B → R be integrable. For each x ∈ A define fx : B → R : y 7→ f(x, y) and for each
y ∈ B define fy : A → R : x 7→ f(x, y). If fx is integrable over B for each x ∈ A then

∫

A×B

f =

∫

A

(∫

B

f(x, y) dy

)

dx.

If fy is integrable over A for each y ∈ B then
∫

A×B

f =

∫

B

(∫

A

f(x, y) dx

)

dy.


