1) Show that $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$ and that equality holds if and only if $x=0$.
2) Let $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function. Suppose that for every $0 \leq a<b \leq 1$ there is a point $c \in[a, b]$ such that $f(c)=0$. Show that $\int_{0}^{1} f(x) d x=0$. Does f have to be the zero function? What if f is continuous?
3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Assume there is no $x \in \mathbb{R}$ such that $f(x)$ and $f^{\prime}(x)$ are both zero. Show that the set $\{x \in[0,1]: f(x)=0\}$ is finite.
4) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \geq 0$ for all $x \in[a, b]$. Set $M_{n}=\left(\int_{a}^{b} f^{n}(x) d x\right)^{1 / n}$. Show that $\lim _{n \rightarrow \infty} M_{n}=\sup \{f(x): x \in[a, b]\}$.
5) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function that is differentiable on $(0,1)$. If $f(0)=$ $0, f(1)=1$ and $\int_{0}^{1} f(x) d x=0$, then show that there is some point $c \in[0,1]$ such that $f^{\prime}(c)=0$.
6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Define $f_{n}(x)=f(n x)$ for $n=1,2, \ldots$. If the sequence $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$ then show that f is constant on $[0, \infty)$. Hint: Show that $f(0)=f(p / q)$ for all rational numbers p / q.
7) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=e^{x} \cos y$. Compute $D f, D^{2} f$ and the second order Taylor polynomial at $(0,0)$.
8) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies $\left\|f\left(x_{0}\right)-f(x)\right\| \leq K\left\|x_{0}-x\right\|^{\alpha}$ for some fixed real number $\alpha>1$ and fixed point $x_{0} \in \mathbb{R}^{n}$. Compute $\operatorname{Df}\left(x_{0}\right)$.
9) Suppose that $B \subset \mathbb{R}^{n}$ is a bounded set and that $f: B \rightarrow \mathbb{R}$ is integrable over B and $f(x) \geq 0$ for all $x \in B$. If $A \subset B$ and f is integrable over A, then show that $\int_{A} f \leq \int_{B} f$. Is this true if we do not assume that $f(x) \geq 0$?
