Name: _____

Signature: _____

Instructions: Print your name and sign your signature to indicate that you accept the honor code. To receive full credit you must provide a proof that any answer you give is correct. You have 75 minutes to answer all the questions. *Good Luck*

Question	Max Point	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

1) Let $f : [a, b] \to \mathbb{R}$ and suppose that there is some M such that $|f'(x)| \le M$. Prove using the definitions that f if Lipschitz and continuous on [a, b].

2) Assuming that f' exists on [a, b] and $\lim_{x\to c} f'(x) = L$ for some $c \in (a, b)$, prove that f' is continuous at c.

3) Let $f : [a, b] \to \mathbb{R}$ be an integrable function with $f(x) \ge 0$ for all $x \in [a, b]$. a) If f is continuous at some $c \in (a, b)$ and f(c) > 0 show that

$$\int_{a}^{b} f(x) \, dx > 0.$$

b) If the set $C = \{x \in [a, b] : f(x) = 0\}$ has measure zero show that

$$\int_{a}^{b} f(x) \, dx > 0.$$

Hint: Does [a, b] have measure zero?

4) Let $f: [0,1] \to \mathbb{R}$ be the function that is 0 for all irrational numbers and f(x) = x for all rational numbers. Prove that f is not integrable.

Hint: Show that the upper and lower Darboux integrals cannot be the same. Specifically show that any upper sum is bounded below by $\frac{1}{2}$.

5) Answer the following questions True or False. Circle either T or F to indicate your answer. You do not need to justify your answer.

- 1. If |f| is integrable on [a, b] then f is integrable on [a, b].
- 2. If f is not integrable on [a, b] then there are partitions \mathcal{P} and \mathcal{Q} of [a, b] such that $L(f, \mathcal{Q}) > U(f, \mathcal{P})$
- 3. If a function is differentiable on an open interval I then it is continuous on I.
- 4. Sets of measure zero must be countable.

the interval.

- 5. If a function if differentiable on an open interval I then its derivative is continuous on Ι.
- 6. If a function has bounded derivative on an interval then it is uniformly continuous on
- Т \mathbf{F} 7. Every integrable function has an anti-derivative. \mathbf{T} \mathbf{F} 8. The set of integrable functions form a vector space. \mathbf{T} F 9. The product of integrable functions is integrable. Т \mathbf{F} 10. The composition of integrable functions is integrable. \mathbf{F} \mathbf{T}

 \mathbf{T} \mathbf{F}

 \mathbf{T} \mathbf{F}

 \mathbf{T} \mathbf{F}

- \mathbf{T}

 - \mathbf{F}
- \mathbf{F}

 \mathbf{T}