
Math 4318 Solutions for Practice Midterm Exam 1 Spring 2011

1) Let f : [a, b] → R and suppose that there is some M such that |f ′(x)| ≤ M . Prove using
the definitions that f if Lipschitz and continuous on [a, b].

Solution: For any x, y in [a, b] the Mean Value Theorem says there is some c between x
and y such that

|f(x) − f(y)| = |f ′(c)||x − y| ≤ M |x − y|.

So f is Lipschitz with Lipschitz constant M . We know Lipschitz functions are continuous,
but since we have to establish everything from definitions here is the proof. Given x ∈ [a, b]
and ǫ > 0 let δ = ǫ/M , then if y ∈ [a, b] and |x − y| < δ we see that

|f(x) − f(y)| ≤ M |x − y| < Mδ = M(ǫ/M) = ǫ.

So f is continuous.
2) Assuming that f ′ exists on [a, b] and limx→c f ′(x) = L for some c ∈ (a, b), prove that f ′ is
continuous at c.

Solution: Since c is a cluster point of [a, b], f ′(x) being continuous at c means that

limx→c f ′(x) = f ′(c). Thus we must show that L = f ′(c). If L 6= f ′(c) then let ǫ = |f ′(c)−L|
2

.
Since limx→c f ′(x) = L there is some δ > 0 such that |f ′(x)−L| < ǫ whenever 0 < |x−c| < δ
and x ∈ [a, b]. By making δ smaller if necessary we can assume that c− δ or c + δ is in [a, b].
Assuming the later we have for c < x < c + δ that

|f ′(x) − f ′(c)| ≥ |L − f ′(c)| − |f ′(x) − L| > |L − f ′(c)| − ǫ =
|f ′(c) − L|

2
= ǫ > 0.

Thus f ′((c, c + δ]) is disjoint from (f ′(c)− ǫ, f ′(c) + ǫ), but this contradicts the intermediate
value theorem for derivatives.
3) Let f : [a, b] → R be an integrable function with f(x) ≥ 0 for all x ∈ [a, b].
a) If f is continuous at c ∈ (a, b) and f(c) > 0 show that

∫ b

a

f(x) dx > 0.

Solution: Since f is continuous at c there is some δ > 0 such that for all x ∈ [a, b]

with |x − c| < δ we have |f(x) − f(c)| < f(c)
2

. We can moreover assume that δ is small
enough so that I = (c − δ, c + δ) ⊂ [a, b]. Now let χI be the characteristic function of I
(that is χI(x) = 1 if x ∈ I and zero otherwise). Then we know that for |x − c| < δ we have

f(x)/2 > f(c)/2 Thus the function g(x) = f(c)
2

χI satisfies g(x) ≤ f(x) for all x. Now

∫ b

a

f(x) dx ≥

∫ b

a

g(x) =

∫ c+δ

c−δ

f(c)

2
dx =

f(c)

2
(2δ) > 0.

(You could also prove this using the definition of integral, but choosing partitions appropri-
ately. For example show that the lower Darboux integral is greater than zero.)
b) If the set C = {x ∈ [a, b] : f(x) = 0} has measure zero show that

∫ b

a

f(x) dx > 0.
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Solution: Since f is integrable we know the set D of points where f is discontinuous
has measure zero. If [a, b]−D had measure zero then so would [a, b] = D∪ ([a, b]−D) (since
the union of two sets of measure zero have measure zero). But it is easy to see that [a, b]
does not have measure zero (argument below). Thus [a, b] − D does not have measure zero.
From this we can conclude that ([a, b] − D) is not a subset of C (since subsets of measure
zero have measure zero). But since [a, b] − D is the set of points where f is continuous it is
clear that there is a point c ∈ (a, b) where f is continuous and not in C, that is f(c) > 0.
Thus we are done by part a).

Proof that [a, b] does not have measure zero. Now suppose {Ui} is an cover of [a, b] by
open intervals. Since [a, b] is compact there are a finite number of Ui that cover [a, b], say
Ui1 , . . . , Uik . We can assume that each Uij intersects [a, b] (or else we could through it out
and still have a cover). It is clear that U = ∪k

j=1Uij is connected (if not then since [a, b]
is connected it would be in one of the components of U and thus there would be some Uij

that don’t intersect [a, b]). Thus U is an open interval that contains [a, b] it is clear that the
length of U is larger than the length of [a, b], that is b − a. Thus the total length of the Uij

is bigger than b − a and hence the total length of the Ui is bigger than b − a. In particular
we cannot find a cover of [a, b] with total length less than, say, 1

2
(b − a). So [a, b] does not

have measure zero.
4) Let f : [0, 1] → R be the function that is 0 for all irrational numbers and f(x) = x for
all rational numbers. Prove that f is not integrable. Hint: Show that the upper and lower
Darboux integrals cannot be the same. Specifically show that any upper sum is bounded
below by 1

2
.

Solution: If P is any partition of [0, 1] then notice since each interval in the partition
contains an irrational number we know that the minimum of f on each of these intervals is
zero. Thus

L(f,P) = 0

for all P and so
∫ 1

0
f(x) dx = 0. Now if I = [xi−1, xi] is an interval of the partition P then

there is a sequence of rational numbers approaching xi and thus the maximum of f on I is
xi. Noting that xi+xi−1

2
< xi (because xi > xi−1) we have

U(f,P) =

n∑
i=1

xi(xi − xi−1) >

n∑
i=1

1

2
(xi + xi−1)(xi − xi−1)

=
1

2

n∑
i=1

x2
i − x2

i−1 =
1

2
(x2

n − x2
0) =

1

2
(1 − 0) =

1

2
.

Thus for any partition P the upper sum of f is bounded below by 1
2

and hence

∫ 1

0

f(x) dx ≥
1

2
.

In particular the upper and lower sums are not the same and hence f is not integrable.
5) Answer the following questions True or False. Circle either T or F to indicate your
answer. You do not need to justify your answer.

I am providing reasons for the answers but you do not need to do so.
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1. If |f | is integrable on [a, b] then f is integrable on [a, b].

F If f is 1 for irrational and −1 for rational numbers on [0, 1] then |f | is a constant
function and hence integrable, but f is discontinuous everywhere so it is not integrable.

2. If f is not integrable on [a, b] then there are partitions P and Q of [a, b] such that
L(f,Q) > U(f,P)

F The upper sum is always larger than the lower sum for any partition.

3. If a function is differentiable on an open interval I then it is continuous on I.

T A theorem from class.

4. Sets of measure zero must be countable.

F Countable sets have measure zero, but there are uncountable sets (like the middle
thirds Cantor set) that also have measure zero.

5. If a function if differentiable on an open interval I then its derivative is continuous on
I.

F The function f(x) = x2 sin 1
x

for x 6= 0 and 0 for x = 0 is differentiable on all of R

but its derivative is not continuous at 0.

6. If a function has bounded derivative on an interval then it is uniformly continuous on
the interval.

T If the derivative of a function is bounded on an interval then the function is
Lipschitz (see problem 1). Lipschitz functions are uniformly continuous.

7. Every integrable function has an anti-derivative.

F Derivatives satisfy the intermediate value property. Since not every integrable
function satisfies this, not every function can be a derivative (in particular have an
anti-derivative).

8. The set of integrable functions form a vector space.

T Theorem from class.

9. The product of integrable functions is integrable.

T Theorem from class (also easily follows from the Riemann-Lebesgue theorem).

10. The composition of integrable functions is integrable.

F We had a counterexample to this on homework 2.
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