1) Let $f:[a, b] \rightarrow \mathbb{R}$ and suppose that there is some M such that $\left|f^{\prime}(x)\right| \leq M$. Prove using the definitions that f if Lipschitz and continuous on $[a, b]$.

Solution: For any x, y in $[a, b]$ the Mean Value Theorem says there is some c between x and y such that

$$
|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y| \leq M|x-y|
$$

So f is Lipschitz with Lipschitz constant M. We know Lipschitz functions are continuous, but since we have to establish everything from definitions here is the proof. Given $x \in[a, b]$ and $\epsilon>0$ let $\delta=\epsilon / M$, then if $y \in[a, b]$ and $|x-y|<\delta$ we see that

$$
|f(x)-f(y)| \leq M|x-y|<M \delta=M(\epsilon / M)=\epsilon
$$

So f is continuous.
2) Assuming that f^{\prime} exists on $[a, b]$ and $\lim _{x \rightarrow c} f^{\prime}(x)=L$ for some $c \in(a, b)$, prove that f^{\prime} is continuous at c.

Solution: Since c is a cluster point of $[a, b], f^{\prime}(x)$ being continuous at c means that $\lim _{x \rightarrow c} f^{\prime}(x)=f^{\prime}(c)$. Thus we must show that $L=f^{\prime}(c)$. If $L \neq f^{\prime}(c)$ then let $\epsilon=\frac{\left|f^{\prime}(c)-L\right|}{2}$. Since $\lim _{x \rightarrow c} f^{\prime}(x)=L$ there is some $\delta>0$ such that $\left|f^{\prime}(x)-L\right|<\epsilon$ whenever $0<|x-c|<\delta$ and $x \in[a, b]$. By making δ smaller if necessary we can assume that $c-\delta$ or $c+\delta$ is in $[a, b]$. Assuming the later we have for $c<x<c+\delta$ that

$$
\left|f^{\prime}(x)-f^{\prime}(c)\right| \geq\left|L-f^{\prime}(c)\right|-\left|f^{\prime}(x)-L\right|>\left|L-f^{\prime}(c)\right|-\epsilon=\frac{\left|f^{\prime}(c)-L\right|}{2}=\epsilon>0
$$

Thus $f^{\prime}((c, c+\delta])$ is disjoint from $\left(f^{\prime}(c)-\epsilon, f^{\prime}(c)+\epsilon\right)$, but this contradicts the intermediate value theorem for derivatives.
3) Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function with $f(x) \geq 0$ for all $x \in[a, b]$.
a) If f is continuous at $c \in(a, b)$ and $f(c)>0$ show that

$$
\int_{a}^{b} f(x) d x>0
$$

Solution: Since f is continuous at c there is some $\delta>0$ such that for all $x \in[a, b]$ with $|x-c|<\delta$ we have $|f(x)-f(c)|<\frac{f(c)}{2}$. We can moreover assume that δ is small enough so that $I=(c-\delta, c+\delta) \subset[a, b]$. Now let χ_{I} be the characteristic function of I (that is $\chi_{I}(x)=1$ if $x \in I$ and zero otherwise). Then we know that for $|x-c|<\delta$ we have $f(x) / 2>f(c) / 2$ Thus the function $g(x)=\frac{f(c)}{2} \chi_{I}$ satisfies $g(x) \leq f(x)$ for all x. Now

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x)=\int_{c-\delta}^{c+\delta} \frac{f(c)}{2} d x=\frac{f(c)}{2}(2 \delta)>0
$$

(You could also prove this using the definition of integral, but choosing partitions appropriately. For example show that the lower Darboux integral is greater than zero.)
b) If the set $C=\{x \in[a, b]: f(x)=0\}$ has measure zero show that

$$
\int_{a}^{b} f(x) d x>0
$$

Solution: Since f is integrable we know the set D of points where f is discontinuous has measure zero. If $[a, b]-D$ had measure zero then so would $[a, b]=D \cup([a, b]-D)$ (since the union of two sets of measure zero have measure zero). But it is easy to see that $[a, b]$ does not have measure zero (argument below). Thus $[a, b]-D$ does not have measure zero. From this we can conclude that $([a, b]-D)$ is not a subset of C (since subsets of measure zero have measure zero). But since $[a, b]-D$ is the set of points where f is continuous it is clear that there is a point $c \in(a, b)$ where f is continuous and not in C, that is $f(c)>0$. Thus we are done by part a).

Proof that $[a, b]$ does not have measure zero. Now suppose $\left\{U_{i}\right\}$ is an cover of $[a, b]$ by open intervals. Since $[a, b]$ is compact there are a finite number of U_{i} that cover $[a, b]$, say $U_{i_{1}}, \ldots, U_{i_{k}}$. We can assume that each $U_{i_{j}}$ intersects $[a, b]$ (or else we could through it out and still have a cover). It is clear that $U=\cup_{j=1}^{k} U_{i_{j}}$ is connected (if not then since $[a, b]$ is connected it would be in one of the components of U and thus there would be some $U_{i_{j}}$ that don't intersect $[a, b]$). Thus U is an open interval that contains $[a, b]$ it is clear that the length of U is larger than the length of $[a, b]$, that is $b-a$. Thus the total length of the $U_{i_{j}}$ is bigger than $b-a$ and hence the total length of the U_{i} is bigger than $b-a$. In particular we cannot find a cover of $[a, b]$ with total length less than, say, $\frac{1}{2}(b-a)$. So $[a, b]$ does not have measure zero.
4) Let $f:[0,1] \rightarrow \mathbb{R}$ be the function that is 0 for all irrational numbers and $f(x)=x$ for all rational numbers. Prove that f is not integrable. Hint: Show that the upper and lower Darboux integrals cannot be the same. Specifically show that any upper sum is bounded below by $\frac{1}{2}$.

Solution: If \mathcal{P} is any partition of $[0,1]$ then notice since each interval in the partition contains an irrational number we know that the minimum of f on each of these intervals is zero. Thus

$$
L(f, \mathcal{P})=0
$$

for all \mathcal{P} and so $\underline{\int_{0}^{1}} f(x) d x=0$. Now if $I=\left[x_{i-1}, x_{i}\right]$ is an interval of the partition \mathcal{P} then there is a sequence of rational numbers approaching x_{i} and thus the maximum of f on I is x_{i}. Noting that $\frac{x_{i}+x_{i-1}}{2}<x_{i}$ (because $x_{i}>x_{i-1}$) we have

$$
\begin{aligned}
U(f, \mathcal{P}) & =\sum_{i=1}^{n} x_{i}\left(x_{i}-x_{i-1}\right)>\sum_{i=1}^{n} \frac{1}{2}\left(x_{i}+x_{i-1}\right)\left(x_{i}-x_{i-1}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-x_{i-1}^{2}=\frac{1}{2}\left(x_{n}^{2}-x_{0}^{2}\right)=\frac{1}{2}(1-0)=\frac{1}{2} .
\end{aligned}
$$

Thus for any partition \mathcal{P} the upper sum of f is bounded below by $\frac{1}{2}$ and hence

$$
\overline{\int_{0}^{1}} f(x) d x \geq \frac{1}{2}
$$

In particular the upper and lower sums are not the same and hence f is not integrable.
5) Answer the following questions True or False. Circle either \mathbf{T} or \mathbf{F} to indicate your answer. You do not need to justify your answer.

I am providing reasons for the answers but you do not need to do so.

1. If $|f|$ is integrable on $[a, b]$ then f is integrable on $[a, b]$.
\mathbf{F} If f is 1 for irrational and -1 for rational numbers on $[0,1]$ then $|f|$ is a constant function and hence integrable, but f is discontinuous everywhere so it is not integrable.
2. If f is not integrable on $[a, b]$ then there are partitions \mathcal{P} and \mathcal{Q} of $[a, b]$ such that $L(f, \mathcal{Q})>U(f, \mathcal{P})$
F The upper sum is always larger than the lower sum for any partition.
3. If a function is differentiable on an open interval I then it is continuous on I.

T A theorem from class.
4. Sets of measure zero must be countable.
\mathbf{F} Countable sets have measure zero, but there are uncountable sets (like the middle thirds Cantor set) that also have measure zero.
5. If a function if differentiable on an open interval I then its derivative is continuous on I.
\mathbf{F} The function $f(x)=x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and 0 for $x=0$ is differentiable on all of \mathbb{R} but its derivative is not continuous at 0 .
6. If a function has bounded derivative on an interval then it is uniformly continuous on the interval.
\mathbf{T} If the derivative of a function is bounded on an interval then the function is Lipschitz (see problem 1). Lipschitz functions are uniformly continuous.
7. Every integrable function has an anti-derivative.
\mathbf{F} Derivatives satisfy the intermediate value property. Since not every integrable function satisfies this, not every function can be a derivative (in particular have an anti-derivative).
8. The set of integrable functions form a vector space.

T Theorem from class.
9. The product of integrable functions is integrable.
\mathbf{T} Theorem from class (also easily follows from the Riemann-Lebesgue theorem).
10. The composition of integrable functions is integrable.
\mathbf{F} We had a counterexample to this on homework 2.

