Name: _____

Signature: _____

Instructions: Print your name and sign your signature to indicate that you accept the honor code. To receive full credit you must provide a proof that any answer you give is correct. You have 75 minutes to answer all the questions. *Good Luck*

Question	Max Point	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

1) Let $g:\mathbb{R}\to\mathbb{R}$ be a uniformly continuous function. Define

$$G: C^0([a,b]) \to C^0([a,b]): f \mapsto g \circ f.$$

If $C^0([a, b])$ has the sup-norm show that G is uniformly continuous.

2) Show that if $f_n : [a, b] \to \mathbb{R}$ is a sequence of differentiable functions that converge uniformly to f and the sequence f'_n converges uniformly to g then f' = g.

3) Let \mathcal{F} be a family of equicontinuous functions from an interval [a, b] to \mathbb{R} that are bounded in the sup-norm. Define

$$F(x) = \sup\{f(x) : f \in \mathcal{F}\}$$

for all $x \in [a, b]$. Show that F is continuous.

4) a) Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $b \in \mathbb{R}^m$. Define f(x) = Lx + b. What is the derivative of f at $y \in \mathbb{R}^n$?

b) Using the definition prove that your answer from a) is the derivative of f.

c) Compute the derivative of $f(x, y, z) = (xy^2, x + y, xy, 5 + x)$.

 \mathbf{T} F

5) Answer the following questions True or False. Circle either T or F to indicate your answer. You do not need to justify your answer.

- 1. Analytic functions are smooth.
- 2. A set in $C^0([a,b])$ is compact if and only if it is closed and bounded. (Here we are using the sup-norm on C^{0} .)
- 3. If the derivative of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ exists then all the partial derivatives of the coordinate functions exist.
- 4. The derivative of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ is given by the Jacobian matrix (in the standard basis of \mathbb{R}^n and \mathbb{R}^m).
- 5. A sequence of differentiable functions $\{f_n\}$ on a compact interval always has a subsequence that converge uniformly to some function on the interval.
- 6. If a sequence of continuous functions $\{f_n\}$ converges uniformly to f on [a, b] then the sequence is equicontinuous.
- 7. The derivative of a function $f: \mathbb{R}^2 \to \mathbb{R}^3$ can be represented by a 3×3 matrix.
- 8. The normed vector space $(C^n([a, b]), \|\cdot\|_{C^n})$ is a Banach space.

equicontinuous, then the sequence converges uniformly.

9. If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ are differentiable functions then $g \circ f$ does not have to be differentiable.

10. If a sequence $\{f_n\}$ of functions on a compact set is bounded in the sup-norm and

 \mathbf{T}

 \mathbf{T}

 \mathbf{T}

\mathbf{T} F

\mathbf{T} F

F

 \mathbf{F}

F

Т

 \mathbf{T}

 \mathbf{T}

Т F

F

F

 \mathbf{F}