Math 4318

Solutions

1) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous function. Define

$$
G: C^{0}([a, b]) \rightarrow C^{0}([a, b]): f \mapsto g \circ f .
$$

If $C^{0}([a, b])$ has the sup-norm show that G is uniformly continuous.
Solution: Given any $\epsilon>0$ we can us the uniform continuity of g to find a $\delta>0$ so that

$$
|x-y|<\delta \Rightarrow|g(x)-g(y)|<\epsilon / 2
$$

Now if $f_{1}, f_{2} \in C^{0}([a, b])$ and $\left\|f_{1}-f_{2}\right\|_{\infty}<\delta$ then for all $x \in[a, b]$ we know that $\mid f_{1}(x)-$ $f_{2}(x) \mid<\delta$ so $\left|G\left(f_{1}\right)(x)-G\left(f_{2}\right)(x)\right|=\left|g\left(f_{1}(x)\right)-g\left(f_{2}(x)\right)\right|<\epsilon / 2$. Thus

$$
\left\|G\left(f_{1}\right)-G\left(f_{2}\right)\right\|_{\infty}=\sup _{x \in[a, b]}\left\{\mid G\left(f_{1}\right)(x)-G\left(f_{2}\right)(x \mid\} \leq \epsilon / 2<\epsilon\right.
$$

So we have shown that given any $\epsilon>0$ there is a $\delta>0$ so that $\left\|f_{1}-f_{2}\right\|_{\infty}<\delta$ implies that $\left\|G\left(f_{1}\right)-G\left(f_{2}\right)\right\|_{\infty}<\epsilon$. Or in other words that G is uniformly continuous.
2) Show that if $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of differentiable functions that converge uniformly to f and the sequence f_{n}^{\prime} converges uniformly to g then $f^{\prime}=g$.
Solution: We need to show that $\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=g(x)$. To this end consider

$$
\left|g(x)-\frac{f(y)-f(x)}{y-x}\right|=\left|g(x)-f_{n}^{\prime}(x)\right|+\left|f_{n}^{\prime}(x)-\frac{f_{n}(y)-f_{n}(x)}{y-x}\right|+\left|\frac{f_{n}(y)-f_{n}(x)}{y-x}-\frac{f(y)-f(x)}{y-x}\right| .
$$

We must bound each term on the left. Notice that the mean value theorem gives us that for some t between x and y we have

$$
\left(f_{m}(x)-f_{n}(x)\right)-\left(f_{m}(y)-f_{n}(y)\right)=\left(f_{m}^{\prime}(t)-f_{n}^{\prime}(t)\right)(x-y)
$$

which gives

$$
\left|\frac{f_{m}(x)-f_{m}(y)}{x-y}-\frac{f_{n}(x)-f_{n}(y)}{x-y}\right|=\left|f_{m}^{\prime}(t)-f_{n}^{\prime}(t)\right| .
$$

Since $\left\{f_{n}^{\prime}\right\}$ converges, it is Cauchy. Thus given $\epsilon>0$ there is an N such that $m, n \geq N$ implies that $\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\epsilon / 3$ for all $x \in[a, b]$. Thus for $m, n \geq N$ we have

$$
\left|\frac{f_{m}(x)-f_{m}(y)}{x-y}-\frac{f_{n}(x)-f_{n}(y)}{x-y}\right|<\epsilon / 3 .
$$

Letting $m \rightarrow \infty$ gives

$$
\left|\frac{f_{n}(y)-f_{n}(x)}{y-x}-\frac{f(y)-f(x)}{y-x}\right|<\epsilon / 3
$$

for all $n \geq N$. Now since f_{n} is differentiable there is a $\delta>0$ such that $\left|f_{n}^{\prime}(x)-\frac{f_{n}(y)-f_{n}(x)}{y-x}\right|<$ $\epsilon / 3$ for all $|x-y|<\delta$. Finally since $\left\{f_{n}^{\prime}\right\}$ converges uniformly to g there is some N^{\prime} such
that $n \geq N^{\prime}$ implies that $\left|g(x)-f_{n}(x)\right| \leq \epsilon / 3$ for all x. Putting this into the first equation able gives

$$
\left|g(x)-\frac{f(y)-f(x)}{y-x}\right|<\epsilon
$$

for $n \geq \max N, N^{\prime}$ and $|x-y| \leq \delta$. But since the inequality does not involve n we see that $\left|g(x)-\frac{f(y)-f(x)}{y-x}\right|<\epsilon$ for all $|x-y|<\delta$. That is we have shown that $f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=$ $g(x)$.
3) Let \mathcal{F} be a family of equicontinuous functions from an interval $[a, b]$ to \mathbb{R} that are bounded in the sup-norm. Define

$$
F(x)=\sup \{f(x): f \in \mathcal{F}\}
$$

for all $x \in[a, b]$. Show that F is continuous.
Solution: Given $\epsilon>0$ the equicontinuity of \mathcal{F} implies there is some $\delta>0$ such that $|x-y|<\delta$ implies that $|f(x)-f(y)|<\epsilon / 2$ for all $f \in \mathcal{F}$. Thus for $|x-y|<\delta$ we have
$F(x)=\sup \{f(x): f \in \mathcal{F}\} \leq \sup \{f(y)+\epsilon / 2: f \in \mathcal{F}\}=\epsilon / 2+\sup \{f(y): f \in \mathcal{F}\}=\epsilon / 2+F(y)$.
Similarly

$$
F(y) \leq \epsilon / 2+F(x)
$$

Thus $|F(x)-F(y)| \leq \epsilon / 2<\epsilon$ if $|x-y|<\delta$.
4) a) Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map and $b \in \mathbb{R}^{m}$. Define $f(x)=L x+b$. What is the derivative of f at $y \in \mathbb{R}^{n}$?
Solution: The derivative is $D f(x)=L$.
b) Using the definition prove that your answer from a) is the derivative of f.

Solution: Indeed we have

$$
\frac{\|f(y)-(f(x)+L(y-x))\|}{\|y-x\|}=\frac{\|L y+b-(L x+b+L y-L x)\|}{\|y-x\|}=\frac{0}{\|y-x\|}=0 .
$$

So the limit as $y \rightarrow x$ of $\frac{\|f(y)-(f(x)+L(y-x))\|}{\|y-x\|}$ is zero.
c) Compute the derivative of $f(x, y, z)=\left(x y^{2}, x+y, x y, 5+x\right)$.

Solution: Since the partial derivatives of the component functions are all continuous we know f is differentiable and we can represent $\operatorname{Df}(x, y, z)$ (in the standard basis on \mathbb{R}^{3} and \mathbb{R}^{4}) by the Jabobian matrix:

$$
D f(x, y, z)=\left[\begin{array}{ccc}
y^{2} & 2 x y & 0 \\
1 & 1 & 0 \\
y & x & 0 \\
1 & 0 & 0
\end{array}\right]
$$

5) Answer the following questions True or False. Circle either \mathbf{T} or \mathbf{F} to indicate your answer. You do not need to justify your answer.
1. Analytic functions are smooth.

T This is true since power series are infinitely differentiable in there interval of convergence.
2. A set in $C^{0}([a, b])$ is compact if and only if it is closed and bounded. (Here we are using the sup-norm on C^{0}.)
\mathbf{F} You also need equicontinuity.
3. If the derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ exists then all the partial derivatives of the coordinate functions exist.

T A theorem from class.
4. The derivative of a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by the Jacobian matrix (in the standard basis of \mathbb{R}^{n} and \mathbb{R}^{m}).

T A theorem from class.
5. A sequence of differentiable functions $\left\{f_{n}\right\}$ on a compact interval always has a subsequence that converge uniformly to some function on the interval.

F Consider $f_{n}(x)=n$.
6. If a sequence of continuous functions $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$ then the sequence is equicontinuous.
\mathbf{T} This was a homework problem.
7. The derivative of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ can be represented by a 3×3 matrix.
$\mathbf{F} \quad$ It can be represented as a 3×2 matrix.
8. The normed vector space $\left(C^{n}([a, b]),\|\cdot\|_{C^{n}}\right)$ is a Banach space.
\mathbf{T} Theorem from class.
9. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ are differentiable functions then $g \circ f$ does not have to be differentiable.
\mathbf{F} The chain rule says the composition will be differentiable.
10. If a sequence $\left\{f_{n}\right\}$ of functions on a compact set is bounded in the sup-norm and equicontinuous, then the sequence converges uniformly.

F You only know a subsequence converges uniformly.

