Math 4431 - Fall 2009 Homework 1

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 6,7, 10 and 15. Due: September 8

- 1) Find all the topologies on the set $\{a, b, c\}$. Which are homeomorphic.
- Let (X, \mathcal{T}) be a topological space and $A \subset X$. The **subspace topology** on A is the topology on A defined by $\mathcal{T}_A = \{U \cap A | U \in \mathcal{T}\}.$
- 2) Show \mathcal{T}_A is a topology on A.
- 3) Let \mathbb{R} be the x-axis in \mathbb{R}^2 . Show the subspace topology on \mathbb{R} is the same as the standard topology on \mathbb{R} defined in class.
- 4) Show the product topology on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is the same as the standard topology on \mathbb{R}^2 .
- 5) Show the projection onto either factor of a product space is continuous. That is show the maps $X \times Y \to X : (x,y) \mapsto x$ and $X \times Y \to Y : (x,y) \mapsto y$ are continuous.
- 6) Given a map $f: Z \to X \times Y$ you can always think of it as defined by f(z) = (g(z), h(z)) where $g: Z \to X$ and $h: Z \to Y$. Show that f is continuous if and only if g and h are both continuous.
- 7) The product of two Hausdorff spaces is Hausdorff.
- 8) Let X be any set with the finite complement topology. When is this space Hausdorff? Hint: this depends on the cardinality of X.
- 9) Finite sets in a Hausdorff space are closed.

Hint: First prove that sets with one point in them are closed.

- 10) Let X = [0,1) and $Y = S^1 \subset \mathbb{R}^2$ and define $f: X \to Y: t \mapsto (\cos 2\pi t, \sin 2\pi t)$. Show f is a continuous bijection from X to Y. Show that the inverse of f is not continuous.
- 11) Let $Y = \{0, 1\}$ with the discrete topology. Let X be any topological space. Show the following are equivalent:
 - 1. X has the discrete topology,
 - 2. every function $f: X \to Y$ is continuous,
 - 3. every function $f: X \to Z$, where Z is any topological space, is continuous.
- 12) Let $d: X \times X \to \mathbb{R}$ be a metric on X. Give X the topology induced by d. Show d is continuous.
- 13) Let d be a metric on X. Define $d' = \min\{d(x,y), 1\}$. Show d' is a metric and d' and d generates the same topology on X.
- 14) A set S in a topological space (X, \mathcal{T}) is called **dense** if $\overline{S} = X$.
 - 1. Let X be any infinite set with the finite complement topology. Let S be an infinite subset of X. Show that S is dense in X.

2. Let $f, g: X \to Y$ be two continuous functions from X to Y. If Y is a Hausdorff space and f(x) = g(x) on some dense set in X then show that f = g on all of X. Hint: Show the subset of X on which f = g is a closed set.

Let ρ be a bounded metric on $X = \mathbb{R}^n$ (by bounded I mean there is some constant C so that $\rho(x,y) < C$ for all $x,y \in X$). Given two sets A and B in X define

$$\rho(x, A) = \inf\{\rho(x, y) | y \in A\},\$$

$$d_A(B) = \sup\{\rho(x, A) | x \in B\}$$

and

$$d(A, B) = \max\{d_A(B), d_B(A)\}.$$

Note: $d({x}, {y}) = \rho(x, y)$.

- 15) Let \mathcal{F} be the set of all nonempty closed and bounded sets in X. Show d is a metric on \mathcal{F} . This metric is called the Hausdorff metric on \mathcal{F} .
- 16) Given A and B in \mathcal{F} show that $d(A, B) < \epsilon$ if and only if $A \subset U_{\rho}(B, \epsilon)$ and $B \subset U_{\rho}(A, \epsilon)$ where $U_{\rho}(A, \epsilon) = \{x \in X | \rho(x, A) < \epsilon\}.$