Math 4431 - Fall 2009 Homework 2

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 5, 7, 9 and 12. Due: September 29

- 1) Given a collection of topological spaces $\{X_{\alpha}\}_{{\alpha}\in J}$ show that the product topology on $\prod_{{\alpha}\in J}X_{\alpha}$ is the smallest topology for which each of the projection maps is continuous.
- 2) Let D^2 be the unit disk in \mathbb{R}^2 and S^2 be the unit sphere in \mathbb{R}^3 . Show that the upper hemisphere of S^2 is homeomorphic to D^2 and similarly for the lower hemisphere. Use this to show that S^2 is homeomorphic to $D^2 \cup_g D^2$ for some homomorphism $g: S^1 \to S^1$ where $S^1 = \partial D^2$. Determine g.
- 3) Let D^2 be the unit disk in \mathbb{R}^2 . Let \mathcal{D} be a decomposition of \mathbb{R}^2 whose only non-trivial set is D^2 . Show \mathcal{D} is homeomorphic to \mathbb{R}^2 .
- 4) Let $X = [0, 1], A = \{0, 1\} \subset X$ and Y = [4, 5]. Define the map $f : A \to Y$ by f(0) = 4 and f(1) = 5. Show that $X \cup_f Y$ is homeomorphic to S^1 .
- 5) Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Show that the decomposition space of X defined as

$$\mathcal{D} = \{ S_r | r > 0 \},$$

where $S_r = \{(x, y)|x^2 + y^2 = r^2\}$, is homeomorphic to \mathbb{R} .

6) Show that S^1 is not homeomorphic to [0,1].

Hint: Think connectedness.

- 7) Show that if U is an open connected subset of \mathbb{R}^2 , then it is path connected. Hint: Fix an $x_0 \in U$ and show that the set of points in U that can be joined to x_0 by a path is both open and closed in U.
- 8) Show that a closed subspace of a normal space is normal.
- 9) Show that a connected normal space having more than one point is uncountable. (Hint: use Urysohn's Lemma)
- 10) Show that the any subspace of a separable metric space is separable.
- 11) The Tietze extension theorem is

Theorem 1 Let X be a normal space and A a closed subspace of X. Then any continuous function $f: A \to [0, 1]$ can be extended to a continuous function $f: X \to [0, 1]$.

Show that Urysohn's Lemma follows from the Tietze extension theorem. (Remark: It is also true but harder that the Tietze extension theorem follows from Urysohn's Lemma. See the book for a proof.)

12) Show the continuous image of a separable space is separable.